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Abstract

In statistical modeling, there is a wide variety of regression models for categorical responses. Yet,
no software encapsulates all of these models in a standardized format. We introduce and illustrate the
utility of glmcat, the R package we developed to estimate generalized linear models implemented under
the unified specification (r, F, Z), where r represents the ratio of probabilities (reference, cumulative,
adjacent, or sequential), F the cumulative cdf function for the linkage, and Z the design matrix. We
present the properties of the four families of models, which must be investigated when selecting the
components r, F , and Z. The functions are user-friendly and fairly intuitive; offering the possibility to
choose from a large range of models through a combination (r, F, Z).

Introduction to the (r,F,Z) methodology:

A generalized linear model is characterized by three components: 1) the random component that defines
the conditional cdf of the response variable Yi given the realization of the explanatory variables xi; 2) the
systematic component which is determined by the linear predictor η (that specifies the linear entry of the
independent variables), and 3) the link function g that relates the expected response and the linear predictor.

The random component of a GLM for a categorical response with J categories is the multinomial cdf with
vector of probabilities (π1, ..., πJ) where

∑

πr = 1 . The linear predictor (η1, ..., ηJ−1) can be written as the
product of the design matrix Z and the unknown parameter vector β. The link function which characterizes
this model is given by the equation g(π) = Zβ, with J −1 equations gj = ηj . Peyhardi, Trottier, and Guédon
(2015) proposed to write the link function as

gj = F −1 ◦ rj ⇔ rj = F (ηj) j = 1, 2, ..., J − 1 (1)

where F is a cumulative cdf function and r = (r1, ..., rJ−1) is a transformation of the expected value vector.
In the following, we will describe in more details the components (r,F,Z) and their modalities.

Ratio of probabilities r
The linear predictor is not directly related to the expectation π instead they are related through a par-

ticular transformation r of the vector π which is called the ratio. Peyhardi, Trottier, and Guédon (2015)
proposed four ratios that gather the alternatives to model categorical response data:

Cumulative Sequential Adjacent Reference

rj(π) π1 + ... + πj

πj

πj + ... + πJ

πj

πj + πj+1

πj

πj + πJ
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Each component rj(π) can be viewed as a (conditional) probability. For the reference ratio, each category j

is compared to the reference category J . For the adjacent ratio, each category j is compared to its adjacent
category j + 1. For the cumulative ratio, the probabilities of categories are cumulated. For the sequential
ratio, each category j is compared to its following category, j + 1, . . . , J . The adjacent, cumulative and
sequential ratios all rely on an ordering assumption among categories. The reference ratio is devoted to
nominal responses.

Cumulative cdf function F
The cumulative cdf functions (distributions) available in glmcat to fit the models are: logistic, normal,

Cauchy, Student (with any df), Gompertz and Gumbel. The logistic and normal distributions are the sym-
metric distributions most commonly used to define link functions in generalized linear models. However, for
specific scenarios, the use of other distributions may result in a more accurate fit. An example is presented
by Bouscasse, Joly, and Peyhardi (2019), where the employment of the Student cdf leaded to a better fit for
a modeling exercise on travel choice data. For the asymmetric case, the Gumbel and Gompertz distributions
are the most commonly used.

Design Matrix Z

It is possible to impose restrictions on the thresholds, or on the effects of the covariates, for example, for
them to vary or not according to the response categories.

• Constraints on the effects:

It is plausible for a predictor to have specific level of impact on the different categories of the response.
Thus, the J − 1 linear predictors are of the form: ηj = αj + x′δj with β = (α1, ..., αJ−1, δ′

1, ..., δ′

J−1). And,
its associated design matrix is:

Zc =







1 xt

. . .
. . .

1 xt







(J−1)×(J−1)(1+p)

(2)

Another case is to constrain the effects of the covariates to be constant across the response categories.
Therefore, there is only a global effect that is not specific to the response categories, this is known as the
parallelism assumption, for which the constrained space is represented by:

Zp =







1 xt

. . .
...

1 xt







(J−1)×(J−1+p)

(3)

The first case (Zc) is named by Peyhardi, Trottier, and Guédon (2015) as the complete design, whereas the
second (Zp) as the parallel design. These two matrices are sufficient to define all the classical models. A
third option is to consider both kind of effects, complete and parallel, this in known as partial parallel design

Z =







1 xt
k xt

l

. . .
. . .

...
1 xt

k xt
l







(J−1)×((J−1)(1+K)+L)

(4)

• Constraints on the intercepts:
For the particular case of the cumulative ratio the equidistant constraint considers that the distances
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between adjacent intercepts are the same for all the pairs (j, j + 1), therefore we can write the intercepts
as

αj = α1 + (j − 1)θ (5)

this restriction implies that only two parameters (α1, the first threshold, and, θ the spacing) have to
be estimated regardless the number of categories.

All the classical models for categorical response data, can be written as an (r,F,Z) triplet, as examples:

• The multinomimal model ≡ (Reference, Logistic, Complete)

• The odds parallel logit model ≡ (Cumulative, Logistic, parallel)

• The parallel hazard model ≡ (Sequential, Gompertz, parallel)

• The continuation ratio logit model ≡ (Sequential, Logistic, Complete)

• The adjacent logit model ≡ (Adjacent, Logistic, Complete)

Fitting (r,F,Z) with the glmcat package

Family of reference models

We used the 223 observations of the boy’s disturbed dreams benchmark dataset drawn from a study that
cross-classified boys by their age x and the severity of their disturbed dreams y (Maxwell 1961). The data
is available as the object DisturbedDreams in the package glmcat.

For more information see the manual entry for the DisturbedDreams data: help(DisturbedDreams).

data("DisturbedDreams")

summary(DisturbedDreams)

## Age Level

## Min. : 6.00 Not.severe :100

## 1st Qu.: 8.50 Severe.1 : 42

## Median :10.50 Severe.2 : 41

## Mean :10.96 Very.severe: 40

## 3rd Qu.:12.50

## Max. :14.50

We will fit the model (Reference, Logistic, Complete) to the DisturbedDreams data using the function
glmcat. We save the fitted glmcat model in the object mod_ref_log_c and we print it by simply typing its
name:

mod_ref_log_c <- glmcat(

formula = Level ~ Age, ratio = "reference",

cdf = "logistic", ref_category = "Very.severe",

data = DisturbedDreams

)

The most common R functions which describe different model features are available for the objects in glmcat
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• The summary of the object:

summary(mod_ref_log_c)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: reference logistic 223 5 -277.1345

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -2.45444 0.84559 -2.903 0.0037 **

## (Intercept) Severe.1 -0.55464 0.89101 -0.622 0.5336

## (Intercept) Severe.2 -1.12464 0.91651 -1.227 0.2198

## Age Not.severe 0.30999 0.07804 3.972 7.13e-05 ***

## Age Severe.1 0.05997 0.08582 0.699 0.4847

## Age Severe.2 0.11228 0.08684 1.293 0.1960

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

• The number or observations:

nobs(mod_ref_log_c)

## [1] 223

• The coefficients of the model

coef(mod_ref_log_c)

## [,1]

## (Intercept) Not.severe -2.45443827

## (Intercept) Severe.1 -0.55463962

## (Intercept) Severe.2 -1.12464112

## Age Not.severe 0.30998759

## Age Severe.1 0.05997162

## Age Severe.2 0.11228063

• The LogLikelihood

logLik(mod_ref_log_c)

## ’log Lik.’ -277.1345 (df=6)

• Information criteria

AIC(mod_ref_log_c)

## [1] 566.2691
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BIC(mod_ref_log_c)

## [1] 586.7121

It is possible to do predictions in glmcat using the function predict_glmcat. We are going to predict the
response for 3 random observations:

# Random observations

set.seed(13)

ind <- sample(x = 1:nrow(DisturbedDreams), size = 3)

# Probabilities

predict(mod_ref_log_c, newdata = DisturbedDreams[ind, ], type = "prob")

## Not.severe Severe.1 Severe.2 Very.severe

## [1,] 0.5392049 0.1583321 0.1721826 0.1302804

## [2,] 0.1832207 0.2732519 0.2115046 0.3320229

## [3,] 0.2996414 0.2391879 0.2110034 0.2501674

# Linear predictor

predict(mod_ref_log_c, newdata = DisturbedDreams[ind, ], type = "linear.predictor")

## Not.severe Severe.1 Severe.2

## [1,] 1.4204066 0.19500566 0.2788668

## [2,] -0.5945128 -0.19480988 -0.4509573

## [3,] 0.1804562 -0.04488083 -0.1702558

Now we illustrate how to predict in a set of new observations. Suppose we want to predict the severity of
dreams for 3 individuals whose ages are 5, 9.5 and 15 respectively:

# New data

# Age <- c(5, 9.5, 15)

# predict(mod_ref_log_c, newdata = Age, type = "prob")

Assume that we are interested in making the effect of the predictor variable parallel, to that end, we type
the name of the predictor variable as the input for the parameter parallel. The model to fit corresponds
to the triplet (Reference, Logistic, parallel):

mod2 <- glmcat(

formula = Level ~ Age, cdf = "logistic",

parallel = "Age", ref_category = "Very.severe",

data = DisturbedDreams

)

summary(mod2)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: reference logistic 223 5 -284.24

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -1.14696 0.71912 -1.595 0.11073

5



## (Intercept) Severe.1 -2.01446 0.72866 -2.765 0.00570 **

## (Intercept) Severe.2 -2.03856 0.72906 -2.796 0.00517 **

## Age 0.19585 0.06845 2.861 0.00422 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

logLik(mod2)

## ’log Lik.’ -284.24 (df=4)

Another variation of the reference model is obtained at changing the cdf function. Let’s now fit the model
(Reference, Student (0.5), Complete):

mod3 <- glmcat(

formula = Level ~ Age, ref_category = "Very.severe",

data = DisturbedDreams, cdf = list("student",0.5)

)

summary(mod3)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: reference student 223 11 -279.7941

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -4.48612 1.84226 -2.435 0.01489 *

## (Intercept) Severe.1 -0.32543 0.76910 -0.423 0.67220

## (Intercept) Severe.2 -0.81958 0.84449 -0.971 0.33180

## Age Not.severe 0.51793 0.19912 2.601 0.00929 **

## Age Severe.1 0.02467 0.07223 0.342 0.73272

## Age Severe.2 0.07042 0.07720 0.912 0.36166

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

logLik(mod3)

## ’log Lik.’ -279.7941 (df=6)

Family of adjacent models

The equivalence between (Adjacent, Logistic, Complete) and (Reference, Logistic, Complete) models is
shown by comparing the associated LogLikelihood of both models:

logLik(mod_ref_log_c) # recall (ref,logit,com)

## ’log Lik.’ -277.1345 (df=6)

mod_adj_log_c <- glmcat(

formula = Level ~ Age, ratio = "adjacent",

data = DisturbedDreams, cdf = "logistic"

)

logLik(mod_adj_log_c)
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## ’log Lik.’ -279.5628 (df=4)

summary(mod_adj_log_c)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: adjacent logistic 223 5 -279.5628

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -0.23611 0.33657 -0.702 0.48297

## (Intercept) Severe.1 -1.01875 0.33535 -3.038 0.00238 **

## (Intercept) Severe.2 -0.95464 0.31524 -3.028 0.00246 **

## Age 0.09730 0.02405 4.045 5.23e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Remark that despite the fact that the LogLikelihoods are equal, the parameters estimations are different
(α 6= α′). Defining the matrix AT as follows:

AT =





1 0 0
−1 1 0

0 −1 1





we can check that AT ∗ α = α′.

Note: The adjacent models are stable under the reverse permutation.

(Adjacent, Cauchy, Complete)

mod_adj_cau_c <- glmcat(

formula = Level ~ Age,

ratio = "adjacent", cdf = "cauchy",

categories_order = c("Not.severe", "Severe.1", "Severe.2", "Very.severe"),

data = DisturbedDreams

)

logLik(mod_adj_cau_c)

## ’log Lik.’ -280.116 (df=4)

summary(mod_adj_cau_c)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: adjacent cauchy 223 6 -280.116

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -0.18005 0.28499 -0.632 0.527526

## (Intercept) Severe.1 -0.83297 0.29215 -2.851 0.004356 **

## (Intercept) Severe.2 -0.78360 0.26287 -2.981 0.002874 **

## Age 0.08008 0.02083 3.845 0.000121 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Adjacent, Cauchy, Complete) with reversed order
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mod_adj_cau_c_rev <- glmcat(

formula = Level ~ Age,

ratio = "adjacent", cdf = "cauchy",

categories_order = c("Very.severe", "Severe.2", "Severe.1", "Not.severe"),

data = DisturbedDreams

)

logLik(mod_adj_cau_c_rev)

## ’log Lik.’ -280.116 (df=4)

summary(mod_adj_cau_c_rev)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: adjacent cauchy 223 6 -280.116

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Very.severe 0.78360 0.26287 2.981 0.002874 **

## (Intercept) Severe.2 0.83297 0.29215 2.851 0.004356 **

## (Intercept) Severe.1 0.18005 0.28499 0.632 0.527526

## Age -0.08008 0.02083 -3.845 0.000121 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The LogLikelihoods of the last two models are the same, this is because the Cauchy cdf is symmetric; for
non symmetric distributions this is not longer true. Note that if the Gumbel cdf is used with the reverse
order, then, its LogLikelihood is equal to the model using Gompertz as the cdf, this is because the Gumbel
cdf is the symmetric of the Gompertz cdf. Otherwise, the parameter estimations are reversed:

(Adjacent, Gumbel, parallel)

adj_gumbel_p <- glmcat(

formula = Level ~ Age,

ratio = "adjacent", cdf = "gumbel",

categories_order = c("Not.severe", "Severe.1", "Severe.2", "Very.severe"),

parallel = c("(Intercept)", "Age"),

data = DisturbedDreams

)

logLik(adj_gumbel_p)

## ’log Lik.’ -284.0416 (df=2)

summary(adj_gumbel_p)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: adjacent gumbel 223 5 -284.0416

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.28023 0.20340 -1.378 0.168

## Age 0.08385 0.01909 4.392 1.13e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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(Adjacent, Gompertz, parallel)

adj_gompertz_rev <- glmcat(

formula = Level ~ Age,

ratio = "adjacent", cdf = "gompertz",

categories_order = c("Very.severe", "Severe.2", "Severe.1", "Not.severe"),

parallel = c("(Intercept)", "Age"),

data = DisturbedDreams

)

logLik(adj_gompertz_rev)

## ’log Lik.’ -284.0416 (df=2)

summary(adj_gompertz_rev)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: adjacent gompertz 223 5 -284.0416

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.28023 0.20340 1.378 0.168

## Age -0.08385 0.01909 -4.392 1.13e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Family of sequential models

The sequential ratio, which assumes a binary process at each transition, higher levels can be reached only if
previous levels where reached at a earlier stage.

(Sequential, Normal, Complete)

seq_probit_c <- glmcat(

formula = Level ~ Age,

ratio = "sequential", cdf = "normal",

data = DisturbedDreams

)

logLik(seq_probit_c)

## ’log Lik.’ -280.5465 (df=4)

summary(seq_probit_c)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: sequential normal 223 6 -280.5465

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -1.20313 0.27969 -4.302 1.69e-05 ***

## (Intercept) Severe.1 -1.41347 0.28345 -4.987 6.14e-07 ***

## (Intercept) Severe.2 -0.98393 0.28252 -3.483 0.000496 ***

## Age 0.09752 0.02414 4.039 5.36e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Family of cumulative models

(Cumulative, Logistic, Complete)

cum_log_co <- glmcat(

formula = Level ~ Age,

cdf = "logistic",

ratio = "cumulative",

data = DisturbedDreams

)

logLik(cum_log_co)

## ’log Lik.’ -278.4682 (df=4)

summary(cum_log_co)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: cumulative logistic 223 6 -278.4682

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -2.60639 0.56166 -4.640 3.48e-06 ***

## (Intercept) Severe.1 -1.78157 0.54641 -3.260 0.00111 **

## (Intercept) Severe.2 -0.77714 0.53923 -1.441 0.14953

## Age 0.21875 0.04949 4.420 9.86e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The function glmcat has special features for the cumulative models. The option for the thresholds to be
equidistant is a characteristic of interest for the family of cumulative models:

(Cumulative, Logistic, Equidistant)

cum_log_co_e <- glmcat(

formula = Level ~ Age,

cdf = "logistic",

ratio = "cumulative",

data = DisturbedDreams,

parallel = "Age",

threshold = "equidistant",

)

logLik(cum_log_co_e)

## ’log Lik.’ -278.892 (df=3)

summary(cum_log_co_e)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: cumulative logistic 223 6 -278.892

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -2.63769 0.56148 -4.698 2.63e-06 ***

10



## (Intercept) distance 0.90366 0.08860 10.199 < 2e-16 ***

## Age 0.21995 0.04947 4.446 8.75e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

If we have a preliminary idea of the coefficients of the model, we can specify an initialization vector through
the parameter beta_init:

cum_log_c <- glmcat(

formula = Level ~ Age,

cdf = list("student",0.8),

ratio = "cumulative",

data = DisturbedDreams,

control = control_glmcat(beta_init = coef(cum_log_co))

)

logLik(cum_log_c)

## ’log Lik.’ -280.5428 (df=4)

summary(cum_log_c)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: cumulative student 223 7 -280.5428

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -2.15258 0.56970 -3.778 0.000158 ***

## (Intercept) Severe.1 -1.39169 0.52035 -2.675 0.007483 **

## (Intercept) Severe.2 -0.07141 0.57835 -0.123 0.901740

## Age 0.17909 0.04957 3.613 0.000302 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The equivalence between the (Cumulative, Gompertz, parallel) and (Sequential, Gompertz, parallel) mod-
els has been demonstrated by Läärä and Matthews (1985) and it is hereby tested using the functions:

cum_gom_p <- glmcat(

formula = Level ~ Age,

cdf = "gompertz",

ratio = "cumulative",

data = DisturbedDreams,

parallel = "Age"

)

logLik(cum_gom_p)

## ’log Lik.’ -280.0788 (df=4)

summary(cum_gom_p)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: cumulative gompertz 223 6 -280.0788
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## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -1.88781 0.36046 -5.237 1.63e-07 ***

## (Intercept) Severe.1 -1.33515 0.35206 -3.792 0.000149 ***

## (Intercept) Severe.2 -0.78551 0.34252 -2.293 0.021828 *

## Age 0.12434 0.03009 4.133 3.59e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

seq_gom_p <- glmcat(

formula = Level ~ Age,

cdf = "gompertz",

ratio = "sequential",

data = DisturbedDreams,

parallel = "Age"

)

logLik(seq_gom_p)

## ’log Lik.’ -280.0788 (df=4)

summary(seq_gom_p)

## Level ~ Age

## ratio cdf nobs niter logLik

## Model info: sequential gompertz 223 6 -280.0788

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) Not.severe -1.88781 0.36046 -5.237 1.63e-07 ***

## (Intercept) Severe.1 -2.19180 0.36851 -5.948 2.72e-09 ***

## (Intercept) Severe.2 -1.64626 0.35822 -4.596 4.31e-06 ***

## Age 0.12434 0.03009 4.133 3.59e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Conclusion

The models for categorical response data have been evolved in different fields of research under different
names. Some of them are fairly similar or are even the same. Until recently, there was no methodology
that encompassed these models in a comparable scheme. glmcat is based on the new specification of a
generalized linear model given by the (r,F,Z)-triplet, which groups together all the proposed methodologies
for modelling categorical responses. glmcat offers a full picture of the spectrum of models where the user
has three components to combine in order to obtain a model that meets the specifications of the problem.
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