Package 'GMPro'

June 25, 2020
Type Package
Title Graph Matching with Degree Profiles
Version 0.1.0
Author Yaofang Hu [aut, cre],
Wanjie Wang [aut],
Yi Yu [aut]
Maintainer Yaofang Hu yaofang.hu@u.nus.edu
Description Functions for graph matching via nodes' degree profiles are provided in this pack-age. The models we can handle include Erdos-Renyi random graphs and stochastic block mod-els(SBM). More details are in the reference paper: Yaofang Hu, Wan-jie Wang and Yi Yu (2020) arXiv:2006.03284.
Imports combinat, stats, transport, igraph
License GPL-2
Encoding UTF-8
LazyData true
URL https://arxiv.org/abs/2006.03284
RoxygenNote 7.1.0
Suggests testhat
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-25 14:00:02 UTC
R topics documented:
DPdistance 2
DPedge 3
DPmatching 4
DP_SBM 5
EEpost 6
EEpre 8
EE_SBM 9
SCORE 11

Description

This function constructs empirical distributions of degree profiles for each vertex and then calculate distances between each pair of vertices, one from graph A and the other from graph B. The default distance used is the 1-Wasserstein distance.

Usage

DPdistance(A, B, fun = NULL)

Arguments

A, B
Two 0/1 adjacency matrices.
fun
Optional function that computes distance between two distributions.

Value

A distance matrix. Rows represent nodes in graph A and columns represent nodes in graph B. Its (i, j) element is the distance between $i \in A$ and $i \in B$.

Examples

```
set.seed(2020)
n = 10; q = 1/2; s = 1; p = 1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0
### Generate graph A
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = Parent*dA
tmp = rbinom(n, 1, p)
n.A = length(which(tmp == 1))
indA = sample(1:n, n.A, replace = FALSE)
A = A1[indA, indA]
### Generate graph B
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = Parent*dB
tmp = rbinom(n, 1, p)
n.B = length(which(tmp == 1))
indB = sample(1:n, n.B, replace = FALSE)
B = B1[indB, indB]
DPdistance(A, B)
```


Description

This functions is based on DPmatching. Instead of allowing each vertex in A to connect to one and only one vertex in B, here by introducing parameter d , this function allows for d edges for each vertex in A. More details are in DPmatching.

Usage

DPedge ($\mathrm{A}=\mathrm{NULL}, \mathrm{B}=\mathrm{NULL}, \mathrm{d}, \mathrm{W}=\mathrm{NULL}$)

Arguments

A, B Two symmetric $0 / 1$ addjacency matrices.
d A positive integer, indicating the number of candidate matching.
W A distance matrix between A and B. This argumnet can be null. If W is null, A and B cannot be null.

Value

Dist The distance matrix between two graphs.
Z An indicator matrix. Entry $Z_{i, j}=1$ indicates a matching between node i in graph A and node j in graph $B, 0$ otherwise.

Examples

```
set.seed(2020)
n = 10; q = 1/2; s = 1; p = 1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0
### Generate graph A
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = Parent*dA
tmp = rbinom(n, 1, p)
n.A = length(which(tmp == 1))
indA = sample(1:n, n.A, replace = FALSE)
A = A1[indA, indA]
### Generate graph B
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = Parent*dB
tmp = rbinom(n, 1, p)
n.B = length(which(tmp == 1))
indB = sample(1:n, n.B, replace = FALSE)
```

```
B = B1[indB, indB]
DPmatching(A, B)
W = DPdistance(A, B)
DPedge(A, B, d = 5)
```

DPmatching calculate degree profile distances between two graphs and match nodes.

Description

This function constructs empirical distributions of degree profiles for each vertex and then calculate distances between each pair of vertices, one from graph A and the other from graph B. The default used is the 1-Wasserstein distance. This function also matches vertices in A with vertices in B via the distance matrix between A and B. The distance matrix can be null and DPmatching will calculate it. A and B cannot be null when the distance matrix is null.

Usage

```
DPmatching(A, B, W = NULL)
```


Arguments

A, B
W
Two $0 / 1$ adjacency matrices.
A distance matrix between A and B, which can be null. If null, this function will calculate it. More details in DPdistance.

Value

Dist The distance matrix between two graphs.
match A vector containing matching results.

Examples

```
set.seed(2020)
n = 10; q = 1/2; s = 1; p = 1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0
### Generate graph A
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = Parent*dA
tmp = rbinom(n, 1, p)
n.A = length(which(tmp == 1))
indA = sample(1:n, n.A, replace = FALSE)
A = A1[indA, indA]
### Generate graph B
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
```

```
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = Parent*dB
tmp = rbinom(n, 1, p)
n.B = length(which(tmp == 1))
indB = sample(1:n, n.B, replace = FALSE)
B = B1[indB, indB]
DPmatching(A, B)
W = DPdistance(A, B)
DPmatching(A, B, W)
```

DP_SBM Degree profile graph matching with community detection.

Description

Given two community-structured networks, this function first applies a spectral clustering method SCORE to detect perceivable communities and then applies DPmatching or EEpost to match different communities. More details are in SCORE, DPmatching and EEpost.

Usage

DP_SBMC

A,
B,
K,
fun $=c($ "DPmatching", "EEpost"),
rep $=$ NULL,
tau = NULL,
d = NULL
)

Arguments

A, B
K
fun
rep
tau
d

Two 0/1 addjacency matrices.
A positive integer, the number of communities in A and B.
A graph matching algorithm. Choices include DPmatching and EEpost.
A parameter if choosing EEpost as the initial graph matching algorithm.
Optional parameter if choosing EEpost as the initial graph matching algorithm. The default value is $r e p / 10$.
Optional parameter if choosing EEpost as the initial graph matching algorithm. The default value is 1 .

Details

The graphs to be matched are expected to have community structures. The result is the collection of all possible permutations on $\{1, \ldots, K\}$.

Value

A list of matching results for all possible permutations on $\{1, \ldots, K\}$.

Examples

```
### Here we use graphs under stochastic block model(SBM).
set.seed(2020)
K = 2; n = 30; s = 1;
P = matrix(c(1/2, 1/4, 1/4, 1/2), byrow = TRUE, nrow = K)
### define community label matrix Pi
distribution = c(1, 2);
l = sample(distribution, n, replace=TRUE, prob = c(1/2, 1/2))
Pi = matrix(0, n, 2) # label matrix
for (i in 1:n){
    Pi[i, l[i]] = 1
    }
### define the expectation of the parent graph's adjacency matrix
Omega = Pi %*% P %*% t(Pi)
### construct the parent graph G
G = matrix(runif(n*n, 0, 1), nrow = n)
G = G - Omega
temp = G
G[which(temp >0)] = 0
G[which(temp <=0)] = 1
diag(G) = 0
G[lower.tri(G)] = t(G)[lower.tri(G)];
### Sample Graphs Generation
### generate graph A from G
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = G*dA
indA = sample(1:n, n, replace = FALSE)
labelA = l[indA]
A = A1[indA, indA]
### similarly, generate graph B from G
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = G*dB
indB = sample(1:n, n, replace = FALSE)
labelB = l[indB]
B = B1[indB, indB]
DP_SBM(A = A, B = B, K = 2, fun = "EEpost", rep = 10, d = 3)
```


Description

Funtions DPmatching or DPedge can produce a preliminary graph matching result. This function, EEPost works on refining the result iteratively. In addition, EEpost is able to provide a convergence indicator vector $F L A G$ for each matching as a reference for the certainty about the matching since in practice, it has been observed that the true matches usually reach the convergence and stay the same after a few iterations, while the false matches may keep changing in the iterations.

Usage

EEpost(W = NULL, A, B, rep, tau = NULL, $d=$ NULL, matching = NULL)

Arguments

W A distance matrix.

A, B Two $0 / 1$ adjacency matrices.
rep A positive integer, indicating the number of iterations.
tau A positive threshold. The default value is rep/10.
d
A positive integer, indicating the number of candidate matching. The default value is 1 .
matching A preliminary matching result for EEpost. If matching is null, EEpost will apply DPedge accordingly to generate the initial matching.

Details

Similar to function EEpre, EEpost uses maximum bipartite matching to maximize the number of common neighbours for the matched vertices with the knowledge of a preliminary matching result by defining the similarity between $i \in A$ and $j \in B$ as the number of common neighbours between i and j according to the preliminary matching. Then, given a matching result Π_{t}, post processing step is to seek a refinement Π_{t+1} satisfying $\Pi_{t+1} \in \operatorname{argmax}\left\langle\Pi, A \Pi_{t} B\right\rangle$, where Π is a permutation matrix of dimension $\left(n_{A}, n_{B}\right)$.

Value

Dist The distance matrix between two graphs.
match A vector containing matching results.
FLAG An indicator vector indicating whether the matching result is converged. 0 for No and 1 for Yes.
converged.match
Converged match result. NA indicates the matching result for a certain node is not $v=$ convergent.
converged.size The number of converged nodes.

Examples

```
set.seed(2020)
n = 10;p = 1; q = 1/2; s = 1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0
### Generate graph A
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = Parent*dA;
tmp = rbinom(n, 1, p)
n.A = length(which(tmp == 1))
indA = sample(1:n, n.A, replace = FALSE)
A = A1[indA, indA]
### Generate graph B
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = Parent*dB
tmp = rbinom(n, 1, p)
n.B = length(which(tmp == 1))
indB = sample(1:n, n.B, replace = FALSE)
B = B1[indB, indB]
matching1= DPmatching(A, B)$Dist
EEpost(A = A, B = B, rep = 10, d = 5)
EEpost(A = A, B = B, rep = 10, d = 5, matching = matching1)
```


EEpre

Edge exploited degree profile graph matching with preprocessing.

Description

This function uses seeds to compute edge-exploited matching results. Seeds are nodes with high degrees. EEpre uses seeds to extend the matching of seeds to the matching of all nodes.

Usage

EEpre(A, B, d, seed = NULL, AB_dist = NULL)

Arguments

A, B
Two 0/1 addjacency matrices.
d
A positive integer, indicating the number of candicate matching.
seed
A matrix indicating pair of seeds. seed can be null.
AB_dist
A nonnegative distance matrix, which can be null. If AB_dist is null, EEpre will apply DPdistance to find it.

Details

The high degree vertices have many neighbours and enjoy ample information for a successful matching. Thereforem, this function employ these high degree vertices to match other nodes. If the information of seeds is unavailable, EEpre will conduct a grid search grid search to find the optimal collection of seeds. These vertices are expected to have high degress and their distances are supposed to be the smallest among the pairs in consideration.

Value

Dist The distance matrix between two graphs
Z An indicator matrix. Entry $Z_{i, j}=1$ indicates a matching between node $i \in A$ and node $j \in B, 0$ otherwise.

Examples

```
set.seed(2020)
n = 10;p = 1; q = 1/2; s = 1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0
### Generate graph A
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = Parent*dA;
tmp = rbinom(n, 1, p)
n.A = length(which(tmp == 1))
indA = sample(1:n, n.A, replace = FALSE)
A = A1[indA, indA]
### Generate graph B
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = Parent*dB
tmp = rbinom(n, 1, p)
n.B = length(which(tmp == 1))
indB = sample(1:n, n.B, replace = FALSE)
B = B1[indB, indB]
EEpre(A = A, B = B, d = 5)
```

```
EE_SBM
```

Edge exploited degree profile graph matching with community detection.

Description

Given two community-structured networks, this function first applies a spectral clustering method SCORE to detect perceivable communities and then applies a certain graph matching method to match different communities.

Usage

```
EE_SBM(
    A,
    B,
    K,
    fun = c("DPmatching", "EEpost"),
    rep = NULL,
    tau = NULL,
    \(d=\) NULL
)
```


Arguments

A, B Two $0 / 1$ addjacency matrices.
K
fun A graph matching algorithm. Choices include DPmatching and EEpost.
rep Optional parameter if EEpost is the initial graph matching algorithm.
tau Optional parameter if EEpost is the initial graph matching algorithm. The default value is rep/10.
d Optional parameter if EEpost is the initial graph matching algorithm. The default value is 1 .

Details

$E E_{-} S B M$ can be regarded as a post processing version of $D P_{-} S B M$ using EEpost.

Value

match A vector containing matching results.
FLAG An indicator vector indicating whether the matching result is converged, 0 for No and 1 for Yes.

Examples

```
### Here we use graphs under stochastic block model(SBM).
set.seed(2020)
K = 2; n = 30; s = 1;
P = matrix(c(1/2, 1/4, 1/4, 1/2), byrow = TRUE, nrow = K)
### define community label matrix Pi
distribution = c(1, 2);
l = sample(distribution, n, replace=TRUE, prob = c(1/2, 1/2))
Pi = matrix(0, n, 2) # label matrix
for (i in 1:n){
    Pi[i, l[i]] = 1
    }
### define the expectation of the parent graph's adjacency matrix
Omega = Pi %*% P %*% t(Pi)
### construct the parent graph G
```

```
G = matrix(runif(n*n, 0, 1), nrow = n)
G = G - Omega
temp = G
G[which(temp >0)] = 0
G[which(temp <=0)] = 1
diag(G) = 0
G[lower.tri(G)] = t(G)[lower.tri(G)];
### Sample Graphs Generation
### generate graph A from G
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = G*dA
indA = sample(1:n, n, replace = FALSE)
labelA = l[indA]
A = A1[indA, indA]
### similarly, generate graph B from G
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = G*dB
indB = sample(1:n, n, replace = FALSE)
labelB = l[indB]
B = B1[indB, indB]
EE_SBM(A = A, B = B, K = 2, fun = "EEpost", rep = 10, d = 3)
```

SCORE Spectral Clustering On Ratios-of-Eigenvectors.

Description

Using ratios-of-eigenvectors to detect underlying communities.

Usage

SCORE (G, K, itermax $=$ NULL, startn $=$ NULL)

Arguments

G
A $0 / 1$ adjacency matrix.
K A positive integer, indictaing the number of underlying communities in graph G.
itermax k-means parameter, indicating the maximum number of iterations allowed. The default value is 100 .
startn k-means parameter. If centers is a number, how many random sets should be chosen? The default value is 10 .

Details

SCORE is fully established in Fast community detection by SCORE of Jin (2015). SCORE uses the entry-wise ratios between the first leading eigenvector and each of the other leading eigenvectors for clustering.

Value

A label vector.

References

Jin, J. (2015) Fast community detection by score, The Annals of Statistics 43 (1), 57-89 https://projecteuclid.org/euclid.aos/1416322036

Examples

```
set.seed(2020)
n = 10; K = 2
P = matrix(c(1/2, 1/4, 1/4, 1/2), byrow = TRUE, nrow = K)
distribution = c(1, 2)
l = sample(distribution, n, replace=TRUE, prob = c(1/2, 1/2))
Pi = matrix(0, n, 2)
for (i in 1:n){
    Pi[i, l[i]] = 1
    }
### define the expectation of the parent graph's adjacency matrix
Omega = Pi %*% P %*% t(Pi)
### construct the parent graph G
G = matrix(runif(n*n, 0, 1), nrow = n)
G = G - Omega
temp = G
G[which(temp >0)] = 0
G[which(temp <=0)] = 1
diag(G) = 0
G[lower.tri(G)] = t(G)[lower.tri(G)]
SCORE(G, 2)
```


Index

DP_SBM, 5
DPdistance, 2
DPedge, 3
DPmatching, 4
EE_SBM, 9
EEpost, 6
EEpre, 8
SCORE, 11

