Package 'GENEAsphere'

December 5, 2019

Type Package

Title Visualisation of Raw or Segmented Accelerometer Data
Version 1.5.1
Date 2019-12-05
Author Mango Solutions [aut, cre], Joss Langford [aut, cre], Charles Sweetland [aut, cre], Activinsights Ltd [cph]
Maintainer Charles Sweetland <charles@sweetland-solutions.co.uk></charles@sweetland-solutions.co.uk>
Description Creates visualisations in two and three dimensions of simulated data based on detected segments or raw accelerometer data.
License GPL-3 file LICENSE
LazyData yes
Depends ggplot2, rgl, MASS, misc3d, GENEAread
Suggests knitr, rmarkdown
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-12-05 16:50:14 UTC
R topics documented:
plotAccData
plotSegmentEllipse
plotSegmentFlat
plotSegmentSphere
plotSphere
plotTL
positionals

2 plotAccData

Index 11

plotAccData

Description

Creates a plot of the Acc Data given a resolution.

Usage

```
plotAccData(x, what = c("sd", "mean", "temperature", "light", "voltage"),
  draw = TRUE, resolution = 200, ...)
```

Arguments

x should be an AccData object.

what What variable to plot against time. Options are:

1. sd: Standard of movement given the resolutions

2. mean: Mean of movement given the resolutions

3. temperature

4. light

5. voltage

draw if TRUE, plot a whole new plot. Otherwise, superimpose on to existing plot.

resolution Resolution of plot to create.
... resolution of underlying grid.

Details

From the raw data to create a representation of light, temperature and MAGSA (Mean Absolute Gravity Substituted Acceleration).

Creates a line plot at a certain resolution from the GENEAread AccData objects available.

Examples

```
## Not run:
## AccData = read.bin(datafile) # where data file is a GENEActiv .bin file.
## saveRDS(AccData , "AccData.rds")
x = readRDS(system.file("extdata", "AccData.rds", package = "GENEAsphere"))
plotAccData(x, what = ("sd"))
plotAccData(x, what = ("sd"))
plotAccData(x, what = ("mean"))
plotAccData(x, what = ("temperature"))
plotAccData(x, what = ("light"))
plotAccData(x, what = ("voltage"))
## End(Not run)
```

plotSegmentEllipse 3

plotSegmentEllipse	Plot an ellipse representation of a segment 'confidence interval'	
--------------------	---	--

Description

Create an ellipse representing a 'confidence interval' of a given segment and plot a projected representation.

Usage

```
plotSegmentEllipse(segmentationCSV, plotRows, projection = "aitoff",
  col = "red", singlePlot = TRUE, confidenceLevel = 0.05,
  alpha = thresholds, wrap = FALSE, greyGrid = FALSE)
```

Arguments

segmentationCSV

The file path to the csv file created from the segmentation process containing all

features.

plotRows The rows from the csv file to be used to simulate plotting data.

projection The type of projection to be used. Can be any of those used by mapproject in

the package mapproj.

col A vector of character strings to indicate the colour of each ellipse. If the number

of segments is greater than the length of the colours vector then colurs will be

repeated.

singlePlot (logical) Indicates wether all rows should be added to one plot.

confidenceLevel

The alpha value for the confidence interval. A value of 0.05 corresponds to a

95% confidence interval.

alpha The alpha level to use for plotting colours.

wrap (logical) Indicating whether segments should be wrapped around the sphere or

cropped. By default ellipses are cropped.

greyGrid (logical) Should the plot be created with a white background and grey grid or a

grey background with white grid (default).

Details

This function uses the mean and standard deviation estimates for elevation and rotation of a segment to determine a confidence interval for each direction. This is then used to generate an ellipse representing the two dimensional confidence region. This ellipse is plotted onto a projected representation of the sphere. Required columns are:

- 1. UpDown.median
- 2. UpDown.mad
- 3. Degrees.median
- 4. Degrees.mad

4 plotSegmentFlat

Value

There is no return to the console. As a side effect a graphic is created.

Examples

```
## Not run:
segmentationCSV = system.file("data", "SegData.csv", package = "GENEAsphere")
plotRows = c(1:1)
plotSegmentEllipse(segmentationCSV, plotRows, projection = "aitoff",
    col = "red", singlePlot = TRUE, confidenceLevel = 0.05,
    alpha = thresholds, wrap = FALSE, greyGrid = FALSE)
## End(Not run)
```

plotSegmentFlat

Plot a flat representation

Description

Create a flat representation of the spherical data.

Usage

```
plotSegmentFlat(segmentationCSV, plotRows, col = c("white",
  heat.colors(5, alpha = c(0.3, 0.2, 0.1, 0.05, 0.03))),
  singlePlot = TRUE, nsims = 1000)
```

Arguments

segmentationCSV

The file path to the csv file created from the segmentation process containing all features

plotRows

The rows from the csv file to be used to simulate plotting data.

col

A vector of colours.

singlePlot

(logical) Indicates wether all rows should be added to one plot.

nsims

The number of simulated values to plot. (Default = 1000 however, if your computer has little RAM reduce this) @details This function takes the features from the segmentation procedure and uses them to simulate data for elevation and rotation. This data is then plot on a flat representation of the sphere. Required columns are:

- 1. UpDown.median
- 2. UpDown.mad
- 3. Degrees.median
- 4. Degrees.mad

plotSegmentProjection 5

Value

There is no return to the console. As a side effect a graphic is created.

Examples

plotSegmentProjection Plot a projection representation

Description

Create a projection representation of the spherical data

Usage

```
plotSegmentProjection(segmentationCSV, plotRows, projection = "aitoff",
  col = "red", singlePlot = TRUE, nsims = 1000)
```

Arguments

segmentationCSV

The file path to the csv file created from the segmentation process containing all features.

feature

plotRows The rows from the csv file to be used to simulate plotting data.

projection The type of projection to be used. Can be any of those used by mapproject in

the package mapproj.

col A character string to indicate the colour of the heat mapping.

singlePlot (logical) Indicates wether all rows should be added to one plot.

nsims The number of simulated values to plot. (Default = 1000 however, if your com-

puter has little RAM reduce this) @details This function takes the features from the segmentation procedure and uses them to simulate data for elevation and rotation. This data is then plotted on a projected representation of the sphere.

Required columns are:

- 1. UpDown.median
- 2. UpDown.mad
- 3. Degrees.median
- 4. Degrees.mad

6 plotSegmentSphere

Value

There is no return to the console. As a side effect a graphic is created.

Examples

plotSegmentSphere

Create a spherical representation

Description

From the segmentation features simulate data and create a spherical representation

Usage

```
plotSegmentSphere(segmentationCSV, plotRows, levels = c(0.9, 0.75, 0.5, 0.25, 0.1), singlePlot = TRUE, col = heat.colors(5), alpha = c(0.03, 0.05, 0.1, 0.2, 0.3), arrow = FALSE, nsims = 1000)
```

Arguments

segmentationCSV

The file path to the csv file created from the segmentation process containing all

features.

plotRows The rows from the csv file to be used to simulate plotting data.

levels breakpoints for plotting density.

singlePlot (logical) Indicates wether all rows should be added to one plot.

col A vector of colours.

alpha The range of alpha values to be used for plotting colours

arrow (logical) Indicates whether an arrow for directionality should be added to the

plot.

nsims The number of simulated values to plot. (Default = 1000 however, if your com-

puter has little RAM reduce this)

plotSphere 7

Details

This function takes the features from the segmentation procedure and uses them to simulate data for elevation and rotation. This data is then rotated to give the spherical representation which is ploted on the sphere. Required columns are:

- 1. UpDown.median
- 2. UpDown.mad
- 3. Degrees.median
- 4. Degrees.mad

Value

There is no return to the console. As a side effect an rgl graphic is created.

Examples

plotSphere

Plot an 3D sequence with sedentary sphere

Description

From the output of the read.bin function in GENEAread to simulate data and create a spherical representation.

Usage

```
plotSphere(x, start = 0, end = 1, length = NULL,
  time.format = "auto", density = FALSE, col, alpha, arrow = TRUE,
  levels, add = FALSE, ...)
```

Arguments

X	The AccData input to be plotted
start	start time to enter in the format 0 to 1 or "dd hh:mm:ss"
end	end time to enter in the format 0 to 1 or "dd hh:mm:ss"
length	Length of interval.
time.format	Data extraction via get.intervals

8 plotTL

density	Whether to plot a 3d density plot.
col	Colours to use for lines or density plot
alpha	Vector of transparencies to user for density plot
arrow	To display a place holder arrow to establish directionality
levels	Breakpoints for plotting of isospheres for density. Follows the formulation of $0.9 ==$ respective isosphere contains the highest probability 10 of the population, according to kernel density estimate.
add	If draw, superimpose on to existing plot. Else add to a new plot.
	Arguements that will be passed to the

Details

Takes the raw data output of the GENEActiv as AccData to plot points on the sedentary sphere.

Value

There is no return to the console. As a side effect an rgl graphic is created.

Examples

```
## Not run:
x = readRDS(system.file("extdata", "AccData.rds", package = "GENEAsphere"))
plotSphere(x)
## End(Not run)
```

plotTL

Produces a line plot of Temperature and Light.

Description

3 line plot of Temperature and Light.

Usage

```
plotTL(AccData, start = NULL, end = NULL, length = NULL,
  resolution = 100)
```

Arguments

AccData object to plot, can be matrix or AccData object.

start Start of Data to plot. Passed to get.intervals, see codeget.intervals

end End of Data to plot.

length Length of interval

resolution Resolution to plot the data given the data's frequency.

positionals 9

Details

From the raw data to create a representation of Light and Temperature.

Creates a temperature and ligth plot with 2 distinct axis from epoched data. The epoch is dependent on the resolution.

Examples

```
## Not run:
x = readRDS(system.file("extdata", "AccData.rds", package = "GENEAsphere"))
plotTL(x)
## End(Not run)
```

positionals

Positionals

Description

Creates a positionals plot of the GENEAcity .bin data.

Usage

```
positionals(AccData, start = 0, end = 1, length = NULL,
  max.points = 1e+06, ...)
```

Arguments

AccData object to plot, can be matrix or accdata object
start time at which to start (Default set at 0).
end time at which to end (Default set at 1).
length Length of interval.
max.points maximum number of data points to plot. Data will be downsampled to achieve this.

... Arguements passed to codeget.intervals

Details

From the raw data to create a representation of arm elevation and wrist rotation.

Value

There is no return to the console. As a side effect an rgl graphic is created.

10 positionals

Examples

```
## Not run:
x = readRDS(system.file("extdata", "AccData.rds", package = "GENEAsphere"))
positionals(x)
## End(Not run)
```

Index

```
get.intervals, 8, 9

plotAccData, 2
plotSegmentEllipse, 3
plotSegmentFlat, 4
plotSegmentProjection, 5
plotSegmentSphere, 6
plotSphere, 7
plotTL, 8
positionals, 9
```