
User guide for the GNE package

Christophe Dutang

May 22, 2022

As usual, the GNE package is loaded via the library function. In the following, we assume that the
line below has been called

> library(GNE)

1 Introduction

Definition 1 (GNEP) We define the generalized Nash equilibrium problem GNEP(N, θi, Xi) as the solu-
tions x⋆ of the N sub-problems

∀i = 1, . . . , N, x⋆i solves min
yi

θi(yi, x
⋆
−i) such that x⋆i ∈ Xi(x

⋆
−i),

where Xi(x−i) is the action space of player i given others player actions x−i.

If we have parametrized action spaceXi(x−i) = {yi, gi(yi, x−i) ≤ 0}, we denote the GNEP by GNEP(N, θi, gi).

We denote by X(x) the action set X(x) = X1(x−1) × · · · × XN (x−N). For standard NE, this set does
not depend on x.

The following example seems very basic, but in fact it has particular features, one of them is to have four
solutions, i.e. four GNEs. Let N = 2. The objective functions are defined as

θ1(x) = (x1 − 2)2(x2 − 4)4 and θ2(x) = (x2 − 3)2(x1)
4,

for x ∈ R
2, while the constraint functions are given by

g1(x) = x1 + x2 − 1 ≤ 0 and g2(x) = 2x1 + x2 − 2 ≤ 0.

Objective functions can be rewritten as θi(x) = (xi− ci)
2(x−idi)

4, with c = (2, 3) and d = (4, 0). First-order
derivatives are

∇jθi(x) = 2(xi − ci)(x−idi)
4δij + 4(xi − ci)

2(x−idi)
3(1− δij),

and
∇jg1(x) = 1 and ∇jg2(x) = 2δj1 + δj2.

1

Second-order derivatives are

∇k∇jθi(x) = 2(x−idi)
4δijδik + 8(xi − ci)(x−idi)

3δij(1− δik)

+8(xi − ci)(x−idi)
3(1− δij)δik + 12(xi − ci)

2(x−idi)
2(1− δij)(1− δik),

and
∇k∇jg1(x) = ∇k∇jg2(x) = 0.

2 GNEP as a nonsmooth equation

2.1 Notation and definitions

From Facchinei et al. (2009), assuming differentiability and a constraint qualification hold, the first-order
necessary conditions of player i’s subproblem state there exists a Lagrangian multiplier λi ∈ R

mi such that

∇xi
θi(x

⋆) +
∑

1≤j≤mi

λi⋆j ∇xi
gij(x

⋆) = 0 (∈ R
ni).

0 ≤ λi⋆, −gi(x⋆) ≥ 0, gi(x⋆)Tλi⋆ = 0 (∈ R
mi).

Regrouping the N subproblems, we get the following system.

Definition 2 (eKKT) For the N optimization subproblems for the functions θi : R
n 7→ R, with constraints

gi : R
n 7→ R

mi , the KKT conditions can be regrouped such that there exists λ ∈ R
m and

L̃(x, λ) = 0 and 0 ≤ λ ⊥ G(x) ≤ 0,

where L and G are given by

L̃(x, λ) =




∇x1
θ1(x) + Jacg1(x)Tλ1

...
∇xN

θN (x) + JacgN (x)TλN


 ∈ R

n and G(x) =



g1(x)

...
gN (x)


 ∈ R

m,

with Jacgi(x)
Tλi =

∑
1≤j≤mi

λij∇xi
gij(x). The extended KKT system is denoted by eKKT(N, θi, gi).

Using complementarity function φ(a, b) (e.g. min(a, b)), we get the following nonsmooth equation

Φ(z) =

(
L̃(x, λ)

φ.(−G(x), λ)

)
= 0,

where φ. is the component-wise version of the function φ and L̃ is the Lagrangian function of the extended
system. The generalized Jacobian is given in Appendix A.1.

2

2.2 A classic example

Returning to our example, we define the Φ as

Φ(x) =




2(x1 − 2)(x2 − 4)4 + λ1
2(x2 − 3)(x1)

4 + λ2
φ(λ1, 1− x1 − x2)
φ(λ2, 2− 2x1 − x2)


 ,

where φ denotes a complementarity function. In R, we use

> myarg <- list(C=c(2, 3), D=c(4,0))

> dimx <- c(1, 1)

> #Gr_x_j O_i(x)

> grobj <- function(x, i, j, arg)

+ {

+ dij <- 1*(i == j)

+ other <- ifelse(i == 1, 2, 1)

+ res <- 2*(x[i] - arg$C[i])*(x[other] - arg$D[i])^4*dij

+ res + 4*(x[i] - arg$C[i])^2*(x[other] - arg$D[i])^3*(1-dij)

+ }

> dimlam <- c(1, 1)

> #g_i(x)

> g <- function(x, i)

+ ifelse(i == 1, sum(x[1:2]) - 1, 2*x[1]+x[2]-2)

> #Gr_x_j g_i(x)

> grg <- function(x, i, j)

+ ifelse(i == 1, 1, 1 + 1*(i == j))

Note that the triple dot arguments . . . is used to pass arguments to the complementarity function.

Elements of the generalized Jacobian of Φ have the following form

∂Φ(x) =








2(x2 − 4)4 8(x1 − 2)(x2 − 4)3 1 0
8(x2 − 3)(x1)

3 2(x1)
4 0 1

−φ′b(λ1, 1− x1 − x2) −φ′b(λ1, 1− x1 − x2) φ′a(λ1, 1− x1 − x2) 0
−2φ′b(λ2, 2− 2x1 − x2) −φ′b(λ2, 2− 2x1 − x2) 0 φ′a(λ2, 2− 2x1 − x2)







,

where φ′a and φ′b denote elements of the generalized gradient of the complementarity function. The corre-
sponding R code is

> #Gr_x_k Gr_x_j O_i(x)

> heobj <- function(x, i, j, k, arg)

+ {

+ dij <- 1*(i == j)

+ dik <- 1*(i == k)

+ other <- ifelse(i == 1, 2, 1)

3

+ res <- 2*(x[other] - arg$D[i])^4*dij*dik

+ res <- res + 8*(x[i] - arg$C[i])*(x[other] - arg$D[i])^3*dij*(1-dik)

+ res <- res + 8*(x[i] - arg$C[i])*(x[other] - arg$D[i])^3*(1-dij)*dik

+ res + 12*(x[i] - arg$C[i])^2*(x[other] - arg$D[i])^2*(1-dij)*(1-dik)

+ }

> #Gr_x_k Gr_x_j g_i(x)

> heg <- function(x, i, j, k) 0

2.2.1 Usage example

Therefore, to compute a generalized Nash equilibrium, we use

> set.seed(1234)

> z0 <- rexp(sum(dimx)+sum(dimlam))

> GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,

+ constr=g, grconstr=grg, heconstr=heg,

+ compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",

+ control=list(trace=0))

GNE: 2 -1.999999 -1.802527e-17 79.99999

with optimal norm 5.086687e-07

after 25 iterations with exit code 1 .

Output message: Function criterion near zero

Function/grad/hessian calls: 28 25

Optimal (vector) value: -1.802527e-17 0 0 5.086687e-07

Recalling that the true GNEs are

> #list of true GNEs

> trueGNE <- rbind(c(2, -2, 0, 5*2^5),

+ c(-2, 3, 8, 0),

+ c(0, 1, 4*3^4, 0),

+ c(1, 0, 2^9, 6))

> colnames(trueGNE) <- c("x1", "x2", "lam1", "lam2")

> rownames(trueGNE) <- 1:4

> print(trueGNE)

x1 x2 lam1 lam2

1 2 -2 0 160

2 -2 3 8 0

3 0 1 324 0

4 1 0 512 6

4

2.3 Benchmark of the complementarity functions and the computation methods

Using the following function, we compare all the different methods with different initial points and different
complementarity functions. We consider the following complementarity functions.

• φMin(a, b) = min(a, b),

• φFB(a, b) =
√
a2 + b2 − (a+ b),

• φMan(a, b) = f(|a− b|)− f(a)− f(b) and f(t) = t3,

• φLT (a, b) = (aq + bq)
1

q − (a+ b) and q = 4,

• φKK(a, b) = (
√

(a− b)2 + 2λab− (a+ b))/(2− λ) and λ = 3/2.

2.3.1 Initial point z0 = (4,−4, 1, 1)

We work on the initial point z0 = (4,−4, 1, 1), close the GNE (2,−2, 0, 160). Clearly, we observe the
Mangasarian complementarity function φMan does not converge except in the pure Newton method, for which
the sequence converges to (−2, 3, 8, 0) quite far from the initial point. So the “Man” sequence converged by
a chance! For φMin function, when it converges, the GNEs found are (2,−2, 0, 160) or (1, 0, 512, 6). φFB

and φKK associated sequences converge mostly to (2,−2, 0, 160). In terms of function/Jacobian calls, φFB

is significantly better when used with the Newton scheme.

φMin(a, b) = min(a, b) φFB(a, b) =
√
a2 + b2 − (a+ b)

fctcall jaccall x1 x2 λ1 λ2 ||Φ(z)|| fctcall jaccall x1 x2 λ1 λ2 ||Φ(z)||
Newton - pure 5 5 1 0 512 6 0 6 6 2 -2 0 160 0

Newton - geom. LS 343 67 1 0 512 6 0 6 6 2 -2 0 160 0

Newton - quad. LS 292 100 2 6 6 2 -2 0 160 0

Newton - Powell TR 64 57 1 0 512 6 0 12 6 2 -2 0 160 0

Newton - Dbl. TR 63 58 1 0 512 6 0 12 6 2 -2 0 160 0

Broyden - pure 100 1 164 100 1 188

Broyden - geom. LS 403 6 1 0 512 6 0 1079 26 2

Broyden - quad. LS 291 6 1 467 3 1

Broyden - Powell TR 22 2 2 -2 0 160 0 114 2 1

Broyden - Dbl. TR 20 2 2 -2 0 160 0 115 2 1

fctcall jaccall x1 x2 λ1 λ2 ||Φ(z)|| fctcall jaccall x1 x2 λ1 λ2 ||Φ(z)||
Newton - pure 113 113 -2 3 8 0 0 48 48 0 1 325 0 0

Newton - geom. LS 203 25 33 727 100 2

Newton - quad. LS 91 27 37 85 39 2 -2 0 160 0

Newton - Powell TR 75 67 3 152 100 0 1 309 0 0

Newton - Dbl. TR 62 53 3 147 100 0 1 304 0 0

Broyden - pure 200 1 506 49 1 1 0 512 6 0

Broyden - geom. LS 167 6 82 29 3 2 -2 0 160 0

Broyden - quad. LS 86 5 78 20 3 2 -2 0 160 0

Broyden - Powell TR 215 14 3 28 2 2 -2 0 160 0

Broyden - Dbl. TR 246 15 3 29 2 2 -2 0 160 0

φMan(a, b) = f(|a− b|)− f(a)− f(b) and f(t) = t3 φKK(a, b) = (
√

(a− b)2 + 2λab− (a+ b))/(2− λ) and λ = 3/2

Table 1: With initial point z0 = (4,−4, 1, 1) close to (2,−2, 0, 160)

5

2.3.2 Initial point z0 = (−4, 4, 1, 1)

We work on the initial point z0 = (−4, 4, 1, 1), close the GNE (−2, 3, 8, 0). Again, we observe the Mangasarian
complementarity function φMan does not converge. All other sequences converge the closest GNE (−2, 3, 8, 0).
φMin sequence with Newton scheme is particularly good, then comes φFB and finally φKK .

2.3.3 Initial point z0 = (3, 0, 1, 1)

We work on the initial point z0 = (3, 0, 1, 1) close to the GNE (1, 0, 512, 6). As always, the “Man” sequence
converges by chance with the pure Newton method to a GNE (−2, 3, 8, 0). Otherwise the other sequences,
namely “Min”, “FB” and “KK” converges to the expected GNE. As the previous subsection, Broyden updates
of the Jacobian is less performant than the true Jacobian (i.e. Newton scheme). The convergence speed
order is preserved.

2.3.4 Initial point z0 = (0, 3, 1, 1)

We work on the initial point z0 = (0, 3, 1, 1) close to the GNE (0, 1, 324, 0). As always, the “Man” sequence
converges by chance with the pure Newton method to a GNE (−2, 3, 8, 0). Others sequences have difficulty
to converge the closest GNE. Local methods (i.e. pure) find the GNE (0, 1, 324, 0), while global version
converges to (1, 0, 512, 6). It is logical any method will have difficulty to choose between these two GNEs,
because they are close.

2.3.5 Initial point z0 = (−1,−1, 1, 1)

We work on the initial point z0 = (−1,−1, 1, 1) equidistant to the GNEs (0, 1, 324, 0) and (1, 0, 512, 6).
Despite being closer to these GNEs, the pure Newton version of the “Man” sequence converges unconditionally
to the GNE (−2, 3, 8, 0). All other sequences converges to the GNE (0, 1, 324, 0) except for the Broyden
version of the “KK” sequence, converging to the farthest GNEs. In terms of function calls, the Newton line
search version of the “Min” sequence is the best, followed by the Newton trust region version of the “FB”
sequence.

2.3.6 Initial point z0 = (0, 0, 1, 1)

We work on the initial point z0 = (0, 0, 1, 1) equidistant to the GNEs (0, 1, 324, 0) and (1, 0, 512, 6). Both
the “Man” and the “Min” sequences do not converge. The “Min” sequence diverges because the Jacobian at
the initial point is exactly singular. Indeed, we have

> z0 <- c(0, 0, 1, 1)

> jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,

+ heconstr=heg, gcompla=GrAphiMin, gcomplb=GrBphiMin)

6

[,1] [,2] [,3] [,4]

[1,] 512 1024 1 0

[2,] 0 0 0 2

[3,] -1 -1 1 0

[4,] 0 0 0 1

For the “FB” and “KK” sequences, we do not have this problem.

> jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,

+ heconstr=heg, gcompla=GrAphiFB, gcomplb=GrBphiFB)

[,1] [,2] [,3] [,4]

[1,] 512.0000000 1024.0000000 1.0000000 0.0000000

[2,] 0.0000000 0.0000000 0.0000000 2.0000000

[3,] 0.2928932 0.2928932 -0.2928932 0.0000000

[4,] 0.1055728 0.2111456 0.0000000 -0.5527864

> jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,

+ heconstr=heg, gcompla=GrAphiKK, gcomplb=GrBphiKK, argcompl=3/2)

[,1] [,2] [,3] [,4]

[1,] 512.0000000 1024.0000000 1.0000000 0.0000000

[2,] 0.0000000 0.0000000 0.0000000 2.0000000

[3,] 0.2679492 0.2679492 -0.2679492 0.0000000

[4,] 0.1101776 0.2203553 0.0000000 -0.4881421

So the sequence converge to a GNE, either (0, 1, 324, 0) or (−2, 3, 8, 0). Again the “KK” sequence converges
faster.

2.3.7 Conclusions

In conclusion to this analysis with respect to initial point, the computation method and the complementarity
function, we observe the strong difference in terms of convergence, firstly and in terms of convergence
speed. Clearly the choice of the complementarity function is crucial, the Luo-Tseng and the Mangasarian
are particularly inadequate in our example. Regarding the remaining three complementarity functions (the
minimum, the Fisher-Burmeister and the Kanzow-Kleinmichel functions) generally converge irrespectively
of the computation method. However, the “KK” sequences are particularly efficient and most of the time the
Newton trust region method is the best in terms of function/Jacobian calls.

7

2.4 Special case of shared constraints with common multipliers

Let h : Rn 7→ R
ml be a constraint function shared by all players. The total constraint function and the

Lagrange multiplier for the ith player is

g̃i(x) =

(
gi(x)
h(x)

)
and λ̃i =

(
λi

µ

)
,

where µ ∈ R
l. This could fall within the previous framework, if we have not required the bottom part of λ̃i

to be common among all players. The Lagrangian function of the ith player is given by

Li(x, λi, µ) = Oi(x) +

mi∑

k=1

gik(x)λ
i
k +

l∑

p=1

hp(x)µp.

Definition 3 (eKKTc) For the N optimization subproblems for the functions θi : R
n 7→ R, with constraints

gi : Rn 7→ R
mi and shared constraint h : Rn 7→ R

l, the KKT conditions can be regrouped such that there
exists λ ∈ R

m and
L̄(x, λ, µ) = 0 and 0 ≤ λ, 0 ≤ µ ⊥ g(x) ≤ 0,

where L and G are given by

L̄(x, λ, µ) =



∇x1

L1(x, λ1, µ)
...

∇xI
LI(x, λI , µ)


 ∈ R

n and g(x) =




g1(x)
...

gN (x)
h(x)


 ∈ R

m.

The extended KKT system is denoted by eKKTc(N, θi, gi, h).

The generalized Jacobian is given in Appendix A.2.

3 Constrained-equation reformulation of the KKT system

This subsection aims to present methods specific to solve constrained (nonlinear) equations, first proposed
by Dreves et al. (2011) in the GNEP context. The root function H : Rn × R

2m 7→ R
n × R

2m is defined as

H(x, λ, w) =



L̃(x, λ)
g(x) + w
λ ◦ w


 ,

where the dimensions n,m correspond to the GNEP notation (λ = (λ1, . . . , λN)) and (a, σ̄) is given by
((0n, 11m), 1). The potential function is given by

p (u) = ζ log
(
||x||22 + ||λ||22 + ||w||22

)
−

m∑

k=1

log(λk)−
m∑

k=1

log(wk),

where u = (x, λ, w) ∈ R
n × R

m
+ × R

m
+ and ζ > m. The Jacobian is given in Appendix A.3.

8

When there is a constraint function h shared by all players, the root function is given by

H̃(x, λ̃, w̃) =



L̄(x, λ̃)
g̃(x) + w̃

λ̃ ◦ w̃


 , with λ̃ =




λ1

...
λN

µ


 , w̃ =




w1

...
wN

y


 and g̃(x) =




g1(x)
...

gN (x)
h(x)


 .

The Jacobian is given in Appendix A.4.

3.0.1 A classic example

Using the classic example presented above, we get

Therefore, to compute a generalized Nash equilibrium, we use

> z0 <- 1+rexp(sum(dimx)+2*sum(dimlam))

> GNE.ceq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,

+ constr=g, grconstr=grg, heconstr=heg,

+ method="PR", control=list(trace=0))

GNE: 1.741725 -0.6156581 235.2884 32.61971 0.0002134447 0.001281449

with optimal norm 1.787033

after 100 iterations with exit code 4 .

Output message: Iteration limit exceeded

Function/grad/hessian calls: 743 100

Optimal (vector) value: 0.8399171 -1.308634 0.1262801 0.8690728 0.05022106 0.0418005

4 GNEP as a fixed point equation or a minimization problem

We present another reformulation of the GNEP, which was originally introduced in the context of standard
Nash equilibrium problem. The fixed-point reformulation arise from two different problem: either using the
Nikaido-Isoda (NI) function or the quasi-varational inequaltiy (QVI) problem. We present both here. We also
present a reformulation of the GNEP through a minimization problem. The gap minimization reformulation
is closed linked to the fixed-equation reformulation.

4.1 NI reformulation

We define the Nikaido-Isoda function as the function ψ from R
2n to R by

ψ(x, y) =

N∑

ν=1

[θ(xν , x−ν)− θ(yν , x−ν)]. (1)

9

This function represents the unilateral player improvement of the objective function between actions x and
y. Let V̂ be the gap function

V̂ (x) = sup
y∈X(x)

ψ(x, y).

Theorem 3.2 of Facchinei & Kanzow (2009) shows the relation between GNEPs and the Nikaido-Isoda
function. If objective functions θi are continuous, then x⋆ solves the GNEP if and only if x⋆ is a minimimum
of V̂ such that

V̂ (x) = 0 and x ∈ X(x), (2)

where the set X(x) = {y ∈ R
n, ∀i, gi(yi, x−i) ≤ 0} and V̂ defined in (1). Furthermore, the function V̂ is

such that ∀x ∈ X(x), V̂ (x) ≥ 0. There is no particular algorithm able to solve this problem for a general
constrained set X(x). But a simplification will occur in a special case: the jointly convex case.

4.2 QVI reformulation

Assuming the differentiability of objective functions, the GNEP in (??) can be reformulated as a QVI problem

∀y ∈ X(x), (y − x)TF (x) ≥ 0, with F (x) =




∇x1
θ1(x)
...

∇xN
θN (x)


 , (3)

and a constrained set X(x) = {y ∈ R
n, ∀i, gi(yi, x−i) ≤ 0}. The following theorem states the equivalence

between the GNEP and the QVI, see Theorem 3.3 of Facchinei & Kanzow (2009).

Kubota & Fukushima (2010) propose to refomulate the QVI problem as a minimization of a (regularized)
gap function. The regularized gap function of the QVI (3) is

VQV I(x) = sup
y∈X(x)

ψαV I(x, y),

where ψαV I is given by

ψαV I(x, y) =




∇x1
θ1(x)
...

∇xN
θN (x)




T

(x− y)− α

2
||x− y||2, (4)

for a regularization parameter α > 0. Note that the minimisation problem appearing in the definition of
VQV I is a quadratic problem. The theorem of Kubota & Fukushima (2010) given below shows the equivalence
a minimizer of VQV I and the GNEP.

For each x ∈ X(x), the regularized gap function VQV I is non-negative VQV I(x) ≥ 0. If objective functions
are continuous, then x⋆ solves the GNEP if and only if x⋆ is a minimum of VQV I such that

VQV I(x
⋆) = 0 and x⋆ ∈ X(x⋆). (5)

4.3 The jointly convex case

In this subsection, we present reformulations for a subclass of GNEP called jointly convex case. Firstly, the
jointly convex setting requires that the constraint function is common to all players g1 = · · · = gN = g.

10

Then, we assume, there exists a closed convex subset X ⊂ R
n such that for all player i,

{yi ∈ R
ni , g(yi, x−i) ≤ 0} = {yi ∈ R

ni , (yi, x−i) ∈ X}.

In our context parametrized context, the jointly convex setting requires that the constraint function is
common to all players g1 = · · · = gN = g and

X = {x ∈ R
n, ∀i = 1, . . . , N, g(xi, x−i) ≤ 0} (6)

is convex.

We consider the following example based on the previous example. Let N = 2. The objective functions
are defined as

θ1(x) = (x1 − 2)2(x2 − 4)4 and θ2(x) = (x2 − 3)2(x1)
4,

for x ∈ R
2, while the constraint function g(x) = (g1(x), g2(x)) is given by

g1(x) = x1 + x2 − 1 ≤ 0 and g2(x) = 2x1 + x2 − 2 ≤ 0.

Objective functions can be rewritten as θi(x) = (xi−ci)2(x−i−di)4, with c = (2, 3) and d = (4, 0). First-order
and second-order derivatives are given in the introduction.

and
∇jg1(x) = 1 and ∇jg2(x) = 2δj1 + δj2.

> #O_i(x)

> obj <- function(x, i, arg)

+ (x[i] - arg$C[i])^2*(x[-i] - arg$D[i])^4

> #g(x)

> gtot <- function(x)

+ sum(x[1:2]) - 1

> #Gr_x_j g(x)

> jacgtot <- function(x)

+ cbind(1, 1)

> z0 <- rexp(sum(dimx))

> GNE.fpeq(z0, dimx, obj, myarg, grobj, myarg, heobj, myarg, gtot, NULL,

+ jacgtot, NULL, silent=TRUE, control.outer=list(maxit=10),

+ problem="NIR", merit="NI")

GNE: 1.91041 -0.9104103

with optimal norm 1.372768e-07

after iterations with exit code 1 .

Output message:

Outer Function/grad/hessian calls: 5 3

Inner Function/grad/hessian calls: 2604 388

> GNE.fpeq(z0, dimx, obj, myarg, grobj, myarg, heobj, myarg, gtot, NULL,

+ jacgtot, NULL, silent=TRUE, control.outer=list(maxit=10),

+ problem="VIR", merit="VI")

11

GNE: -134.7119 135.7119

with optimal norm 7.205928e+22

after iterations with exit code 6 .

Output message:

Outer Function/grad/hessian calls: 19 10

Inner Function/grad/hessian calls: 454 148

4.3.1 NIF formulation for the jointly convex case

In the jointly convex case, the gap function becomes

VαNI(x) = max
y∈X

ψαNI(x, y).

Since y 7→ ψαNI(x, y) is strictly concave as long as objective functions θi are player-convex, the supremum
is replaced by the maximum. Using two regularization parameters 0 < α < β, the constrained minimization
problem can be further simplified to the unconstrained problem

min
x∈Rn

VαNI(x)− VβNI(x), (7)

see von Heusinger & Kanzow (2009).

Furthermore, a generalized equilibrium also solves a fixed-point equation, see Property 3.4 of von Heusinger
& Kanzow (2009). Assuming θi and g are C1 functions and g is convex and θi player-convex. x⋆ is a nor-
malized equilibrium if and only if x⋆ is a fixed-point of the function

x 7→ yNI(x) = argmax
y∈X

ψαNI(x, y). (8)

where X is defined in (6) and ψαNI called the regularized Nikaido-Isoda function is defined as

ψαNI(x, y) =

N∑

ν=1

[θν(xν , x−ν)− θν(yν , x−ν)]−
α

2
||x− y||2, (9)

for a regularization parameter α > 0.

4.3.2 QVI formulation for the jointly convex case

The regularized gap function also simplifies and becomes

VαV I(x) = sup
y∈X

ψαV I(x, y),

where ψαV I is in (4). Constrained equation (5) simplifies to a nonlinear equation VαV I(x
⋆) = 0 and x⋆ ∈ X.

Using two regularization parameters 0 < α < β, x⋆ is the global minimum of the unconstrained minimization
problem

min
x∈Rn

VαV I(x)− VβV I(x). (10)

12

Furthermore, the VI reformulation leads to a fixed-point problem as shown in the following proposition.
Assuming that θi and g are C1 functions, g is convex and θi player-convex, then x⋆ solves the VI (??) if and
only if x⋆ is a fixed point of the function

x 7→ yV I(x) = argmax
y∈X

ψαV I(x, y). (11)

where X is defined in (6) and ψαV I is defined in (4).

5 List of examples

5.1 Example of Facchinei et al. (2007)

We consider a two-player game defined by

O1(x) = (x1 − 1)2 and O2(x) = (x2 − 1/2)2,

with a shared constraint function
g(x) = x1 + x2 − 1 ≤ 0.

Solutions are given by (α, 1 − α) with α ∈ [1/2, 1] with Lagrange multipliers given by λ1 = 2 − 2α and
λ2 = 2α − 1. But there is a unique normalized equilibrium for which λ1 = λ2 = 1/2. The nonsmooth
reformulation of the KKT system uses the following terms

∇1O1(x) = 2(x1 − 1),∇2O2(x) = 2(x2 − 1/2), and ∇1g(x) = ∇2g(x) = 1.

and
∇2

iOi(x) = 2,∇j∇kOi(x) = 0, and ∇j∇kg(x) = 0.

5.2 The Duopoly game from Krawczyk & Uryasev (2000)

We consider a two-player game defined by

Oi(x) = −(d− λ− ρ(x1 + x2))xi,

with
gi(x) = −xi ≤ 0,

where d = 20, λ = 4, ρ = 1. Derivatives are given by

∇jOi(x) = −(−ρxi + (d− λ− ρ(x1 + x2))δij) and ∇jgi(x) = −δij ,

and
∇k∇jOi(x) = −(−ρδik − ρδij) and ∇k∇jgi(x) = 0.

There is a unique solution given by x⋆ = (d− λ)/(3ρ).

13

5.3 The River basin pollution game from Krawczyk & Uryasev (2000)

We consider a two-player game defined by

Oi(x) = −(d1 − d2(x1 + x2 + x3)− c1i − c2ixi)xi,

and

g(x) =




3∑
l=1

ul1elxl −K1

3∑
l=1

ul2elxl −K2


 .

Derivatives are given by

∇jOi(x) = −(−d2 − c2iδij)xi − (d1 − d2(x1 + x2 + x3)− c1i − c2ixi)δij and ∇jg(x) =

(
uj1ej
uj2ej

)
,

and

∇k∇jOi(x) = −(−d2δik − d2δij − 2c2iδijδik) and ∇k∇jg(x) =

(
0 0
0 0

)
.

14

References

Dreves, A., Facchinei, F., Kanzow, C. & Sagratella, S. (2011), ‘On the solutions of the KKT conditions of
generalized Nash equilibrium problems’, SIAM Journal on Optimization 21(3), 1082–1108.

Facchinei, F., Fischer, A. & Piccialli, V. (2007), ‘On generalized Nash games and variational inequalities’,
Operations Research Letters 35(2), 159–164.

Facchinei, F., Fischer, A. & Piccialli, V. (2009), ‘Generalized Nash equilibrium problems and Newton meth-
ods’, Math. Program., Ser. B 117, 163–194.

Facchinei, F. & Kanzow, C. (2009), Generalized Nash equilibrium problems. Updated version of the ’quaterly
journal of operations research’ version.

Krawczyk, J. & Uryasev, S. (2000), ‘Relaxation algorithms to find Nash equilibria with economic applica-
tions’, Environmental Modeling and Assessment 5(1), 63–73.

Kubota, K. & Fukushima, M. (2010), ‘Gap function approach to the generalized Nash equilibrium problem’,
Journal of Optimization Theory and Applications 144(3), 511–531.

von Heusinger, A. & Kanzow, C. (2009), ‘Optimization reformulations of the generalized Nash equilibrium
problem using the Nikaido-Isoda type functions’, Computational Optimization and Applications 43(3).

A Appendix for the nonsmooth reformulation

A.1 Semismooth reformulation – General case

The generalized Jacobian of the complementarity formulation has the following form

J(z) =




Jacx1
L1(x, λ

1) . . . JacxN
L1(x, λ

1)
...

...
Jacx1

LN (x, λN) . . . JacxN
LN (x, λN)

Jacx1
g1(x)T 0

. . .

0 JacxN
gN (x)T

−Da
1(x, λ

1)Jacx1
g1(x) . . . −Da

1(x, λ
1)JacxN

g1(x)
...

...
−Da

N (x, λN)Jacx1
gN (x) . . . −Da

N (x, λN)JacxN
gN (x)

Db
1(x, λ

1) 0
. . .

0 Db
N (x, λN)




.

The diagonal matrices Da
i and Db

i are given by

Da
i (x, λ

i) = diag[ai(x, λi)] and Db
i (x, λ

i) = diag[bi(x, λi)],

with ai(x, λi), bi(x, λi) ∈ R
mi defined as

(aij(x, λ
i
j), b

i
j(x, λ

i
j)) =

{ (
φ′a(−gij(x), λij), φ′b(−gij(x), λij)

)
if (−gij(x), λij) 6= (0, 0),

(ξij , ζij) if (−gij(x), λij) = (0, 0),

where φ′a (resp. φ′b) denotes the derivative of φ with respect to the first (second) argument a (b) and
(ξij , ζij) ∈ B̄(pφ, cφ), the closed ball at pφ of radius cφ.

15

A.2 Semismooth reformulation – Shared constraint case

The generalized Jacobian of the complementarity formulation has the following form J(z) =




Jacx1
L1(x, λ

1, µ) . . . JacxN
L1(x, λ

1, µ)
...

...
Jacx1

LN (x, λN , µ) . . . JacxN
LN (x, λN , µ)

Jacx1
g1(x)T 0

. . .

0 JacxN
gN (x)T

Jacx1
h(x)T

...
JacxN

h(x)T

−Da
1(x, λ

1)Jacx1
g1(x) . . . −Da

1(x, λ
1)JacxN

g1(x)
...

...
−Da

N (x, λN)Jacx1
gN (x) . . . −Da

N (x, λN)JacxN
gN (x)

Db
1(x, λ

1) 0
. . .

0 Db
N (x, λN)

0
...
0

−Da
h(x, µ)Jacx1

h(x) . . . −Da
h(x, µ)JacxN

h(x) 0 . . . 0 Db
h(x, µ)




.

The diagonal matrices Da and Db are given by

Da
h(x, µ) = diag[ã(x, µ)] and Db

h(x, µ) = diag[b̃(x, µ)],

with ã(x, µ), b̃(x, µ) ∈ R
l defined as

(ãj(x, µ), b̃j(x, µ)) =

{
(φ′a(−hj(x), µj), φ′b(−hj(x), µj)) if (−hj(x), µj) 6= (0, 0),

(ξ̃j , ζ̃j) if (−hj(x), µj) = (0, 0),

where (ξ̃j , ζ̃j) ∈ B̄(pφ, cφ).

A.3 Semismooth reformulation – General case

For the line-search, the gradient ∇p is given by

∇p(x, λ, w) =




2ζ
||x||2

2
+||λ||2

2
+||w||2

2

x
2ζ

||x||2
2
+||λ||2

2
+||w||2

2

λ− λ−1

2ζ
||x||2

2
+||λ||2

2
+||w||2

2

w − w−1


 ,

where λ and w have positive components and terms λ−1 and w−1 correspond to the component-wise inverse
vector. Compared to the semismooth reformulation, the root function H is now C1. The Jacobian is given
by

JacH(x, λ, w) =




JacxL̃(x, λ) diag
[(
∇xi

gi(x)
)
i

]
0

Jacxg(x) 0 I
0 diag[w] diag[λ]


 .

As reported in Dreves et al. (2011), the computation of the direction dk = (dx,k, dλ,k, dw,k) can be simplified
due to the special structure of the above Jacobian matrix. The system reduces to a linear system of n
equations to find dx,k and the 2m components dλ,k, dw,k are simple linear algebra. Using the classic chain
rule, the gradient of the merit function is given by

∇ψ(x, λ, w) = JacH(x, λ, w)T∇p(H(x, λ, w)).

Again the computation of this gradient can be simplified due to the sparse structure of JacH.

16

A.4 Semismooth reformulation – Shared constraint case

The Jacobian is given by

JacH̃(x, λ̃, w̃) =




JacxL̄(x, λ̃) Jac λ̃L̄(x, λ̃) 0
Jacxg̃(x) 0 I

0 diag[w̃] diag[λ̃]


 ,

where

Jac λ̃L̄(x, λ̃) =



∇x1

g1(x) 0 ∇x1
h(x)

0
. . . 0

...
0 ∇xN

gN (x) ∇xN
h(x)


 ,

and

Jacxg̃(x) =




Jacxg̃
1(x)

. . .
Jacxg̃

N (x)

Jacxh̃(x)


 .

17

	Introduction
	GNEP as a nonsmooth equation
	Notation and definitions
	A classic example
	Usage example

	Benchmark of the complementarity functions and the computation methods
	Initial point z0 = (4, -4, 1, 1)
	Initial point z0 = (-4, 4, 1, 1)
	Initial point z0 = (3, 0, 1, 1)
	Initial point z0 = (0, 3, 1, 1)
	Initial point z0 = (-1, -1, 1, 1)
	Initial point z0 = (0, 0, 1, 1)
	Conclusions

	Special case of shared constraints with common multipliers

	Constrained-equation reformulation of the KKT system
	A classic example

	GNEP as a fixed point equation or a minimization problem
	NI reformulation
	QVI reformulation
	The jointly convex case
	NIF formulation for the jointly convex case
	QVI formulation for the jointly convex case

	List of examples
	Example of facchineietal07
	The Duopoly game from krawuryasev00
	The River basin pollution game from krawuryasev00

	Appendix for the nonsmooth reformulation
	Semismooth reformulation – General case
	Semismooth reformulation – Shared constraint case
	Semismooth reformulation – General case
	Semismooth reformulation – Shared constraint case

