User guide for the GNE package

Christophe Dutang

May 22, 2022

As usual, the GNE package is loaded via the library function. In the following, we assume that the line below has been called
> library (GNE)

1 Introduction

Definition 1 (GNEP) We define the generalized Nash equilibrium problem $\operatorname{GNEP}\left(N, \theta_{i}, X_{i}\right)$ as the solutions x^{\star} of the N sub-problems

$$
\forall i=1, \ldots, N, x_{i}^{\star} \text { solves } \min _{y_{i}} \theta_{i}\left(y_{i}, x_{-i}^{\star}\right) \text { such that } x_{i}^{\star} \in X_{i}\left(x_{-i}^{\star}\right) \text {, }
$$

where $X_{i}\left(x_{-i}\right)$ is the action space of player i given others player actions x_{-i}.

If we have parametrized action space $X_{i}\left(x_{-i}\right)=\left\{y_{i}, g_{i}\left(y_{i}, x_{-i}\right) \leq 0\right\}$, we denote the GNEP by $\operatorname{GNEP}\left(N, \theta_{i}, g_{i}\right)$.
We denote by $X(x)$ the action set $X(x)=X_{1}\left(x_{-1}\right) \times \cdots \times X_{N}\left(x_{-N}\right)$. For standard NE, this set does not depend on x.

The following example seems very basic, but in fact it has particular features, one of them is to have four solutions, i.e. four GNEs. Let $N=2$. The objective functions are defined as

$$
\theta_{1}(x)=\left(x_{1}-2\right)^{2}\left(x_{2}-4\right)^{4} \text { and } \theta_{2}(x)=\left(x_{2}-3\right)^{2}\left(x_{1}\right)^{4},
$$

for $x \in \mathbb{R}^{2}$, while the constraint functions are given by

$$
g_{1}(x)=x_{1}+x_{2}-1 \leq 0 \text { and } g_{2}(x)=2 x_{1}+x_{2}-2 \leq 0 .
$$

Objective functions can be rewritten as $\theta_{i}(x)=\left(x_{i}-c_{i}\right)^{2}\left(x_{-i} d_{i}\right)^{4}$, with $c=(2,3)$ and $d=(4,0)$. First-order derivatives are

$$
\nabla_{j} \theta_{i}(x)=2\left(x_{i}-c_{i}\right)\left(x_{-i} d_{i}\right)^{4} \delta_{i j}+4\left(x_{i}-c_{i}\right)^{2}\left(x_{-i} d_{i}\right)^{3}\left(1-\delta_{i j}\right),
$$

and

$$
\nabla_{j} g_{1}(x)=1 \text { and } \nabla_{j} g_{2}(x)=2 \delta_{j 1}+\delta_{j 2}
$$

Second-order derivatives are

$$
\begin{array}{r}
\nabla_{k} \nabla_{j} \theta_{i}(x)=2\left(x_{-i} d_{i}\right)^{4} \delta_{i j} \delta_{i k}+8\left(x_{i}-c_{i}\right)\left(x_{-i} d_{i}\right)^{3} \delta_{i j}\left(1-\delta_{i k}\right) \\
+8\left(x_{i}-c_{i}\right)\left(x_{-i} d_{i}\right)^{3}\left(1-\delta_{i j}\right) \delta_{i k}+12\left(x_{i}-c_{i}\right)^{2}\left(x_{-i} d_{i}\right)^{2}\left(1-\delta_{i j}\right)\left(1-\delta_{i k}\right),
\end{array}
$$

and

$$
\nabla_{k} \nabla_{j} g_{1}(x)=\nabla_{k} \nabla_{j} g_{2}(x)=0 .
$$

2 GNEP as a nonsmooth equation

2.1 Notation and definitions

From Facchinei et al. (2009), assuming differentiability and a constraint qualification hold, the first-order necessary conditions of player i 's subproblem state there exists a Lagrangian multiplier $\lambda^{i} \in \mathbb{R}^{m_{i}}$ such that

$$
\begin{array}{ll}
\nabla_{x_{i}} \theta_{i}\left(x^{\star}\right)+\sum_{1 \leq j \leq m_{i}} \lambda_{j}^{i \star} \nabla_{x_{i}} g_{j}^{i}\left(x^{\star}\right)=0 & \left(\in \mathbb{R}^{n_{i}}\right) . \\
0 \leq \lambda^{i \star},-g^{i}\left(x^{\star}\right) \geq 0, g^{i}\left(x^{\star}\right)^{T} \lambda^{i \star}=0 & \left(\in \mathbb{R}^{m_{i}}\right) .
\end{array}
$$

Regrouping the N subproblems, we get the following system.

Definition 2 (eKKT) For the N optimization subproblems for the functions $\theta_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}$, with constraints $g_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m_{i}}$, the KKT conditions can be regrouped such that there exists $\lambda \in \mathbb{R}^{m}$ and

$$
\tilde{L}(x, \lambda)=0 \quad \text { and } \quad 0 \leq \lambda \perp G(x) \leq 0,
$$

where L and G are given by

$$
\tilde{L}(x, \lambda)=\left(\begin{array}{c}
\nabla_{x_{1}} \theta_{1}(x)+\operatorname{Jacg}^{1}(x)^{T} \lambda^{1} \\
\vdots \\
\nabla_{x_{N}} \theta_{N}(x)+\operatorname{Jacg}^{N}(x)^{T} \lambda^{N}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { and } \quad G(x)=\left(\begin{array}{c}
g^{1}(x) \\
\vdots \\
g^{N}(x)
\end{array}\right) \in \mathbb{R}^{m}
$$

with $\operatorname{Jacg}_{i}(x)^{T} \lambda_{i}=\sum_{1 \leq j \leq m_{i}} \lambda_{j}^{i} \nabla_{x_{i}} g_{j}^{i}(x)$. The extended KKT system is denoted by eKKT($\left.N, \theta_{i}, g_{i}\right)$.

Using complementarity function $\phi(a, b)$ (e.g. $\min (a, b)$), we get the following nonsmooth equation

$$
\Phi(z)=\binom{\tilde{L}(x, \lambda)}{\phi \cdot(-G(x), \lambda)}=0,
$$

where ϕ. is the component-wise version of the function ϕ and \tilde{L} is the Lagrangian function of the extended system. The generalized Jacobian is given in Appendix A. 1.

2.2 A classic example

Returning to our example, we define the Φ as

$$
\Phi(x)=\left(\begin{array}{c}
2\left(x_{1}-2\right)\left(x_{2}-4\right)^{4}+\lambda_{1} \\
2\left(x_{2}-3\right)\left(x_{1}\right)^{4}+\lambda_{2} \\
\phi\left(\lambda_{1}, 1-x_{1}-x_{2}\right) \\
\phi\left(\lambda_{2}, 2-2 x_{1}-x_{2}\right)
\end{array}\right)
$$

where ϕ denotes a complementarity function. In R, we use

```
> myarg <- list (C=c(2, 3), D=c(4,0))
> dimx <- c(1, 1)
> #Gr_x_j O_i(x)
> grobj <- function(x, i, j, arg)
+ {
+ dij <- 1*(i == j)
+ other <- ifelse(i == 1, 2, 1)
+ res <- 2*(x[i] - arg$C[i])*(x[other] - arg$D[i])~4*dij
+ res + 4*(x[i] - arg$C[i]) ~2*(x[other] - arg$D[i])^3*(1-dij)
+ }
> dimlam <- c(1, 1)
> #g_i(x)
> g<- function(x, i)
+ ifelse(i == 1, sum(x[1:2]) - 1, 2*x[1]+x[2]-2)
> #Gr_x_j g_i(x)
> grg <- function(x, i, j)
+ ifelse(i == 1, 1, 1 + 1*(i == j))
```

Note that the triple dot arguments ... is used to pass arguments to the complementarity function.
Elements of the generalized Jacobian of Φ have the following form
$\partial \Phi(x)=\left\{\left(\begin{array}{cccc}2\left(x_{2}-4\right)^{4} & 8\left(x_{1}-2\right)\left(x_{2}-4\right)^{3} & 1 & 0 \\ 8\left(x_{2}-3\right)\left(x_{1}\right)^{3} & 2\left(x_{1}\right)^{4} & 0 & 1 \\ -\phi_{b}^{\prime}\left(\lambda_{1}, 1-x_{1}-x_{2}\right) & -\phi_{b}^{\prime}\left(\lambda_{1}, 1-x_{1}-x_{2}\right) & \phi_{a}^{\prime}\left(\lambda_{1}, 1-x_{1}-x_{2}\right) & 0 \\ -2 \phi_{b}^{\prime}\left(\lambda_{2}, 2-2 x_{1}-x_{2}\right) & -\phi_{b}^{\prime}\left(\lambda_{2}, 2-2 x_{1}-x_{2}\right) & 0 & \phi_{a}^{\prime}\left(\lambda_{2}, 2-2 x_{1}-x_{2}\right)\end{array}\right)\right\}$,
where ϕ_{a}^{\prime} and ϕ_{b}^{\prime} denote elements of the generalized gradient of the complementarity function. The corresponding R code is

```
> #Gr_x_k Gr_x_j O_i(x)
> heobj <- function(x, i, j, k, arg)
+ {
+ dij<- 1*(i == j)
+ dik<- 1*(i == k)
+ other <- ifelse(i == 1, 2, 1)
```

```
+ res <- 2*(x[other] - arg$D[i])^4*dij*dik
+ res <- res + 8*(x[i] - arg$C[i])*(x[other] - arg$D[i])^3*dij*(1-dik)
+ res <- res + 8*(x[i] - arg$C[i])*(x[other] - arg$D[i]) -3*(1-dij)*dik
+ res + 12*(x[i] - arg$C[i])^2*(x[other] - arg$D[i])^2*(1-dij)*(1-dik)
+ }
> #Gr_x_k Gr_x_j g_i(x)
> heg <- function(x, i, j, k) O
```


2.2.1 Usage example

Therefore, to compute a generalized Nash equilibrium, we use

```
> set.seed(1234)
> z0 <- rexp(sum(dimx)+sum(dimlam))
> GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
+ constr=g, grconstr=grg, heconstr=heg,
+ compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
+ control=list(trace=0))
```

```
GNE: 2 -1.999999 -1.802527e-17 79.99999
```

with optimal norm 5.086687e-07
after 25 iterations with exit code 1 .
Output message: Function criterion near zero
Function/grad/hessian calls: 2825
Optimal (vector) value: -1.802527e-17 $005.086687 e-07$

Recalling that the true GNEs are

```
> #list of true GNEs
> trueGNE <- rbind(c(2, -2, 0, 5*2^5),
+ c(-2, 3, 8, 0),
+ c(0, 1, 4*3~4, 0),
+ c(1, 0, 2^9, 6))
> colnames(trueGNE) <- c("x1", "x2", "lam1", "lam2")
> rownames(trueGNE) <- 1:4
> print(trueGNE)
```

	x1	x2	$\operatorname{lam} 1$	$\operatorname{lam2}$
1	2	-2	0	160
2	-2	3	8	0
3	0	1	324	0
4	1	0	512	6

2.3 Benchmark of the complementarity functions and the computation methods

Using the following function, we compare all the different methods with different initial points and different complementarity functions. We consider the following complementarity functions.

- $\phi_{\text {Min }}(a, b)=\min (a, b)$,
- $\phi_{F B}(a, b)=\sqrt{a^{2}+b^{2}}-(a+b)$,
- $\phi_{M a n}(a, b)=f(|a-b|)-f(a)-f(b)$ and $f(t)=t^{3}$,
- $\phi_{L T}(a, b)=\left(a^{q}+b^{q}\right)^{\frac{1}{q}}-(a+b)$ and $q=4$,
- $\phi_{K K}(a, b)=\left(\sqrt{(a-b)^{2}+2 \lambda a b}-(a+b)\right) /(2-\lambda)$ and $\lambda=3 / 2$.

2.3.1 Initial point $z_{0}=(4,-4,1,1)$

We work on the initial point $z_{0}=(4,-4,1,1)$, close the GNE $(2,-2,0,160)$. Clearly, we observe the Mangasarian complementarity function $\phi_{\text {Man }}$ does not converge except in the pure Newton method, for which the sequence converges to $(-2,3,8,0)$ quite far from the initial point. So the "Man" sequence converged by a chance! For $\phi_{\text {Min }}$ function, when it converges, the GNEs found are $(2,-2,0,160)$ or $(1,0,512,6) . \phi_{F B}$ and $\phi_{K K}$ associated sequences converge mostly to ($2,-2,0,160$). In terms of function/Jacobian calls, $\phi_{F B}$ is significantly better when used with the Newton scheme.

Table 1: With initial point $z_{0}=(4,-4,1,1)$ close to $(2,-2,0,160)$

2.3.2 Initial point $z_{0}=(-4,4,1,1)$

We work on the initial point $z_{0}=(-4,4,1,1)$, close the $\operatorname{GNE}(-2,3,8,0)$. Again, we observe the Mangasarian complementarity function $\phi_{M a n}$ does not converge. All other sequences converge the closest GNE $(-2,3,8,0)$. $\phi_{M i n}$ sequence with Newton scheme is particularly good, then comes $\phi_{F B}$ and finally $\phi_{K K}$.

2.3.3 Initial point $z_{0}=(3,0,1,1)$

We work on the initial point $z_{0}=(3,0,1,1)$ close to the GNE $(1,0,512,6)$. As always, the "Man" sequence converges by chance with the pure Newton method to a GNE $(-2,3,8,0)$. Otherwise the other sequences, namely "Min", "FB" and "KK" converges to the expected GNE. As the previous subsection, Broyden updates of the Jacobian is less performant than the true Jacobian (i.e. Newton scheme). The convergence speed order is preserved.

2.3.4 Initial point $z_{0}=(0,3,1,1)$

We work on the initial point $z_{0}=(0,3,1,1)$ close to the GNE $(0,1,324,0)$. As always, the "Man" sequence converges by chance with the pure Newton method to a GNE $(-2,3,8,0)$. Others sequences have difficulty to converge the closest GNE. Local methods (i.e. pure) find the GNE ($0,1,324,0$), while global version converges to $(1,0,512,6)$. It is logical any method will have difficulty to choose between these two GNEs, because they are close.

2.3.5 Initial point $z_{0}=(-1,-1,1,1)$

We work on the initial point $z_{0}=(-1,-1,1,1)$ equidistant to the GNEs $(0,1,324,0)$ and $(1,0,512,6)$. Despite being closer to these GNEs, the pure Newton version of the "Man" sequence converges unconditionally to the GNE $(-2,3,8,0)$. All other sequences converges to the GNE $(0,1,324,0)$ except for the Broyden version of the "KK" sequence, converging to the farthest GNEs. In terms of function calls, the Newton line search version of the "Min" sequence is the best, followed by the Newton trust region version of the "FB" sequence.

2.3.6 Initial point $z_{0}=(0,0,1,1)$

We work on the initial point $z_{0}=(0,0,1,1)$ equidistant to the GNEs $(0,1,324,0)$ and $(1,0,512,6)$. Both the "Man" and the "Min" sequences do not converge. The "Min" sequence diverges because the Jacobian at the initial point is exactly singular. Indeed, we have

```
> z0 <- c(0, 0, 1, 1)
> jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,
+ heconstr=heg, gcompla=GrAphiMin, gcomplb=GrBphiMin)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	512	1024	1	0
$[2]$,	0	0	0	2
$[3]$,	-1	-1	1	0
$[4]$,	0	0	0	1

For the "FB" and "KK" sequences, we do not have this problem.

```
> jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,
+ heconstr=heg, gcompla=GrAphiFB, gcomplb=GrBphiFB)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	512.0000000	1024.0000000	1.0000000	0.0000000
$[2]$,	0.0000000	0.0000000	0.0000000	2.0000000
$[3]$,	0.2928932	0.2928932	-0.2928932	0.0000000
$[4]$,	0.1055728	0.2111456	0.0000000	-0.5527864

> jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,

+ heconstr=heg, gcompla=GrAphiKK, gcomplb=GrBphiKK, argcompl=3/2)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	512.0000000	1024.0000000	1.0000000	0.0000000
$[2]$,	0.0000000	0.0000000	0.0000000	2.0000000
$[3]$,	0.2679492	0.2679492	-0.2679492	0.0000000
$[4]$,	0.1101776	0.2203553	0.0000000	-0.4881421

So the sequence converge to a GNE, either $(0,1,324,0)$ or $(-2,3,8,0)$. Again the "KK" sequence converges faster.

2.3.7 Conclusions

In conclusion to this analysis with respect to initial point, the computation method and the complementarity function, we observe the strong difference in terms of convergence, firstly and in terms of convergence speed. Clearly the choice of the complementarity function is crucial, the Luo-Tseng and the Mangasarian are particularly inadequate in our example. Regarding the remaining three complementarity functions (the minimum, the Fisher-Burmeister and the Kanzow-Kleinmichel functions) generally converge irrespectively of the computation method. However, the "KK" sequences are particularly efficient and most of the time the Newton trust region method is the best in terms of function/Jacobian calls.

2.4 Special case of shared constraints with common multipliers

Let $h: \mathbb{R}^{n} \mapsto \mathbb{R}^{m_{l}}$ be a constraint function shared by all players. The total constraint function and the Lagrange multiplier for the i th player is

$$
\tilde{g}^{i}(x)=\binom{g^{i}(x)}{h(x)} \quad \text { and } \quad \tilde{\lambda}^{i}=\binom{\lambda^{i}}{\mu}
$$

where $\mu \in \mathbb{R}^{l}$. This could fall within the previous framework, if we have not required the bottom part of $\tilde{\lambda}^{i}$ to be common among all players. The Lagrangian function of the i th player is given by

$$
L^{i}\left(x, \lambda^{i}, \mu\right)=O_{i}(x)+\sum_{k=1}^{m_{i}} g_{k}^{i}(x) \lambda_{k}^{i}+\sum_{p=1}^{l} h_{p}(x) \mu_{p}
$$

Definition 3 (eKKTc) For the N optimization subproblems for the functions $\theta_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}$, with constraints $g_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m_{i}}$ and shared constraint $h: \mathbb{R}^{n} \mapsto \mathbb{R}^{l}$, the $K K T$ conditions can be regrouped such that there exists $\lambda \in \mathbb{R}^{m}$ and

$$
\bar{L}(x, \lambda, \mu)=0 \quad \text { and } \quad 0 \leq \lambda, 0 \leq \mu \perp g(x) \leq 0,
$$

where L and G are given by

$$
\bar{L}(x, \lambda, \mu)=\left(\begin{array}{c}
\nabla_{x_{1}} L^{1}\left(x, \lambda^{1}, \mu\right) \\
\vdots \\
\nabla_{x_{I}} L^{I}\left(x, \lambda^{I}, \mu\right)
\end{array}\right) \in \mathbb{R}^{n} \quad \text { and } \quad g(x)=\left(\begin{array}{c}
g^{1}(x) \\
\vdots \\
g^{N}(x) \\
h(x)
\end{array}\right) \in \mathbb{R}^{m}
$$

The extended KKT system is denoted by eKKTc $\left(N, \theta_{i}, g_{i}, h\right)$.

The generalized Jacobian is given in Appendix A.2.

3 Constrained-equation reformulation of the KKT system

This subsection aims to present methods specific to solve constrained (nonlinear) equations, first proposed by Dreves et al. (2011) in the GNEP context. The root function $H: \mathbb{R}^{n} \times \mathbb{R}^{2 m} \mapsto \mathbb{R}^{n} \times \mathbb{R}^{2 m}$ is defined as

$$
H(x, \lambda, w)=\left(\begin{array}{c}
\tilde{L}(x, \lambda) \\
g(x)+w \\
\lambda \circ w
\end{array}\right)
$$

where the dimensions n, m correspond to the GNEP notation $\left(\lambda=\left(\lambda^{1}, \ldots, \lambda^{N}\right)\right)$ and $(a, \bar{\sigma})$ is given by $\left(\left(0_{n}, \mathbb{1}_{m}\right), 1\right)$. The potential function is given by

$$
p(u)=\zeta \log \left(\|x\|_{2}^{2}+\|\lambda\|_{2}^{2}+\|w\|_{2}^{2}\right)-\sum_{k=1}^{m} \log \left(\lambda_{k}\right)-\sum_{k=1}^{m} \log \left(w_{k}\right),
$$

where $u=(x, \lambda, w) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}$ and $\zeta>m$. The Jacobian is given in Appendix A.3.

When there is a constraint function h shared by all players, the root function is given by

$$
\tilde{H}(x, \tilde{\lambda}, \tilde{w})=\left(\begin{array}{c}
\bar{L}(x, \tilde{\lambda}) \\
\tilde{g}(x)+\tilde{w} \\
\tilde{\lambda} \circ \tilde{w}
\end{array}\right), \quad \text { with } \quad \tilde{\lambda}=\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{N} \\
\mu
\end{array}\right), \tilde{w}=\left(\begin{array}{c}
w^{1} \\
\vdots \\
w^{N} \\
y
\end{array}\right) \quad \text { and } \tilde{g}(x)=\left(\begin{array}{c}
g^{1}(x) \\
\vdots \\
g^{N}(x) \\
h(x)
\end{array}\right) .
$$

The Jacobian is given in Appendix A.4.

3.0.1 A classic example

Using the classic example presented above, we get
Therefore, to compute a generalized Nash equilibrium, we use

```
> z0 <- 1+rexp(sum(dimx)+2*sum(dimlam))
> GNE.ceq(zO, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
+ constr=g, grconstr=grg, heconstr=heg,
+ method="PR", control=list(trace=0))
```

GNE: $1.741725-0.6156581235 .288432 .619710 .00021344470 .001281449$
with optimal norm 1.787033
after 100 iterations with exit code 4 .
Output message: Iteration limit exceeded
Function/grad/hessian calls: 743100
Optimal (vector) value: $0.8399171-1.3086340 .12628010 .86907280 .050221060 .0418005$

4 GNEP as a fixed point equation or a minimization problem

We present another reformulation of the GNEP, which was originally introduced in the context of standard Nash equilibrium problem. The fixed-point reformulation arise from two different problem: either using the Nikaido-Isoda (NI) function or the quasi-varational inequaltiy (QVI) problem. We present both here. We also present a reformulation of the GNEP through a minimization problem. The gap minimization reformulation is closed linked to the fixed-equation reformulation.

4.1 NI reformulation

We define the Nikaido-Isoda function as the function ψ from $\mathbb{R}^{2 n}$ to \mathbb{R} by

$$
\begin{equation*}
\psi(x, y)=\sum_{\nu=1}^{N}\left[\theta\left(x_{\nu}, x_{-\nu}\right)-\theta\left(y_{\nu}, x_{-\nu}\right)\right] . \tag{1}
\end{equation*}
$$

This function represents the unilateral player improvement of the objective function between actions x and y. Let \hat{V} be the gap function

$$
\hat{V}(x)=\sup _{y \in X(x)} \psi(x, y) .
$$

Theorem 3.2 of Facchinei \& Kanzow (2009) shows the relation between GNEPs and the Nikaido-Isoda function. If objective functions θ_{i} are continuous, then x^{\star} solves the GNEP if and only if x^{\star} is a minimimum of \hat{V} such that

$$
\begin{equation*}
\hat{V}(x)=0 \text { and } x \in X(x), \tag{2}
\end{equation*}
$$

where the set $X(x)=\left\{y \in \mathbb{R}^{n}, \forall i, g^{i}\left(y_{i}, x_{-i}\right) \leq 0\right\}$ and \hat{V} defined in (1). Furthermore, the function \hat{V} is such that $\forall x \in X(x), \hat{V}(x) \geq 0$. There is no particular algorithm able to solve this problem for a general constrained set $X(x)$. But a simplification will occur in a special case: the jointly convex case.

4.2 QVI reformulation

Assuming the differentiability of objective functions, the GNEP in (??) can be reformulated as a QVI problem

$$
\forall y \in X(x),(y-x)^{T} F(x) \geq 0, \quad \text { with } F(x)=\left(\begin{array}{c}
\nabla_{x_{1}} \theta_{1}(x) \tag{3}\\
\vdots \\
\nabla_{x_{N}} \theta_{N}(x)
\end{array}\right)
$$

and a constrained set $X(x)=\left\{y \in \mathbb{R}^{n}, \forall i, g^{i}\left(y_{i}, x_{-i}\right) \leq 0\right\}$. The following theorem states the equivalence between the GNEP and the QVI, see Theorem 3.3 of Facchinei \& Kanzow (2009).

Kubota \& Fukushima (2010) propose to refomulate the QVI problem as a minimization of a (regularized) gap function. The regularized gap function of the QVI (3) is

$$
V_{Q V I}(x)=\sup _{y \in X(x)} \psi_{\alpha V I}(x, y),
$$

where $\psi_{\alpha V I}$ is given by

$$
\psi_{\alpha V I}(x, y)=\left(\begin{array}{c}
\nabla_{x_{1}} \theta_{1}(x) \tag{4}\\
\vdots \\
\nabla_{x_{N}} \theta_{N}(x)
\end{array}\right)^{T}(x-y)-\frac{\alpha}{2}\|x-y\|^{2},
$$

for a regularization parameter $\alpha>0$. Note that the minimisation problem appearing in the definition of $V_{Q V I}$ is a quadratic problem. The theorem of Kubota \& Fukushima (2010) given below shows the equivalence a minimizer of $V_{Q V I}$ and the GNEP.

For each $x \in X(x)$, the regularized gap function $V_{Q V I}$ is non-negative $V_{Q V I}(x) \geq 0$. If objective functions are continuous, then x^{\star} solves the GNEP if and only if x^{\star} is a minimum of $V_{Q V I}$ such that

$$
\begin{equation*}
V_{Q V I}\left(x^{\star}\right)=0 \text { and } x^{\star} \in X\left(x^{\star}\right) . \tag{5}
\end{equation*}
$$

4.3 The jointly convex case

In this subsection, we present reformulations for a subclass of GNEP called jointly convex case. Firstly, the jointly convex setting requires that the constraint function is common to all players $g^{1}=\cdots=g^{N}=g$.

Then, we assume, there exists a closed convex subset $X \subset \mathbb{R}^{n}$ such that for all player i,

$$
\left\{y_{i} \in \mathbb{R}^{n_{i}}, g\left(y_{i}, x_{-i}\right) \leq 0\right\}=\left\{y_{i} \in \mathbb{R}^{n_{i}},\left(y_{i}, x_{-i}\right) \in X\right\} .
$$

In our context parametrized context, the jointly convex setting requires that the constraint function is common to all players $g^{1}=\cdots=g^{N}=g$ and

$$
\begin{equation*}
X=\left\{x \in \mathbb{R}^{n}, \forall i=1, \ldots, N, g\left(x_{i}, x_{-i}\right) \leq 0\right\} \tag{6}
\end{equation*}
$$

is convex.
We consider the following example based on the previous example. Let $N=2$. The objective functions are defined as

$$
\theta_{1}(x)=\left(x_{1}-2\right)^{2}\left(x_{2}-4\right)^{4} \text { and } \theta_{2}(x)=\left(x_{2}-3\right)^{2}\left(x_{1}\right)^{4},
$$

for $x \in \mathbb{R}^{2}$, while the constraint function $g(x)=\left(g_{1}(x), g_{2}(x)\right)$ is given by

$$
g_{1}(x)=x_{1}+x_{2}-1 \leq 0 \text { and } g_{2}(x)=2 x_{1}+x_{2}-2 \leq 0 .
$$

Objective functions can be rewritten as $\theta_{i}(x)=\left(x_{i}-c_{i}\right)^{2}\left(x_{-i}-d_{i}\right)^{4}$, with $c=(2,3)$ and $d=(4,0)$. First-order and second-order derivatives are given in the introduction.
and

$$
\nabla_{j} g_{1}(x)=1 \text { and } \nabla_{j} g_{2}(x)=2 \delta_{j 1}+\delta_{j 2} .
$$

```
#O_i(x)
obj <- function(x, i, arg)
(x[i] - arg$C[i])~2*(x[-i] - arg$D[i])^4
#g(x)
> gtot <- function(x)
+ sum(x[1:2]) - 1
> #Gr_x_j g(x)
> jacgtot <- function(x)
+ cbind(1, 1)
> z0 <- rexp(sum(dimx))
> GNE.fpeq(z0, dimx, obj, myarg, grobj, myarg, heobj, myarg, gtot, NULL,
+ jacgtot, NULL, silent=TRUE, control.outer=list(maxit=10),
+ problem="NIR", merit="NI")
```

```
GNE: 1.91041 -0.9104103
```

with optimal norm 1.372768e-07
after iterations with exit code 1 .
Output message:
Outer Function/grad/hessian calls: 53
Inner Function/grad/hessian calls: 2604388
> GNE.fpeq(z0, dimx, obj, myarg, grobj, myarg, heobj, myarg, gtot, NULL,
$+\quad j a c g t o t$, NULL, silent=TRUE, control.outer=list(maxit=10),

+ problem="VIR", merit="VI")

```
GNE: -134.7119 135.7119
```

with optimal norm $7.205928 \mathrm{e}+22$
after iterations with exit code 6 .
Output message:
Outer Function/grad/hessian calls: 1910
Inner Function/grad/hessian calls: 454148

4.3.1 NIF formulation for the jointly convex case

In the jointly convex case, the gap function becomes

$$
V_{\alpha N I}(x)=\max _{y \in X} \psi_{\alpha N I}(x, y)
$$

Since $y \mapsto \psi_{\alpha N I}(x, y)$ is strictly concave as long as objective functions θ_{i} are player-convex, the supremum is replaced by the maximum. Using two regularization parameters $0<\alpha<\beta$, the constrained minimization problem can be further simplified to the unconstrained problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} V_{\alpha N I}(x)-V_{\beta N I}(x) \tag{7}
\end{equation*}
$$

see von Heusinger \& Kanzow (2009).

Furthermore, a generalized equilibrium also solves a fixed-point equation, see Property 3.4 of von Heusinger \& Kanzow (2009). Assuming θ_{i} and g are C^{1} functions and g is convex and θ_{i} player-convex. x^{\star} is a normalized equilibrium if and only if x^{\star} is a fixed-point of the function

$$
\begin{equation*}
x \mapsto y_{N I}(x)=\underset{y \in X}{\arg \max } \psi_{\alpha N I}(x, y) \tag{8}
\end{equation*}
$$

where X is defined in (6) and $\psi_{\alpha N I}$ called the regularized Nikaido-Isoda function is defined as

$$
\begin{equation*}
\psi_{\alpha N I}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x_{\nu}, x_{-\nu}\right)-\theta_{\nu}\left(y_{\nu}, x_{-\nu}\right)\right]-\frac{\alpha}{2}\|x-y\|^{2} \tag{9}
\end{equation*}
$$

for a regularization parameter $\alpha>0$.

4.3.2 QVI formulation for the jointly convex case

The regularized gap function also simplifies and becomes

$$
V_{\alpha V I}(x)=\sup _{y \in X} \psi_{\alpha V I}(x, y)
$$

where $\psi_{\alpha V I}$ is in (4). Constrained equation (5) simplifies to a nonlinear equation $V_{\alpha V I}\left(x^{\star}\right)=0$ and $x^{\star} \in X$. Using two regularization parameters $0<\alpha<\beta, x^{\star}$ is the global minimum of the unconstrained minimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} V_{\alpha V I}(x)-V_{\beta V I}(x) \tag{10}
\end{equation*}
$$

Furthermore, the VI reformulation leads to a fixed-point problem as shown in the following proposition. Assuming that θ_{i} and g are C^{1} functions, g is convex and θ_{i} player-convex, then x^{\star} solves the VI (??) if and only if x^{\star} is a fixed point of the function

$$
\begin{equation*}
x \mapsto y_{V I}(x)=\underset{y \in X}{\arg \max } \psi_{\alpha V I}(x, y) . \tag{11}
\end{equation*}
$$

where X is defined in (6) and $\psi_{\alpha V I}$ is defined in (4).

5 List of examples

5.1 Example of Facchinei et al. (2007)

We consider a two-player game defined by

$$
O_{1}(x)=\left(x_{1}-1\right)^{2} \text { and } O_{2}(x)=\left(x_{2}-1 / 2\right)^{2},
$$

with a shared constraint function

$$
g(x)=x_{1}+x_{2}-1 \leq 0 .
$$

Solutions are given by $(\alpha, 1-\alpha)$ with $\alpha \in[1 / 2,1]$ with Lagrange multipliers given by $\lambda_{1}=2-2 \alpha$ and $\lambda_{2}=2 \alpha-1$. But there is a unique normalized equilibrium for which $\lambda_{1}=\lambda_{2}=1 / 2$. The nonsmooth reformulation of the KKT system uses the following terms

$$
\nabla_{1} O_{1}(x)=2\left(x_{1}-1\right), \nabla_{2} O_{2}(x)=2\left(x_{2}-1 / 2\right), \quad \text { and } \quad \nabla_{1} g(x)=\nabla_{2} g(x)=1 .
$$

and

$$
\nabla_{i}^{2} O_{i}(x)=2, \nabla_{j} \nabla_{k} O_{i}(x)=0, \quad \text { and } \quad \nabla_{j} \nabla_{k} g(x)=0 .
$$

5.2 The Duopoly game from Krawczyk \& Uryasev (2000)

We consider a two-player game defined by

$$
O_{i}(x)=-\left(d-\lambda-\rho\left(x_{1}+x_{2}\right)\right) x_{i},
$$

with

$$
g_{i}(x)=-x_{i} \leq 0,
$$

where $d=20, \lambda=4, \rho=1$. Derivatives are given by

$$
\nabla_{j} O_{i}(x)=-\left(-\rho x_{i}+\left(d-\lambda-\rho\left(x_{1}+x_{2}\right)\right) \delta_{i j}\right) \text { and } \nabla_{j} g_{i}(x)=-\delta_{i j},
$$

and

$$
\nabla_{k} \nabla_{j} O_{i}(x)=-\left(-\rho \delta_{i k}-\rho \delta_{i j}\right) \text { and } \nabla_{k} \nabla_{j} g_{i}(x)=0
$$

There is a unique solution given by $x^{\star}=(d-\lambda) /(3 \rho)$.

5.3 The River basin pollution game from Krawczyk \& Uryasev (2000)

We consider a two-player game defined by

$$
O_{i}(x)=-\left(d_{1}-d_{2}\left(x_{1}+x_{2}+x_{3}\right)-c_{1 i}-c_{2 i} x_{i}\right) x_{i},
$$

and

$$
g(x)=\binom{\sum_{l=1}^{3} u_{l 1} e_{l} x_{l}-K_{1}}{\sum_{l=1}^{3} u_{l 2} e_{l} x_{l}-K_{2}} .
$$

Derivatives are given by

$$
\nabla_{j} O_{i}(x)=-\left(-d_{2}-c_{2 i} \delta_{i j}\right) x_{i}-\left(d_{1}-d_{2}\left(x_{1}+x_{2}+x_{3}\right)-c_{1 i}-c_{2 i} x_{i}\right) \delta_{i j} \quad \text { and } \quad \nabla_{j} g(x)=\binom{u_{j 1} e_{j}}{u_{j 2} e_{j}}
$$

and

$$
\nabla_{k} \nabla_{j} O_{i}(x)=-\left(-d_{2} \delta_{i k}-d_{2} \delta_{i j}-2 c_{2 i} \delta_{i j} \delta_{i k}\right) \text { and } \nabla_{k} \nabla_{j} g(x)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

References

Dreves, A., Facchinei, F., Kanzow, C. \& Sagratella, S. (2011), 'On the solutions of the KKT conditions of generalized Nash equilibrium problems', SIAM Journal on Optimization 21(3), 1082-1108.

Facchinei, F., Fischer, A. \& Piccialli, V. (2007), 'On generalized Nash games and variational inequalities', Operations Research Letters 35(2), 159-164.

Facchinei, F., Fischer, A. \& Piccialli, V. (2009), ‘Generalized Nash equilibrium problems and Newton methods', Math. Program., Ser. B 117, 163-194.

Facchinei, F. \& Kanzow, C. (2009), Generalized Nash equilibrium problems. Updated version of the 'quaterly journal of operations research' version.

Krawczyk, J. \& Uryasev, S. (2000), 'Relaxation algorithms to find Nash equilibria with economic applications', Environmental Modeling and Assessment 5(1), 63-73.

Kubota, K. \& Fukushima, M. (2010), 'Gap function approach to the generalized Nash equilibrium problem', Journal of Optimization Theory and Applications 144(3), 511-531.
von Heusinger, A. \& Kanzow, C. (2009), 'Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions', Computational Optimization and Applications 43(3).

A Appendix for the nonsmooth reformulation

A. 1 Semismooth reformulation - General case

The generalized Jacobian of the complementarity formulation has the following form

$$
J(z)=\left(\begin{array}{ccc|ccc}
\operatorname{Jac}_{x_{1}} L_{1}\left(x, \lambda^{1}\right) & \ldots & \operatorname{Jac}_{x_{N}} L_{1}\left(x, \lambda^{1}\right) & \operatorname{Jac}_{x_{1}} g^{1}(x)^{T} & & 0 \\
\vdots & & \vdots & & \ddots & \\
\operatorname{Jac}_{x_{1}} L_{N}\left(x, \lambda^{N}\right) & \ldots & \operatorname{Jac}_{x_{N}} L_{N}\left(x, \lambda^{N}\right) & 0 & & \operatorname{Jac}_{x_{N}} g^{N}(x)^{T} \\
\hline-D_{1}^{a}\left(x, \lambda^{1}\right) \operatorname{Jac}_{x_{1}} g^{1}(x) & \ldots & -D_{1}^{a}\left(x, \lambda^{1}\right) \operatorname{Jac}_{x_{N}} g^{1}(x) & D_{1}^{b}\left(x, \lambda^{1}\right) & & 0 \\
\vdots & \vdots & & \ddots & \\
-D_{N}^{a}\left(x, \lambda^{N}\right) \operatorname{Jac}_{x_{1}} g^{N}(x) & \ldots & -D_{N}^{a}\left(x, \lambda^{N}\right) \operatorname{Jac}_{x_{N}} g^{N}(x) & 0 & & D_{N}^{b}\left(x, \lambda^{N}\right)
\end{array}\right) .
$$

The diagonal matrices D_{i}^{a} and D_{i}^{b} are given by

$$
D_{i}^{a}\left(x, \lambda^{i}\right)=\operatorname{diag}\left[a^{i}\left(x, \lambda^{i}\right)\right] \text { and } D_{i}^{b}\left(x, \lambda^{i}\right)=\operatorname{diag}\left[b^{i}\left(x, \lambda^{i}\right)\right],
$$

with $a^{i}\left(x, \lambda^{i}\right), b^{i}\left(x, \lambda^{i}\right) \in \mathbb{R}^{m_{i}}$ defined as

$$
\left(a_{j}^{i}\left(x, \lambda_{j}^{i}\right), b_{j}^{i}\left(x, \lambda_{j}^{i}\right)\right)=\left\{\begin{array}{cl}
\left(\phi_{a}^{\prime}\left(-g_{j}^{i}(x), \lambda_{j}^{i}\right), \phi_{b}^{\prime}\left(-g_{j}^{i}(x), \lambda_{j}^{i}\right)\right) & \text { if }\left(-g_{j}^{i}(x), \lambda_{j}^{i}\right) \neq(0,0), \\
\left(\xi_{i j}, \zeta_{i j}\right) & \text { if }\left(-g_{j}^{i}(x), \lambda_{j}^{i}\right)=(0,0),
\end{array}\right.
$$

where ϕ_{a}^{\prime} (resp. ϕ_{b}^{\prime}) denotes the derivative of ϕ with respect to the first (second) argument $a(b)$ and $\left(\xi_{i j}, \zeta_{i j}\right) \in \bar{B}\left(p_{\phi}, c_{\phi}\right)$, the closed ball at p_{ϕ} of radius c_{ϕ}.

A. 2 Semismooth reformulation - Shared constraint case

The generalized Jacobian of the complementarity formulation has the following form $J(z)=$

$$
\left(\begin{array}{ccc|ccc|c}
\operatorname{Jac}_{x_{1}} L_{1}\left(x, \lambda^{1}, \mu\right) & \ldots & \operatorname{Jac}_{x_{N}} L_{1}\left(x, \lambda^{1}, \mu\right) & \operatorname{Jac}_{x_{1}} g^{1}(x)^{T} & & 0 & \operatorname{Jac}_{x_{1}} h(x)^{T} \\
\vdots & & \vdots & & \ddots & & \vdots \\
\operatorname{Jac}_{x_{1}} L_{N}\left(x, \lambda^{N}, \mu\right) & \ldots & \operatorname{Jac}_{x_{N}} L_{N}\left(x, \lambda^{N}, \mu\right) & 0 & & \operatorname{Jac}_{x_{N}} g^{N}(x)^{T} & \operatorname{Jac}_{x_{N}} h(x)^{T} \\
\hline-D_{1}^{a}\left(x, \lambda^{1}\right) \operatorname{Jac}_{x_{1}} g^{1}(x) & \ldots & -D_{1}^{a}\left(x, \lambda^{1}\right) \operatorname{Jac}_{x_{N}} g^{1}(x) & D_{1}^{b}\left(x, \lambda^{1}\right) & & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots \\
-D_{N}^{a}\left(x, \lambda^{N}\right) \operatorname{Jac}_{x_{1} g^{N}(x)} & \ldots & -D_{N}^{a}\left(x, \lambda^{N}\right) \operatorname{Jac}_{x_{N}} g^{N}(x) & 0 & & D_{N}^{b}\left(x, \lambda^{N}\right) & 0 \\
\hline-D_{h}^{a}(x, \mu) \operatorname{Jac}_{x_{1}} h(x) & \ldots & -D_{h}^{a}(x, \mu) \operatorname{Jac}_{x_{N}} h(x) & & 0 & 0 & D_{h}^{b}(x, \mu)
\end{array}\right) .
$$

The diagonal matrices D_{a} and D_{b} are given by

$$
D_{h}^{a}(x, \mu)=\operatorname{diag}[\tilde{a}(x, \mu)] \text { and } D_{h}^{b}(x, \mu)=\operatorname{diag}[\tilde{b}(x, \mu)],
$$

with $\tilde{a}(x, \mu), \tilde{b}(x, \mu) \in \mathbb{R}^{l}$ defined as

$$
\left(\tilde{a}_{j}(x, \mu), \tilde{b}_{j}(x, \mu)\right)=\left\{\begin{array}{cc}
\left(\phi_{a}^{\prime}\left(-h_{j}(x), \mu_{j}\right), \phi_{b}^{\prime}\left(-h_{j}(x), \mu_{j}\right)\right) & \text { if }\left(-h_{j}(x), \mu_{j}\right) \neq(0,0), \\
\left(\tilde{\xi}_{j}, \tilde{\zeta}_{j}\right) & \text { if }\left(-h_{j}(x), \mu_{j}\right)=(0,0),
\end{array}\right.
$$

where $\left(\tilde{\xi}_{j}, \tilde{\zeta}_{j}\right) \in \bar{B}\left(p_{\phi}, c_{\phi}\right)$.

A. 3 Semismooth reformulation - General case

For the line-search, the gradient ∇p is given by

$$
\nabla p(x, \lambda, w)=\left(\begin{array}{c}
\frac{2 \zeta}{\|x\|_{2}^{2}+\|\lambda\|_{2}^{2}+\|w\|_{2}^{2}} x \\
\frac{2 \zeta\| \|_{2}^{2}+\|\lambda\|_{2}^{2}+\|w\|_{2}^{2}}{2}-\lambda^{-1} \\
\frac{2 x\left\|_{2}^{2}+\right\| \lambda\left\|_{2}^{2}+\right\| w \|_{2}^{2}}{} w-w^{-1}
\end{array}\right),
$$

where λ and w have positive components and terms λ^{-1} and w^{-1} correspond to the component-wise inverse vector. Compared to the semismooth reformulation, the root function H is now C^{1}. The Jacobian is given by

$$
\operatorname{Jac} H(x, \lambda, w)=\left(\begin{array}{ccc}
\operatorname{Jac}_{x} \tilde{L}(x, \lambda) & \operatorname{diag}\left[\left(\nabla_{x_{i}} g^{i}(x)\right)_{i}\right] & 0 \\
\operatorname{Jac}_{x} g(x) & 0 & I \\
0 & \operatorname{diag}[w] & \operatorname{diag}[\lambda]
\end{array}\right) .
$$

As reported in Dreves et al. (2011), the computation of the direction $d_{k}=\left(d_{x, k}, d_{\lambda, k}, d_{w, k}\right)$ can be simplified due to the special structure of the above Jacobian matrix. The system reduces to a linear system of n equations to find $d_{x, k}$ and the $2 m$ components $d_{\lambda, k}, d_{w, k}$ are simple linear algebra. Using the classic chain rule, the gradient of the merit function is given by

$$
\nabla \psi(x, \lambda, w)=\operatorname{Jac} H(x, \lambda, w)^{T} \nabla p(H(x, \lambda, w)) .
$$

Again the computation of this gradient can be simplified due to the sparse structure of $\operatorname{Jac} H$.

A. 4 Semismooth reformulation - Shared constraint case

The Jacobian is given by

$$
\operatorname{Jac} \widetilde{H}(x, \tilde{\lambda}, \tilde{w})=\left(\begin{array}{ccc}
\operatorname{Jac}_{x} \bar{L}(x, \tilde{\lambda}) & \operatorname{Jac}_{\tilde{\lambda}} \bar{L}(x, \tilde{\lambda}) & 0 \\
\operatorname{Jac}_{x} \tilde{g}(x) & 0 & I \\
0 & \operatorname{diag}[\tilde{w}] & \operatorname{diag}[\tilde{\lambda}]
\end{array}\right)
$$

where

$$
\operatorname{Jac}_{\tilde{\lambda}} \bar{L}(x, \tilde{\lambda})=\left(\begin{array}{cccc}
\nabla_{x_{1}} g^{1}(x) & 0 & & \nabla_{x_{1}} h(x) \\
0 & \ddots & 0 & \vdots \\
& 0 & \nabla_{x_{N}} g^{N}(x) & \nabla_{x_{N}} h(x)
\end{array}\right)
$$

and

$$
\operatorname{Jac}_{x} \tilde{g}(x)=\left(\begin{array}{c}
\operatorname{Jac}_{x} \tilde{g}^{1}(x) \\
\cdots \\
\operatorname{Jac}_{x} \tilde{g}^{N}(x) \\
\operatorname{Jac}_{x} \tilde{h}(x)
\end{array}\right) .
$$

