Package 'GLMcat'

September 23, 2021

Title	Generalized	Linear	Models f	or Categorica	l Responses

Version 0.2.4

Description In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce 'GLM-cat', an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix.

License GPL-3
Encoding UTF-8
Depends R (>= 2.10)
LazyData true
RoxygenNote 7.1.1
LinkingTo Rcpp, BH, RcppEigen
Imports Rcpp, stats, stringr
Suggests knitr, rmarkdown, testthat, dplyr, ggplot2, gridExtra, gtools, tidyr
VignetteBuilder knitr
NeedsCompilation yes
Author Lorena León [aut, cre], Jean Peyhardi [aut], Catherine Trottier [aut]
Maintainer Lorena León <ylorenaleonv@gmail.com></ylorenaleonv@gmail.com>
Repository CRAN
Date/Publication 2021-09-23 15:10:02 UTC

R topics documented:

anova almost																																		2
anova.glmcat	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•		•	•	•	•	•						

anova.glmcat

Index		15
	vcov.glmcat	14
	TravelChoice	13
	terms.glmcat	
	summary.glmcat	12
	step.glmcat	12
	print.summary.glmcat	11
	print.glmcat	11
	print.anova.glmcat	10
	predict.glmcat	10
	plot.glmcat	9
	nobs.glmcat	9
	logLik.glmcat	8
	glmcat	7
	extractAIC.glmcat	6
	DisturbedDreams	6
	discrete_cm	4
	control_glmcat	4
	confint.glmcat	3
	coef.glmcat	3

 $\verb"anova.glmcat"$

Anova for a fitted glmcat model object

Description

Compute an analysis of deviance table for one fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
anova(object, ...)
```

Arguments

```
object an object of class "glmcat".
... additional arguments.
```

coef.glmcat 3

coef.glmcat	Model coefficients of a fitted glmcat model object	

Description

Returns the coefficient estimates of the fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
coef(object, na.rm = FALSE, ...)
```

Arguments

object an fitted object of class glmcat.

na.rm TRUE for NA coefficients to be removed, default is FALSE.

... additional arguments affecting the coef method.

confint.glmcat Confidence intervals for parameters of a fitted glmcat model object

Description

Computes confidence intervals from a fitted glmcat model object for all the parameters.

Usage

```
## S3 method for class 'glmcat'
confint(object, parm, level, ...)
```

Arguments

object an fitted object of class glmcat.

parm a numeric or character vector indicating which regression coefficients should be

displayed

level the confidence level. ... other parameters.

4 discrete_cm

control_glmcat	Control parameters for glmcat models

Description

Set control parameters for glmcat models.

Usage

```
control_glmcat(maxit = 25, epsilon = 1e-06, beta_init = NA)
```

Arguments

maxit	the maximum number of the Fisher's Scoring Algorithm iterations. Defaults to 25.
epsilon	a double to change update the convergence criterion of GLMcat models.
beta_init	an appropriate sized vector for the initial iteration of the algorithm.

discrete_cm

Discrete Choice Models

Description

Fit discrete choice models which require data in long form. For each individual (or decision maker), there are multiple observations (rows), one for each of the alternatives the individual could have chosen. A group of observations of the same individual is a "case". Remark that each case represents a single statistical observation although it comprises multiple observations.

Usage

```
discrete_cm(
  formula,
  case_id,
  alternatives,
  reference,
  alternative_specific = NA,
  data,
  cdf = list(),
  intercept = "standard",
  normalization = 1,
  control = list()
)
```

discrete_cm 5

Arguments

formula a symbolic description of the model to be fit. An expression of the form y ~

predictors is interpreted as a specification that the response y is modelled by a linear predictor specified symbolically by model. A particularity for the formula is that for the case-specific variables, the user can define a specific effect for a

category.

case_id a string with the name of the column that identifies each case.

alternatives a string with the name of the column that identifies the vector of alternatives the

individual could have chosen.

reference a string indicating the reference category

alternative_specific

a character vector with the name of the explanatory variables that are different for each case, these are the alternative specific variables. By default, the case specific variables are the explanatory variables that are not identify in here, but

that are part of the formula.

data a dataframe (in a long format) object in R, with the dependent variable as factor.

cdf The inverse distribution function to be used as part of the link function. If

the distribution has no parameters to specify then it should be entered as a string indicating the name, e.g., cdf = "normal", the default value is cdf = "logistic". If there are parameters to specify then a list must be entered, so far this would only be the case for Student's distribution which would be list("student", df=2), and for the non-central distribution of student,

list("noncentralt", df=2, mu=1),

intercept if "conditional" then the design will be equivalent to the conditional logit model

normalization the quantile to use for the normalization of the estimated coefficients where the

logistic distribution is used as the base cumulative distribution function.

control maxit: the maximum number of iterations for the Fisher scoring algorithm.

epsilon: a double with to fix the epsilon value

beta_init: an appropriate sized vector for the initial iteration of the algorithm

Details

Family of models for Discrete Choice

Note

For these models it is not allowed to exclude the intercept.

Examples

```
library(GLMcat)
data(TravelChoice)
discrete_cm(formula = choice ~ hinc + gc + invt,
case_id = "indv",alternatives = "mode", reference = "air",
data = TravelChoice, alternative_specific = c("gc", "invt"),
cdf = "logistic")
```

6 extractAIC.glmcat

DisturbedDreams

Severity of disturbed dreams

Description

Boy's disturbed dreams benchmark dataset drawn from a study that cross-classified boys by their age, and the severity (not severe, severe 1, severe 2, very severe) of their disturbed dreams (Maxwell, 1961).

Usage

```
data(DisturbedDreams)
```

Format

A dataframe containing:

Age Individuals age

Level Severity level: Not.severe, Severe.1, Severe.2, Very.severe.

References

Maxwell, A.E. (1961) Analyzing qualitative data, Methuen London, 73.

Examples

```
data(DisturbedDreams)
```

extractAIC.glmcat

Extract AIC from a fitted glmcat model object

Description

Method to compute the (generalized) Akaike An Information Criterion for a fitted object of class glmcat.

Usage

```
## S3 method for class 'glmcat'
extractAIC(fit, ...)
```

Arguments

```
fit an fitted object of class glmcat.
```

... further arguments (currently unused in base R).

glmcat 7

glmcat

Generalized linear models for categorical responses

Description

Estimate generalized linear models implemented under the unified specification (ratio,cdf,Z) where ratio represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), cdf the cumulative distribution function for the linkage, and Z the design matrix which must be specified through the parallel and the threshold arguments.

Usage

```
glmcat(
  formula,
  data,
  ratio = c("reference", "cumulative", "sequential", "adjacent"),
  cdf = list(),
  parallel = NA,
  categories_order = NA,
  ref_category = NA,
  threshold = c("standard", "symmetric", "equidistant"),
  control = list(),
  normalization = 1,
  ...
)
```

Arguments

formula

a symbolic description of the model to be fit. An expression of the form $y \sim$ predictors is interpreted as a specification that the response y is modelled by a linear predictor specified symbolically by model.

data

a dataframe object in R, with the dependent variable as factor.

ratio

a string indicating the ratio (equivalently to the family) options are: reference, adjacent, cumulative and sequential. Default value is reference.

cdf

The inverse distribution function to be used as part of the link function. If the distribution has no parameters to specify then it should be entered as a string indicating the name, e.g., cdf = "normal", the default value is cdf = "logistic". If there are parameters to specify then a list must be entered, so far this would only be the case for Student's distribution which would be list("student", df=2), and for the non-central distribution of student, list("noncentralt", df=2, mu=1),

parallel

a character vector indicating the name of the variables with a parallel effect. If variable is categorical, specify the name and the level of the variable as a string "namelevel".

8 logLik.glmcat

categories_order

a character vector indicating the incremental order of the categories: c("a", "b", "c"); a<bec. Alphabetical order is assumed by default. Order is relevant for

adjacent, cumulative and sequential ratio.

ref_category a string indicating the reference category. Proper option for models with refer-

ence ratio.

threshold restriction to impose on the thresholds, options are: standard, equidistant or

symmetric (Valid only for the cumulative ratio).

control maxit: the maximum number of iterations for the Fisher scoring algorithm.

epsilon: a double to change update the convergence criterion of GLMcat mod-

els.

beta_init: an appropriate sized vector for the initial iteration of the algorithm.

normalization the quantile to use for the normalization of the estimated coefficients where the

logistic distribution is used as the base cumulative distribution function.

... additional arguments.

Details

Fitting models for categorical responses

References

Peyhardi J, Trottier C, Guédon Y (2015). "A new specification of generalized linear models for categorical responses." *Biometrika*, 102(4), 889–906. doi:10.1093/biomet/asv042.

Examples

```
data(DisturbedDreams)
ref_log_com <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
    ref_category = "Very.severe",
    cdf = "logistic", ratio = "reference")</pre>
```

logLik.glmcat

Log-likelihood of a fitted glmcat model object

Description

Extract Log-likelihood of a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
logLik(object, ...)
```

Arguments

object an fitted object of class glmcat.

... additional arguments affecting the loglik.

nobs.glmcat 9

nobs.glmcat

Number of observations of a fitted glmcat model object

Description

Extract the number of observations of the fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
nobs(object, ...)
```

Arguments

object an fitted object of class glmcat.

... additional arguments affecting the nobs method.

plot.glmcat

Plot method for a fitted codeglmcat model object

Description

plot of the log-likelihood profile for a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat' plot(x, ...)
```

Arguments

x an object of class glmcat.

... additional arguments.

10 print.anova.glmcat

			-	
nred	1	ct	Ø	mcat

Predict method for a a fitted glmcat model object

Description

Obtains predictions of a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
predict(object, newdata, type, ...)
```

Arguments

object a fitted object of class glmcat.

newdata optionally, a data frame in which to look for the variables involved in the model.

If omitted, the fitted linear predictors are used.

type the type of prediction required. The default is "prob" which gives the probabil-

ities, the other option is "linear.predictor" which gives predictions on the

scale of the linear predictor.

... further arguments. The default is "prob" which gives the probabilities, the other

option is "linear.predictor" which gives predictions on the scale of the lin-

ear predictor.

print.anova.glmcat

Printing Anova for glmcat model fits

Description

print. anova method for GLMcat objects.

Usage

```
## S3 method for class 'anova.glmcat'
print(x, digits = max(getOption("digits") - 2, 3), ...)
```

Arguments

```
x an object of class "glmcat".
```

digits the number of digits in the printed table.

... additional arguments affecting the summary produced.

print.glmcat 11

print.glmcat

Print method for a fitted codeglmcat model object

Description

print method for a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
print(x, ...)
```

Arguments

x an object of class glmcat.

... additional arguments.

 ${\tt print.summary.glmcat} \quad \textit{Printing a fitted } {\tt glmcat} \; \textit{model object}$

Description

print.summary method for GLMcat objects.

Usage

```
## S3 method for class 'summary.glmcat'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

```
x an object of class "glmcat".
```

digits the number of digits in the printed table.

... additional arguments affecting the summary produced.

12 summary.glmcat

ep.glmcat Stepwise for a glmcat model object
--

Description

Stepwise for a glmcat model object based on the AIC.

Usage

```
## S3 method for class 'glmcat'
step(object, scope, direction, trace, steps)
```

Arguments

object an fitted object of class glmcat.

scope defines the range of models examined in the stepwise search (same as in the step

function of the stats package). This should be either a single formula, or a list

containing components upper and lower, both formulae.

direction the mode of the stepwise search.

trace to print the process information.

steps the maximum number of steps.

summary.glmcat

Summary method for a fitted glmcat model object

Description

Summary method for a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
summary(object, normalized = FALSE, correlation = FALSE, ...)
```

Arguments

object an fitted object of class glmcat.

normalized if normalized is TRUE summary method yields the normalized coefficients.

correlation TRUE to print the Correlation Matrix.

... additional arguments affecting the summary produced.

terms.glmcat 13

terms.glmcat

Terms of a fitted glmcat model object

Description

Returns the terms of a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat' terms(x, ...)
```

Arguments

x an object of class glmcat.... additional arguments.

TravelChoice

Travel Mode Choice

Description

The data set contains 210 observations on mode choice for travel between Sydney and Melbourne, Australia.

Usage

```
data(TravelChoice)
```

Format

A dataframe containing:

indv Id of the individual

mode available options: air, train, bus or car

choice a logical vector indicating as TRUE the transportation mode chosen by the traveler As category-specific variables:

invt travel time in vehicle

gc generalized cost measure

ttme terminal waiting time for plane, train and bus; 0 for car

invc in vehicle cost As case-specific variables:

hinc household income

psize traveling group size in mode chosen

14 vcov.glmcat

Source

Download from on-line (18/09/2020) complements to Greene, W.H. (2011) Econometric Analysis, Prentice Hall, 7th Edition http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF18-2.csv, Table F18-2.

References

Greene, W.H. and D. Hensher (1997) *Multinomial logit and discrete choice models in* Greene, W. H. (1997) *LIMDEP version 7.0 user's manual revised*, Plainview, New York econometric software, Inc.

Examples

```
data(TravelChoice)
```

vcov.glmcat

Variance-Covariance Matrix for a fitted glmcat model object

Description

Returns the variance-covariance matrix of the main parameters of a fitted glmcat model object.

Usage

```
## S3 method for class 'glmcat'
vcov(object,...)
```

Arguments

object an object of class glmcat.
... additional arguments.

Index

```
* datasets
    DisturbedDreams, 6
    TravelChoice, 13
\verb"anova.glmcat", 2
\operatorname{coef.glmcat}, 3
confint.glmcat, 3
\verb|control_glmcat|, 4
discrete\_cm, 4
DisturbedDreams, 6
extractAIC.glmcat, 6
glmcat, 7
{\tt logLik.glmcat}, {\color{red} 8}
nobs.glmcat, 9
plot.glmcat, 9
predict.glmcat, 10
print.anova.glmcat, 10
\verb|print.glmcat|, 11
print.summary.glmcat, 11
step.glmcat, 12
summary.glmcat, 12
terms.glmcat, 13
TravelChoice, 13
vcov.glmcat, 14
```