
GPoM : 1 Conventions

Sylvain Mangiarotti & Mireille Huc

2020-02-18

The Generalized Global Polynomial Modelling (GPoM) package allows a generic formulation of any Ordinary
Differential Equations (ODEs) in polynomial form. The aim of the present vignette 1 Conventions is to
introduce briefly the way to describe a set of polynomial ODEs with GPoM and to show how to perform its
numerical integration1.

Conventions used to describe a polynomial

The polynomial description is based on a convention defined by the function regOrd that provides the order
of the polynomial terms. This convention depends on the model dimension (that is the number nVar of
state variables), and on the maximum polynomial degree used for the formulation (defined by the parameter
dMax). This order can be visualized using the poLabs function. For instance, for nVar = 3 and dMax = 2,
the convention used to formulate a polynomial will be:

nVar = 3

dMax = 2

poLabs(nVar = nVar, dMax = dMax)

[1] "ct" "X3 " "X3^2 " "X2 " "X2 X3 " "X2^2 " "X1 " "X1 X3 "

[9] "X1 X2 " "X1^2 "

This formulation has pMax = 10 terms:

pMax = d2pMax(nVar, dMax)

Based on this convention, one single ordinary differential equation (ODE) in polynomial form with nVar

variables and of maximum polynomial degree dMax can be formulated as one single vector using the convention
given by regOrd(nVar, dMax). As an example, the equation :

dX1/dt = 1 + 2X1 − 3X1X3 + 4X2

2

has the three variables X1, X2 and X3 (it thus requires at least nVar = 3) and is of maximum polynomial
degree two due to terms X1X3 and X2

2
(it thus requires at least dMax = 2). Following the convention defined

by poLabs(nVar = 3, dMax = 2), it will require the definition of the following vector of parameters:

param <- c(1, 0, 0, 0, 0, 4, 2, -3, 0, 0)

Indeed:

nVar = 3

dMax = 2

cbind(param, poLabs(nVar, dMax))

param

[1,] "1" "ct"

1Mangiarotti S, Le Jean F, Chassan M, Drapeau L, Huc M. 2018. GPoM: Generalized Polynomial Modelling. Version 1.1.
Comprehensive R Archive Network. https://cran.r-project.org/package=GPoM.

1

https://cran.r-project.org/package=GPoM

[2,] "0" "X3 "

[3,] "0" "X3^2 "

[4,] "0" "X2 "

[5,] "0" "X2 X3 "

[6,] "4" "X2^2 "

[7,] "2" "X1 "

[8,] "-3" "X1 X3 "

[9,] "0" "X1 X2 "

[10,] "0" "X1^2 "

The same convention will be used for any other equation. Note that, by default, the notation used for the
variables is X1, X2, etc. However, to facilitate the analysis, alternative notations may also be used using the
optional parameter Xnote:

poLabs(3, 2, Xnote = 'y')

[1] "ct" "y3 " "y3^2 " "y2 " "y2 y3 " "y2^2 " "y1 " "y1 y3 "

[9] "y1 y2 " "y1^2 "

or for a full choice of the notation:

poLabs(3, 2, Xnote = c('x','W','y'))

[1] "ct" "y " "y^2 " "W " "W y " "W^2 " "x " "x y " "x W " "x^2 "

Definition of a set of polynomial ODE

A set of N equations will require the definition of N parameter vectors and will thus be represented by a
matrix of pMax lines by nVar columns. For example, the Rössler system2 is defined by a set of three equations

dx/dt = −y − z

dy/dt = x + ay

dz/dt = b + z(x − c).

For (a = 0.52, b = 2, c = 4), this system can be decribed by three vectors (one for each equation)

parameters

a = 0.52

b = 2

c = 4

equations

Eq1 <- c(0,-1, 0,-1, 0, 0, 0, 0, 0, 0)

Eq2 <- c(0, 0, 0, a, 0, 0, 1, 0, 0, 0)

Eq3 <- c(b,-c, 0, 0, 0, 0, 0, 1, 0, 0)

The model formulation is obtained by concatenating the vectors of the three equations into one single matrix
K containing all the coefficients of the model:

K = cbind(Eq1, Eq2, Eq3)

The corresponding model equations can be edited in a mathematical form using the function visuEq()

visuEq(K)

dX1/dt = -1 X3 -1 X2

##

2O. Rössler, An Equation for Continuous Chaos, Physics Letters, 57A(5), 1976, 397-398

2

dX2/dt = 0.52 X2 + 1 X1

##

dX3/dt = 2 -4 X3 + 1 X1 X3

By default, the notation used in visuEq for the variables is X with an indicative number, such as X1, X2, etc.
Alternative notation can be used to edit the equations with the visuEq function using the optional parameter
substit. For substit = 1, single letters are automatically chosen such as

visuEq(K, substit = 1)

dx/dt = -1 z -1 y

##

dy/dt = 0.52 y + 1 x

##

dz/dt = 2 -4 z + 1 x z

The notation can be defined also manually, such as:

visuEq(K, substit = c("U", "V", "W"))

dU/dt = -1 W -1 V

##

dV/dt = 0.52 V + 1 U

##

dW/dt = 2 -4 W + 1 U W

Numerical integration

The numerical integration of the model defined by matrix K can be done using the numicano function. It
requires the use of the external package deSolve. The following parameters are required as input:

The initial conditions of the system variables

v0 <- c(-0.6, 0.6, 0.4)

the model formulation K (see former section)

the number of integration steps `Istep`

nIstep <- 5000

the time step length `onestep`

onestep = 1/50

the model dimension `nVar`

nVar = 3

the maximum polynomial degree `dMax`

dMax = 2

The numerical integration is launched as follows:

outNumi <- numicano(nVar, dMax, Istep = nIstep, onestep = onestep, KL = K, v0 = v0)

The output of the function numicano is a list that contains (1) a memory $KL of the model parameters

outNumi$KL

from which nVar and dMax (required to reformulate the equations) can be retrieved

nVar

dim(outNumi$K)[2]

dMax

pMax <- dim(outNumi$K)[1]

p2dMax(nVar, pMaxKnown = pMax)

3

and (2) the simulations $reconstr. This matrix has nVar + 1 columns. The first one is the time, the other
ones correspond to the variables of the system (X1, X2, X3, ...) (or (x, y, z) to keep the formulation used
previously in the text).

Note that all the other input parameters used in numicano can be retrieved from the outputs:

initial conditions

head(outNumi$reconstr, 1)[2:(nVar+1)]

time step

diff(outNumi$reconstr[1:2,1])

number of integration time step

dim(outNumi$reconstr)[1]

The simulated time series can be plotted as follows:

plot(outNumi$reconstr[,1], outNumi$reconstr[,2], type='l',

main='time series', xlab='t', ylab = 'x(t)')

0 20 40 60 80 100

−
4

−
2

0
2

4
6

time series

t

x
(t

)

and the plot of the phase portrait as well:

plot(outNumi$reconstr[,2], outNumi$reconstr[,3], type='l',

main='phase portrait', xlab='x(t)', ylab = 'y(t)')

4

−4 −2 0 2 4 6

−
6

−
4

−
2

0
2

phase portrait

x(t)

y
(t

)

Next steps

The aim of the GPoM package is to retreive ODEs from time series using global modelling. Such type of
modelling may require a careful data preprocessing. Simple examples of preprocessing will be given in the
next vignette 2 Preprocessing. Examples for applying global modelling to time series will then be presented
in vignette 3 Modelling.

5

	Conventions used to describe a polynomial
	Definition of a set of polynomial ODE
	Numerical integration
	Next steps

