Package ‘FunWithNumbers’

January 13, 2022

Type Package
Title Fun with Fractions and Number Sequences

Version 1.1

Date 2022-01-02

Author Carl Witthoft

Maintainer Carl Witthoft <carl@witthoft.com>

Description A collection of toys to do things like generate Collatz sequences, convert a frac-

tion to ~“continued fraction" form, calculate a fraction which is a close approxima-
tion to some value (e.g., 22/7 or 355/113 for pi), and so on.

License LGPL-3
LazyData FALSE
Imports Rmpfr, gmp

NeedsCompilation no
Repository CRAN
Date/Publication 2022-01-13 07:42:48 UTC

R topics documented:

Index

FunWithNumbers-package e 2
aliquot e e 2
benprob L e e e 3
bestFrac 4
DPD - . e 6
cf2latex e 8
cfraco e 9
collatz L e 10
JUECALZ . . . o o o e e e e e e e e 11
0010) o A 12
preciseNumbersAsChar 13
sptable 13
VanecK e 14

16

2 aliquot

FunWithNumbers-package
Fun with Fractions and Number Sequences

Description

A collection of toys to do things like generate Collatz sequences, convert a fraction to "continued
fraction" form, calculate a fraction which is a close approximation to some value (e.g., 22/7 or
355/113 for pi), and so on.

Details
The DESCRIPTION file:
Package: FunWithNumbers
Type: Package
Title: Fun with Fractions and Number Sequences
Version: 1.1
Date: 2022-01-02
Author: Carl Witthoft

Maintainer: ~ Carl Witthoft <carl @witthoft.com>

Description: A collection of toys to do things like generate Collatz sequences, convert a fraction to "continued fraction" forr
License: LGPL-3

LazyData: FALSE

Imports: Rmpfr, gmp
Author(s)
Carl Witthoft

Maintainer: Carl Witthoft <carl @ witthoft.com>

aliquot Generate the Aliquot sequence.

Description

Each term in the aliquot sequence is generated by summing all proper divisors of the previous term.
The value "1" is included in this collection of divisors. In number theory, aliquot is closely related
to terms such as "sociable" and "amicable" numbers

Usage

aliquot(x, maxiter = 100)

benprob 3

Arguments
X An integer or a bigz integer to start the desired sequence
maxiter Set a limit on the number of terms to calculate. See Details for reasons why to
do so.
Details

While many aliquot sequences terminate in the values c(prime_number, 1, 0), many numbers drop
into a short loop or a repeating value (perfect numbers do this). If the sequence repeats or terminates,
the sequence is returned. If either maxiter is reached or the sequence drops into a loop (and thus
maxiter will be triggered), a warning notice is generated and the sequence so far is returned.

Value

A vector of bigz integers ...

Author(s)

Carl Witthoft, <carl@witthoft.com>

Examples

aliquot(20)

#2022 14108 7 1
aliquot (95)

repeats '6' forever
95256 6

benprob Generate random numbers based on the Benford distribution

Description

This function produces numbers whose distribution is based on Benford’s Law of the occurrence of
the values 1 through 9 in the first digit of numbers.

Usage

benprob(numsamp = 100, numbase = 10)

Arguments
numsamp How many values to generate.
numbase Specify the base system (binary, octal, decimal, or whatever is desired) in which

to apply the Benford distribution. The default is "10," i.e. decimal.

4 bestFrac

Details

"Benford’s Law," https://en.wikipedia.org/wiki/Benford%27s_law can be used to assess the
"true" randomness of demographic data. Probably its most well-known use has been to detect fraud-
ulent patterns in voting and investment returns claimed by various fund operators. The probability
function is prob(d) = log(d+1) -log(d), where d can take on the values 1:(log_base_in_use -1)
.The data generated with this function can be used to calculate various statistics such as variance,
skew, etc., which can then be compared with the real-world sample set being analyzed.

Value

A vector of random values.

Author(s)

Carl Witthoft, <carle@witthoft.com>

References

https://en.wikipedia.org/wiki/Benford%27s_lawhttps://projecteuclid.org/euclid.ss/
1177009869/

Examples

samps <- benprob(1000)
sd(samps)
hist(samps)

bestFrac Generate a fraction close to the input value.

Description

Inspired by the well-known approximations to pi, i.e. 22/7 and 355/113, this function allows the
user to find the best-match fraction for any number, within the specified maximum magnitude of
the numerator and denominator

Usage

bestFrac(x, intrange)

Arguments
X A character string representing a number to be "converted" to a fraction of nearly
equal value.
intrange If a single value, the function tests all combinations of numerator and denomina-

tor between one and intrange . If two values, the "testing range’ is intrange[1]:intrange[2].
Otherwise, whatever vector of values is supplied will be used.

https://en.wikipedia.org/wiki/Benford%27s_law
https://en.wikipedia.org/wiki/Benford%27s_law
https://projecteuclid.org/euclid.ss/1177009869/
https://projecteuclid.org/euclid.ss/1177009869/

bestFrac

Details

For irrationals and the like, the simplest way to generate the input parameter string x is to use
sprintf with as many digits to the right of the decimal point as desired. The returned values are in
reduced form, i.e. the numerator and denominator are relatively prime.

Value

bestmatch
goodmatch

matcherr

Author(s)

The numerator and denominator of the best-matching fraction

An N-by-2 array of the progressively better matches found (numerators and de-
nominators in the columns)

A vector of the differences between the *matcherr’ fractions and the input value.
This is limited in precision to the machine limit for doubles (floats).

Carl Witthoft, <carl@witthoft.com>

Examples

gpi <- sprintf("%1.30f", pi)
bestFrac(gpi, 100)

$bestmatch

[1] 22 7

$goodmatch

[,11 [,2]

goodmatch 0 0

1 1

2 1

3 1

13 4

16 5

19 6

22 7

$matcherr

[1] 1.000000e+02 6.816901e-01 3.633802e-01 4.507034e-02 3.450713e-02
1.859164e-02 7.981306e-03 4.024994e-04

bestFrac(gpi, 100:400)

$bestmatch
[1] 355 113
$goodmatch

[,11 [,2]
goodmatch 0 0
100 31
100 32
101 32
104 33
107 34
110 35 # notice this is 22/7
179 57
201 64
223 71

245

267

289

311

333

355

$matcherr

#

1.739936e-
[8] 3.952697e-
9.177057e-
#

[15] 2.648963e-

bpp

78
85
92
99
106
113

[1] 1.000000e+02 2.680608e-02 5.281606e-03 4.665578e-03 3.158429e-03

03 4.024994e-04
04 3.080137e-04 2.379631e-04 1.804857e-04 1.324752e-04
05 5.682219e-05
05 8.491368e-08)

bpp

Function which calculates pi, or other irrationals, using the Bailey-
BorweinPlouffe formula ~~

Description

THe BPP algorithm consists of a double summation over specified fractions. Rather than go into
the gory details here, please refer to the link in the References section.

Usage

bpp(k,pdat = ¢c(1,16,8,4,0,0,-2,-1,-1,0,0),mpbits = 400)

Arguments

k
pdat

mpbits

Details

The number of terms in the series to calculate. Note that zero is a valid entry.

The parameter P which is used to define the coefficients used in all fractions in
each term of the series. In brief, pdat contains the following BPP parameters:
pdat(s,b,m,A) where Acomprises all elements of the vector pdat after the first
three. There are strict rules about the length of A; see the Details section.

This specifies the number of binary digits of precision to use when the function
converts gmp: :bigq fractions to mpfr extended precision decimal representa-
tion. Failure to use a large enough value may result in a limit to the true output
precision.

The BPP algorithm calculates the sumK=0,k, 1/(b"K) * FracSum , where FracSum is defined by
the sum(M=1,m, A[M]/(m*K + M)"s) . This means that the number of elements of A must equal m.
Zero values are legal and are used to reject fractions not wanted in the inner sum.

The default values for pdat correspond to the coefficients used to generate pi (the sum to infinity is
mathematically equal to pi). Other values have been found to calculate a few other irrationals but
there is as yet no known procedure to generate the pdat set for any given number.

bpp

Value

A list containing bigq , the gmp fraction calculated, and mdec, the mpfr decimal representation of

said fraction.

Author(s)

Carl Witthoft, <carl@witthoft.com>

References

https://en.wikipedia.org/wiki/Bailey-Borwein-Plouffe_formula and references cited there.

Examples

#
#
#
#
#
#
#

H+

od O O O

#

Compare the decimal outputs to the first 130 digits of pi, which are:
[113.141592653589793238462¢614

[26]
[51]
[76]
[101]
[126]

00 N 00 = W
A O OSSO W
N 00 N U1
o N S 0w
S = 00NN
» O o
0 W W O
S 00 N Ul
0 O~
o N W N
U1 o » 0
- » @
w w o A
N B~ O =
0 o N WO
NN W
w Ul =
S W N O
o~ 0 WO
N = W
»h =2 o0 ©

Lots of precision, but most of the digits are inaccurate.
(bpp(5))

$bigq
Big Rational ('bigq') :
[1] 40413742330349316707/12864093722915635200

$mdec

1 "mpfr' number of precision 400 bits

[1] 3.14159265322808753473437803553620446955
852801219780193481442230321585101644290504893051
16201439239799241252867682875513665

extend the series.

(bpp(20))

#

P E E

#

#

$bigq

Big Rational ('bigq') :

[1] 6978810534836185743790248010742839687036
9348283327260905420704007804969465293
222142438704194558751308818610402859379
08911653929817878006825259792072704000

$mdec

1 'mpfr' number of precision 400 bits
[1] 3.1415926535897932384626433832513
62615881909316518417908555365030283

2142940981052934064597204233958787472300102294523391693

Accurate but low precision

bpp (20, mpbits=20)

$bigqg

S NSO W
[Ce ISR o) N
w o N Ul

https://en.wikipedia.org/wiki/Bailey-Borwein-Plouffe_formula

8 cf2latex

Big Rational ('bigq') :

[1] 6978810534836185743790248010742839
6870369348283327260905420704007804969465293
2221424387041945587513088186104028593790891
1653929817878006825259792072704000

$mdec
1 "'mpfr' number of precision 20 bits
[1] 3.1415939

e E E EEE R

cf2latex Generate readable equations from the output of cfrac

Description

This function takes a vector of integers representing the values in a continued fraction and generates
readable equations in two forms: inline as a character string, and LaTeX code.

Usage

cf2latex(vals, ...)
Arguments

vals A vector of integers (or bigz, mpfr integer values)

Reserved for future upgrades

Value

egn The continued fraction as an inline equation

texegn LaTeX source code for presenting the continued fraction

texexpr Markdown-ish string for use in plotting, typically like text (x,y, TeX(texexpr))
Author(s)

Carl Witthoft, <carl@witthoft.com>

See Also

cfrac to generate continued fractions.

cfrac 9

Examples

355/113 - pi
small number

foo <- cfrac(355,113)
#[11 3 716
bar <- cf2latex(foo)

$eqgn

[11 "3 + 1/(7 + 1/16)"

$texeqn #Paste into your LaTeX source file
[1]1 "3 + \frac{1}{7 + \frac{1}{163}}"
$texexpr # use in an R plot window

[1] "$3 + \frac{1}{7 + \frac{1}{163}}$"
##not run
library(latex2exp)
plot(NA,NA,x1lim = c(1,10),ylim=c(1,5),axes=FALSE,xlab="",6ylab="")
text(2,4,TeX(bar$texexpr))

#
#
#
#
#
#

cfrac Generate the continued-fraction form of an input number

Description

This function takes as input the numerator and denominator, as integers or bigz values, of a value
to be converted into continued-fraction form. Irrationals can be processed to arbitrary precision by
choosing a "closely-approximating" fraction.

Usage
cfrac(num, denom, ...)
Arguments
num Numerator of the fraction to be converted. If a double is provided, the f1loor (num)
will be used internally. bigz and mpfr values are allowed.
denom Denominator of the fraction to be converted. Same rules as for the numerator.
Reserved for future upgrades
Details

Quoting from https://en.wikipedia.org/wiki/Continued_fraction, "In mathematics, a con-
tinued fraction is an expression obtained through an iterative process of representing a number as
the sum of its integer part and the reciprocal of another number, then writing this other number as
the sum of its integer part and another reciprocal, and so on."

Value

A vector of integers of the same class as the inputs (int, bigz, etc) representing the values in each
level of the continued fraction.

https://en.wikipedia.org/wiki/Continued_fraction

10 collatz

Author(s)

Carl Witthoft, <carl@witthoft.com>

See Also

cf2latex to generate both an inline text representation of the continued fractdion and LaTeX code
for the continued fraction.

Examples

355/113 - pi

small number
cfrac(355,113)
#[1]1 3 7 16

collatz Test the Collatz Conjecture. ~~

Description

This function calculates the Collatz (aka Hailstone) sequence based on the selected starting integer.

Usage

collatz(x, maxiter = 1000)

Arguments
X The integer, or bigz integer to start with.
maxiter A "safety switch" to avoid possible lengthy runtimes (when starting with very
very large numbers), terminating the function prior to convergence.
Details

The Collatz sequence follows simple rules: If the current number is even, divide it by two; else if
it is odd, multiply it by three and add one. Convergence occurs in < 200 cycles for initial values <
10 million or so. Note: a serious Collatz generator would memoize previous successful sequences,
thus greatly reducing the calculation time required to test new numbers. This function is provided
"for amusement only."

Value

A vector of bigz integers representing the sequence, either to convergence or as limited by maxiter

Author(s)

Carl Witthoft, <carl@witthoft.com>

juggatz 11

Examples

(collatz(20))

#20105 16 8 4 2

(collatz(234568))

[1] 234568 117284 58642 29321 87964 43982 21991 65974 32987 98962
49481 148444 74222 37111

[15] 111334 55667 167002 83501 250504 125252 62626 31313 93940 46970 23485
70456 35228 17614

[29] 8807 26422 13211 39634 19817 59452 29726 14863 44590 22295 66886
33443 100330 50165

[43] 150496 75248 37624 18812 9406 4703 14110 7055 21166 10583

#31750 15875 47626 23813

[57] 71440 35720 17860 8930 4465 13396 6698 3349 10048 5024

2512 1256 628 314

[71]1 157 472 236 118 59 178 89 268 134 67 202 101 304 152
[85] 76 38 19 58 29 88 44 22 11 34 17 52 26 13
[99] 40 20 10 5 16 8 4 2

H+

#
#
#
#
#
#

juggatz Function which calculates the "Juggler" sequence ~~

Description

The "Juggler" sequence is similar to the Collatz sequence, but generates exponential changes rather
than multiplicative changes to calculate each term. See Details for the algorithm.

Usage
juggatz(x, maxiter = 1000, prec = 100)

Arguments
X The numeric, mpfr, or bigz integer to start with.
maxiter A "safety switch" to avoid possible lengthy runtimes (when starting with very
very large numbers), terminating the function prior to convergence.
prec This specifies the number of binary digits of precision to use when the function
converts numeric input x to a mpfr object.
Details

The Juggler algorithm uses the following rules: x[j+1] = floor(if even, x[j]*0.5; if odd x[j]*1.5).
Since the mpfr-class objects represent approximations to the various powers and roots calculated,
juggatz dynamically adjusts the number of bits of precision for the next value in the sequence.
This ensures that the correct decision as to even or odd is made at each step.

Value

A vector of mpfr integers representing the sequence, either to convergence or as limited by maxiter

12 morris

Author(s)

Carl Witthoft, <carle@witthoft.com>

Examples

(Juggatz(10))

8 "mpfr' numbers of precision 10 .. 100 bits

#1110 3 51136 6 2 1

(Juggatz(37))

18 'mpfr' numbers of precision 10 .. 1000 bits

[1]1 37 225 3375 196069 86818724 9317

[7]1 899319 852846071 24906114455136 4990602 2233 105519
[13] 34276462 5854 76 8 2 1

morris Generate the Morris sequence

Description

The Morris sequence, aka "Look-Say," is an old puzzler sequence.

Usage

morris(x, reps)

Arguments
X Either a starting value from 1 to 9, or a numeric vector containing a Morris
sequence previously generated.
reps Specifies the number of new Morris sequences to generate, starting with the
input x
Details

The Morris sequence is built by taking the verbal description of a number sequence and converting
every number or named numeral to a number in order. Typically, starting with the integer 1, the
spoken description is "One 1," so the next sequence is c¢(1,1). Read that out loud as "Two ones", so
the next sequence is c(2,1) and so on.

Value

A list variable containing all the sequences generated as numeric vectors. ...

Author(s)

Carl Witthoft, <carl@witthoft.com>

preciseNumbersAsChar 13

preciseNumbersAsChar High-precision values for some common constants, in character
Strings.

Description

These are provided for use when playing around with some of the functions in this package, e.g.,
bestFrac or cfrac

Details

These represent, in order, "e" (natural log base), the golden ratio (1+sqrt(5))/2 aka "phi", "pi", and
the square root of 2 as generated via rmpfr with 10 000 binary bits of precision. There are many
websites which can provide upwards of a million decimal digits for these constants for those who
are interested.

Author(s)

Carl Witthoft, <carl@witthoft.com>

sptable Calculate the number of unique values in the cross-table of sums and
products for the input set of numbers

Description

This function tests the proposition that the sum of all unique values in the cross-table of sums and
products for a set of N input values is "close" to N2 .

Usage
sptable(x)

Arguments

X A vector of integer values.

Value

unigsum vector of the unique values of the outer sum outer(x,x, '+")

unigprod vector of the unique values of the outer product outer(x, x)

14 vaneck

spratio The ratio unigsum/uniquprod

exponentOfN The (numeric) solution to N*(exponentOfN) = uniqsum+unigprod. If Erdos is
right, this will always be "close" to 2.

Author(s)

Carl Witthoft, <carl@witthoft.com>

References

This conjecture is discussed in https://www.quantamagazine.org/the-sum-product-problem-shows-how-addition-

Examples

(sptable(1:10))
$unigsum

[11 19
$unigprod

[1] 42
$spratio

[1] 0.452381
$exponentOfN
[1] 1.78533
set.seed(42)
sptable(sample(1:100,20,rep=FALSE))
$unigsum

[17 123
$unigprod

[1] 202
$spratio

[1] 0.6089109
$exponentOfN
[1] 1.930688

T E EEEE

Y R E R

vaneck Generate a sequence ’invented’ by Jan Ritsema Van Eck

Description

This function generates an interesting (to the author, at least) sequence listed as number A181391
inthe http://oeis.org/. See Details for a full description.

Usage

vaneck(howlong = 100, ve = NULL, ...)

https://www.quantamagazine.org/the-sum-product-problem-shows-how-addition-and-multiplication-constrain-each-other-20190206/
http://oeis.org/

vaneck 15

Arguments
howlong How many terms to generate.
ve Optional argument. Enter a previously generated ("VanEck") sequence here as
a numeric vector, or a single integer to use as an initiator.
reserved for possible future use.
Details

The rule here is that you start with 0, and whenever you get to a number you have not seen before,
the following term is a 0. But if the number k has appeared previously in the sequence, then you
count the number of terms since the last appearance of k, and that number is the following term. In
more detail:

Term 1: The first term is O by definition. Term 2: Since we havent seen 0 before, the second term
is 0. Term 3: Since we have seen a 0 before, one step back, the third term is 1 Term 4: Since we
havent seen a 1 before, the fourth term is 0 Term 5: Since we have seen a 0 before, two steps back,
the fifth term is 2. And so on. As of this release of this R-package, how fast max(sequence) grows,
and whether every number eventually appears, are open questions. The latest investigations and
theorems related to this sequence can be found at http://oeis.org/A181391/

Value
ve The vector (ve for "VanEck") of the sequence values calculated
uniqgs a vector of the unique values in ve

Author(s)

Carl Witthoft, <carl@witthoft.com>

References

http://oeis.org/A181391/

Examples

(vaneck(20))

$ve

[1J]00102022160502654053290
$unigs

110126543

http://oeis.org/A181391/
http://oeis.org/A181391/

Index

* package
FunWithNumbers-package, 2

aliquot, 2

benprob, 3
bestFrac, 4
bpp, 6

cf2latex, 8, 10

cfrac, 8,9

chark (preciseNumbersAsChar), 13
charPhi (preciseNumbersAsChar), 13
charPi (preciseNumbersAsChar), 13
charRoot2 (preciseNumbersAsChar), 13
collatz, 10

FunWithNumbers
(FunWithNumbers-package), 2
FunWithNumbers-package, 2

juggatz, 11
morris, 12
preciseNumbersAsChar, 13

sprintf, 5
sptable, 13

vaneck, 14

16

	FunWithNumbers-package
	aliquot
	benprob
	bestFrac
	bpp
	cf2latex
	cfrac
	collatz
	juggatz
	morris
	preciseNumbersAsChar
	sptable
	vaneck
	Index

