Package 'GUIDE'

October 6, 2018

Type Package
Title GUI for DErivatives in R
Version 1.2.7
Date 2018-10-06
Author S Subramanian ssubramanian@sssihl.edu.in
Maintainer S Subramanian ssubramanian@sssihl.edu.in
Description A nice GUI for financial DErivatives in R.
Depends R (>= 3.0.0), rpanel, tkrplot
License GPL-2
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2018-10-06 05:00:03 UTC
R topics documented:
GUIDE-package 3
ABMPaths 4
basicpayoffs 5
bearspreadputs 5
backscholes 6
bondchange 7
bondconv 8
bonddur 9
bondforwardtreegui 10
bondfuturestreegui 11
bondoptiontreegui 12
bondprice 13
bondtreegui 14
BrownianPaths 15
bullspreadcalls 15
butterfly 16
calcgreeks 17
captreegui 18
cashprice 19
cdswap 19
curswapvalue 20
durcoupon 21
durmaturity 22
duryield 23
eurodollar 23
floortreegui 24
forwardcommodity 25
forwardcurrency 26
forwardstock 27
fra 28
fravalue 29
futurescommodity 29
futurescurrency 30
futuresstock 31
fv 32
fvann 33
GBMPaths 33
greekneutrality 34
GUIDE 35
impvol 36
irswapvalue 37
JDPaths 38
Premium3D 39
pricematurity 39
priceyield 40
pv 41
pval 42
pvann 42
rate 43
ratetreegui 44
reversebutterfly 45
reversestraddle 45
reversestrangle 46
stockoptiontreegui 47
stockTimeGreeks 48
straddle 49
strangle 49
strap 50
strip 51
swaptiontreegui 52
swaptreegui 53
trading.menu 54
var1stock 55
var2stocks 56
GUIDE-package
varbehavior 57
zval 58
Index 59
GUIDE-package

The main menu for the GUIDE package.

Description

Function to bring up the main menu for the GUIDE package

Usage

GUIDE()

Details

Entering "GUIDE()" brings up a GUI containing the following menus:
Forwards
Futures
Options
Swaps
Stochastic Processes
Value at Risk
Bonds and
Utilities

Value

The main menu for the GUIDE package

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

Description

Function to simulate and plot Arithmetic Brownian Motion path(s)

Usage

ABMPaths()

Details

The user inputs are as follows:
Drift (or mu)
Volatility(or sigma)
Paths
Clicking on the ' + ' and '-' respectively increases and decreases the values of each of the above three inputs.

Value

A graph of Arithmetic Brownian Motion path(s) for user specified Drift rate (mu) and the Volatility (sigma).

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

GBMPaths, BrownianPaths
basicpayoffs Plot payoffs / profit and loss of European Call/Put.

Description

Function to Plot payoffs / profit and loss of European Call/Put.

Usage

basicpayoffs()

Details

The user inputs are as follows:
Position: choose Long/Short/both
Option Type: chosen between Call/Put
Plot Type: chosen between Payoff/Profit-and-Loss

Value

Plot of payoffs / profit and loss of European Call/Put.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

trading.menu
bearspreadputs Profit \& Loss plot of bear spread with puts.

Description

Function to plot Profit \& Loss of bear spread with puts.

Usage

bearspreadputs()

Details

Short put check box: checking it plots the Profit and loss of a short put position.
Long put check box: checking it plots the Profit and loss of a long put position.
Profit check box: checking it plots the over all Profit and loss of a bear spread with puts.

Value

Profit \& Loss plot of bear spread with puts.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

bullspreadcalls,trading.menu

Description

Function to calculate the Black scholes formula value of a European Call/Put.

Usage

blackscholes()

Details

The user inputs are as follows:
Exercise style: chosen between European/American
Spot: to be entered in numbers for e.g. 120.50
Strike: to be entered in numbers for e.g. 110.50
Risk free rate per annum: to be entered in decimals. For e.g. 0.05 for 5 per cent
Maturity in number of years: to be entered in decimals. For e.g. 0.25 for a quarter year
Sigma (or Volatility) per annum: to be entered in decimals. For e.g. 0.25 for 25 per cent
Dividend yield: to be entered in decimals. For e.g. 0.02 for 2 per cent
Type of Option: chosen between Call/Put

Value

Calculate the Black scholes formula value of a European Call/Put.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
stockoptiontreegui
```

bondchange \quad Calculate the change in the price of a bond for change in yield based on the duration or duration and convexity approximtion.

Description

Function to calculate change in the price of a bond for change in yield based on the duration or duration and convexity approximation.

Usage

bondchange()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 1200.50
Modified Duration: percent per annum
Convexity: percent per annum
Change in yield (in basis points): clicking on " $+/-$ " increases/decreases the yield.
Formula/Approximation: chosen between Duration/Duration and Convexity

Value

The change in the price of a bond for change in yield based on the duration or duration and convexity approximtion.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

bondchange, bonddur
bondconv Calculate the convexity of a bond.

Description

Function to calculate the convexity of a bond.

Usage

bondconv()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 1200.50
Coupon rate: percent per annum
Discount rate: percent per annum
Maturity: number of years
Note: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Coupon Payments: chosen amongst Quarterly/Semi-annual/Annual
Frequency of rates: chosen amongst continuous/same as coupon/annual

Value

Duration of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
bonddur,bondprice
```


Description

Function to calculate the duration of a bond.

Usage

bonddur()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 1200.50
Coupon rate: percent per annum
Discount rate: percent per annum
Maturity: number of years
Note: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Coupon Payments: chosen amongst Quarterly/Semi-annual/Annual
Frequency of rates: chosen amongst continuous/same as coupon/annual
Duration formula: chosen between Macaulay and Modified

Value

Duration of a bond.

Author(s)

S Subramanian <ssubramanian@ sssihl.edu.in>

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

bondchange, bondprice

Description

Function to plot a Bond Forward Tree

Usage

bondforwardtreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
Coupon: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Bond Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Forward Maturity: must be lesser than Bond Maturity. Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Bond Forward tree / Bond tree

Value

A plot of Bond Forward Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also
bondtreegui, bondfuturestreegui

Description

Function to plot a Bond Futures Tree

Usage

bondfuturestreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
Coupon: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Bond Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Futures Maturity: must be lesser than Bond Maturity. Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Bond Futures tree / Bond tree

Value

A plot of Bond Futures Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also
 bondtreegui, bondforwardtreegui

Description

Function to plot a Bond Option Tree

Usage

bondoptiontreegui()

Details

The user inputs are as follows:
Type of Option: chosen between Call/Put
Exercise style: chosen between European/American
Face Value: to be entered in numbers for e.g. 120.50
Strike price: to be entered in numbers for e.g. 110.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
Coupon: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Bond Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Option Maturity: must be lesser than Bond Maturity. Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Bond Option tree / Bond tree

Value

A plot of Bond Option Tree with user specified parameters.

Author(s)

S Subramanian <ssubramanian@ sssihl.edu.in>

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

bondtreegui
bondprice \quad Calculate the price of a bond.

Description

Function to calculate the price of a bond.

Usage

bondprice()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 1200.50
Coupon rate: percent per annum
Discount rate: percent per annum
Maturity: number of years
Note: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Coupon Payments: chosen amongst Quarterly/Semi-annual/Annual

Value

Price of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

bondchange, bonddur

Description

Function to plot a Bond Tree

Usage

bondtreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
Coupon: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Bond Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Bond tree / Rate tree

Value

A plot of Bond Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

ratetreegui

Description

Function to simulate and plot Brownian Motion path(s)

Usage

BrownianPaths()

Details

The user inputs are as follows:
Paths
Clicking on the ' + ' and '-' respectively increases and decreases the values of each of the input.

Value

A graph of Brownian Motion path(s).

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
    GBMPaths,ABMPaths
```

bullspreadcalls Profit \& Loss plot of bull spread with calls.

Description

Function to plot Profit \& Loss of bull spread with calls.

Usage

bullspreadcalls()

Details

Long call check box: checking it plots the Profit and loss of a long call position. Short call check box: checking it plots the Profit and loss of a short call position.
Profit check box: checking it plots the over all Profit and loss of a bull spread with calls.

Value

Profit \& Loss plot of bull spread with calls.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

```
See Also
    bearspreadputs,trading.menu
    butterfly Profit & Loss plot of butterfly.
```


Description

Function to plot Profit \& Loss of butterfly.

Usage

butterfly()

Details

Long call 1 check box: checking it plots the Profit and loss of a long call position. Long call 2 check box: checking it plots the Profit and loss of a long call position. Short two calls check box: checking it plots the Profit and loss of 2 short calls position. Profit check box: checking it plots the over all Profit and loss of a butterfly.

Value

Profit \& Loss plot of butterfly.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

reversebutterfly,trading.menu

```
calcgreeks
Calculate the greeks for a European Call/Put.
```


Description

Function to calculate the greeks for a European Call/Put.

Usage

calcgreeks()

Details

The user inputs are as follows:
Spot: to be entered in numbers for e.g. 120.50
Strike: to be entered in numbers for e.g. 110.50
Maturity in number of years: to be entered in decimals. For e.g. 0.25 for a quarter year
Dividend yield: to be entered in decimals. For e.g. 0.02 for 2 per cent
Type of Option: chosen between Call/Put
Greek: chosen amongst Delta, Gamma, Vega, Theta, Rho
Sigma (Volatility) per annum
Risk free rate per annum:
Clicking "+ / -" increases/decreases the value of the above two inputs.

Value

The value of the chosen greek for a European Call/Put.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

blackscholes

Description

Function to plot a Cap Tree

Usage

captreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Strike: to be entered in numbers for e.g. 110.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Coupon: to be entered in percent. For e.g. enter 5.0 for 5 percent
Cap Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Cap tree / Rate tree

Value

A plot of Cap Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

ratetreegui,floortreegui
cashprice
cashprice Calculate the Cash price of a T Bond Futures

Description

Function to calculate the Cash price of a T Bond Futures

Usage

cashprice()

Details

The user inputs are as follows:
Quoted Price: e.g. 97.8
Conv. Factor: e.g. 1.06
Acc. Interest: in dollars e.g. 3.50

Value

The Cash price of a T Bond Futures.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

```
See Also
futurescurrency,futurescommodity
```

$$
\text { cdswap } \quad \text { Calculate the spread in a credit default swap. }
$$

Description

Function to calculate the spread in a credit default swap.

Usage

cdswap()

Details

The user inputs are as follows:
Notional: to be entered in numbers for e.g. 1000000
Risk free rate: entered in decimals for e.g. 0.05 for 5 per cent
Maturity in yrs: entered for e.g. 5 for 5 years
Probability of Default: entered in decimals for e.g. 0.02 for 2 per cent
Default assumption: chosen amongst End of Q1/End of half year/End of Q3/End of Year recovery rate: Clicking on "+/-" incrases/decreases the recovery rate.

Value

The spread in a credit default swap.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

curswapvalue, cdswap
curswapvalue Calculate the value of a fixed-fixed currency swap.

Description

Function to calculate the value of a fixed-fixed currency swap.

Usage

curswapvalue()

Details

The user inputs are as follows:
Notional(Home): to be entered in numbers for e.g. 1000000
Payment rate (Home): entered in decimalsfor e.g. 0.05 for 5 per cent Interest rate (Home): entered in decimalsfor e.g. 0.05 for 5 per cent Notional(Foreign): to be entered in numbers for e.g. 1200000
Payment rate (Foreign): entered in decimals for e.g. 0.05 for 5 per cent Interest rate (Foreign): entered in decimals for e.g. 0.05 for 5 per cent
Months for first payment: enter 3 for 3 months

Spot exchange rate: units of home currency per unit of foreign currency. e.g. 1.5 dollars per pound is entered as 1.5
Frequency of spot rates: chosen amongst continuous/quarterly/semi-annual/annual
Number of periods: corresponds to settlement frequency. for e.g. if settlement frequency is chosen as semi-annual, a value of 3 (Number of periods) means three semi-annums. Settlement frequency: chosen amongst quarterly/semi-annual/annual

Value

The Value of a fixed-fixed currency swap.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

irswapvalue,cdswap

```
durcoupon
Plot the relationship between duration and coupon rate of a bond.
```


Description

Function to Plot the relationship between duration and coupon rate of a bond.

Usage

durcoupon()

Details

The user inputs are as follows:
Discount Rate (Maturity (Yrs)
Clicking on "+/-" increases/decreases the values of the above two inputs

Value

A Plot of the reltionship between duration and coupon rate of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

bondchange, bondprice
durmaturity Plot the relationship between duration and maturity of a bond.

Description

Function to Plot the relationship between duration and maturity of a bond.

Usage

durmaturity()

Details

The user inputs are as follows:
Coupon (Discount rate (or yield) (Clicking on "+/-" increases/decreases the values of the above two inputs.

Value

A Plot of the reltionship between duration and maturity of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

bondchange, bondprice

Description

Function to Plot the relationship between duration and yield of a bond.

Usage

duryield()

Details

The user inputs are as follows:
Coupon (Maturity (Yrs)
Clicking on "+/-" increases/decreases the values of the above two inputs.

Value

A Plot of the reltionship between duration and yield of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

```
See Also
    bondchange, bondprice
```

 eurodollar Calculate the value of a eurodollar futures contract price from the CME IMM Quote.

Description

Function to calculate value of a eurodollar futures contract price for notional of 1 mn from the CME IMM Quote.

Usage

eurodollar()

Details

The user inputs are as follows:
CME Quote: e.g. 97.8

Value

The value of a eurodollar futures contract price for notional of 1 mn from the CME IMM Quote.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also
futurescurrency, futurescommodity
floortreegui Plot a Floor Tree

Description

Function to plot a Floor Tree

Usage

floortreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Strike: to be entered in numbers for e.g. 110.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Coupon: to be entered in percent. For e.g. enter 5.0 for 5 percent
Floor Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Floor tree / Rate tree

Value

A plot of Floor Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

ratetreegui, captreegui
forwardcommodity Calculate the forward value of a commodity.

Description

Function to calculate the forward value of a commodity.

Usage

forwardcommodity()

Details

The user inputs are as follows:
Spot: entered in decimals. For e.g. 105.50
Risk free Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Maturity: entered in number of years. For e.g. half year is 0.5
Convenience yield: entered in decimals. e.g. enter 0.02 for 2 per cent.Storage cost(s): entered with comma separation if it is in cash and occuring at multiple times e.g. 2.50, 3.0. If it is in yield terms, it is entered in decimals. e.g. enter 0.02 for 2 per cent
Storage time(s): entered with comma separation e.g. $0.25,0.50$ for 3 months and 6 months
Type of Income: chosen between yield/cash

Value

The forward value of a commodity.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

forwardcurrency, forwardstock
forwardcurrency Calculate the forward value of a currency.

Description

Function to calculate the forward value of a currency.

Usage

forwardcurrency()

Details

The user inputs are as follows:
Spot: entered in decimals. For e.g. 105.50
Risk free Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Maturity: entered in number of years. For e.g. half year is 0.5
Foreign Interest(s): entered with comma separation if it is in cash and occuring at multiple times e.g. $2.50,3.0$. If it is in yield terms, it is entered in decimals. e.g. 0.02 for 2 per cent

Interest time(s):entered with comma separation e.g. $0.25,0.50$ for 3 months and 6 months
Type of Income: chosen between yield/cash

Value

The forward value of a currency.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

forwardstock, forwardcommodity

Description

Function to calculate the forward value of a stock.

Usage

forwardstock()

Details

The user inputs are as follows:
Spot: entered in decimals. For e.g. 105.50
Risk free Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Maturity: entered in number of years. For e.g. half year is 0.5
Dividend(s): entered with comma separation if it is in cash and occuring at multiple times e.g. 2.50, 3.0. If it is in yield terms, it is entered in decimals. e.g. 0.02 for 2 per cent

Dividend time(s):entered with comma separation e.g. $0.25,0.50$ for dividends in 3 months and 6 months
Type of Income: chosen between yield/cash

Value

The forward value of a stock.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

forwardcurrency, forwardcommodity
fra Calculate the forward rate.

Description

Function to Calculate the forward rate.

Usage

fra()

Details

The user inputs are as follows:
Months1: number of months for the loan period to begin- enter 3 for 3 months
Rate1: enter in decimals. For e.g. 5 Months2: number of months for the loan period to end- enter 6 for 6 months
Rate2: enter in decimals. For e.g. 8 Frequency of spot rates: chosen between Continuous and Loan period

Value

The forward rate of interest.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

forwardcurrency, forwardcommodity

Description

Function to Calculate value of a forward rate agreement.

Usage

fravalue()

Details

The user inputs are as follows:
Notional: enter notional value of FRA. e.g. 1 mn is entered as 1000000
Fixed Rate: enter in decimals. For e.g. 5 Fwd Rate: enter in decimals. For e.g. 8 Months1: number of months for the loan period to begin- enter 3 for 3 months
Months2: number of months for the loan period to end- enter 6 for 6 months

Value

The value of a forward rate agreement.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

fra
futurescommodity Calculate the value of a commodity futures.

Description

Function to calculate the value of a commodity futures.

Usage

futurescommodity()

Details

The user inputs are as follows:
Spot: entered in decimals. For e.g. 105.50
Risk free Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Maturity: entered in number of years. For e.g. half year is 0.5
Convenience yield: entered in decimals. e.g. 0.02 for 2 per cent.Storage cost(s): entered with comma separation if it is in cash and occuring at multiple times e.g. 2.50, 3.0. If it is in yield terms, it is entered in decimals. e.g. 0.02 for 2 per cent
Storage time(s):entered with comma separation e.g. $0.25,0.50$ for 3 months and 6 months
Type of Income: chosen between yield/cash

Value

The value of a commodity futures.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also
futurescurrency, futuresstock
futurescurrency Calculate the value of a currency futures.

Description

Function to calculate the value of a currency futures.

Usage

futurescurrency()

Details

The user inputs are as follows:
Spot: entered in decimals. For e.g. 105.50
Risk free Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Maturity: entered in number of years. For e.g. half year is 0.5
Foreign Interest(s): entered with comma separation if it is in cash and occuring at multiple times e.g. 2.50, 3.0. If it is in yield terms, it is entered in decimals. e.g. 0.02 for 2 per cent

Interest time(s):entered with comma separation e.g. $0.25,0.50$ for 3 months and 6 months Type of Income: chosen between yield/cash

Value

The value of a currency futures.

Author(s)

S Subramanian <ssubramanian@ sssihl.edu.in>

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

futuresstock, futurescommodity
futuresstock Calculate the value of a stock futures.

Description

Function to calculate the value of a stock futures.

Usage

futuresstock()

Details

The user inputs are as follows:
Spot: entered in decimals. For e.g. 105.50
Risk free Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Maturity: entered in number of years. For e.g. half year is 0.5
Dividend(s): entered with comma separation if it is in cash and occuring at multiple times e.g. 2.50, 3.0. If it is in yield terms, it is entered in decimals. e.g. 0.02 for 2 per cent

Dividend time(s):entered with comma separation e.g. $0.25,0.50$ for dividends in 3 months and 6 months
Type of Income: chosen between yield/cash

Value

The value of a stock futures.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also
futurescurrency, futurescommodity
fv
Calculate the future value of an amount.

Description

Function to calculate the future value of an amount.

Usage

fv()

Details

The user inputs are as follows:
Present Value: entered in decimals. For e.g. 105.50
Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Time: entered in number of years. For e.g. half year is 0.5
Compounding frequency: chosen amongst continuous/Quarterly/Semi-annual/Annual

Value

The future value of an amount.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

fvann, pv

Description

Function to calculate the future value of an annuity.

Usage

fvann()

Details

The user inputs are as follows:
Installment: entered in decimals. For e.g. 105.50
Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Time: entered in number of years. For e.g. half year is 0.5
Payment frequency: chosen amongst Monthly/Quarterly/Semi-annual/Annual

Value

The future value of an annuity.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

pvann,fv

GBMPaths Simulate and plot Geometric Brownian Motion path(s)

Description

Function to simulate and plot Geometric Brownian Motion path(s)

Usage

GBMPaths()

Details

The user inputs are as follows:
Drift (or mu)
Volatility(or sigma)
Paths
Clicking on the ' + ' and '-' respectively increases and decreases the values of each of the above three inputs.

Value

A plot of Geometric Brownian Motion path(s) showing the Drift rate (mu) and the Volatility (sigma).

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

ABMPaths, BrownianPaths

greekneutrality Calculate the hedge positions for achieving greek(s) neutrality for Eu-

 ropean Call/Put.
Description

Function to calculate the hedge positions for achieving greek(s) neutrality for European Call/Put.

Usage

greekneutrality()

Details

The user inputs are as follows:
Positions: entered with comma separation in case of multiple options. Short positions are entered with a '-' sign prefixed. e.g. $-1000,-500,-2000,-500$
Deltas: entered with comma separation in case of multiple options. e.g. $0.5,0.8,-0.4,0.7$
Gammas: entered with comma separation in case of multiple options. e.g. 2.2, $0.6,1.3,1.8$
Vegas: entered with comma separation in case of multiple options. e.g. 1.8, 0.2, 0.7, 1.4
Type of Neutrality desired: chosen amonst Delta, Delta and Gamma, Delta and Vega, Delta Gamma and Vega
Delta, Gamma, Vega of traded option 1: entered with comma separation in case of multiple options.
e.g. 0.6, 1.5, 0.8

Delta, Gamma, Vega of traded option 2:entered with comma separation in case of multiple options. e.g. 0.1, 0.5, 0.6

Value

Positions in the underlying or traded option(s) to achieve the desired greek neutrality

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
calcgreeks
```

GUIDE
The main menu for the GUIDE package.

Description

Function to bring up the main menu for the GUIDE package

Usage

GUIDE()

Details

Entering "GUIDE()" brings up a GUI containing the following menus:
Forwards
Futures
Options
Swaps
Stochastic Processes
Value at Risk
Bonds and
Utilities

Value

The main menu for the GUIDE package

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.
impvol Calculate the Black scholes implied volatility of a European Call/Put.

Description

Function to calculate the Black scholes implied volatility of a European Call/Put.

Usage

impvol()

Details

The user inputs are as follows:
Exercise style: chosen between European/American
Spot: to be entered in numbers for e.g. 120.50
Strike: to be entered in numbers for e.g. 110.50
Risk free rate per annum: to be entered in decimals. For e.g. 0.05 for 5 per cent
Maturity in number of years: to be entered in decimals. For e.g. 0.25 for a quarter year
Dividend yield: to be entered in decimals. For e.g. 0.02 for 2 per cent
Mkt price: to be entered in numbers for e.g. 12.50
Type of Option: chosen between Call/Put

Value

The Black scholes implied volatility of a European Call/Put.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

blackscholes

Description

Function to calculate the value of an interest rate swap.

Usage

irswapvalue()

Details

The user inputs are as follows:
Notional: to be entered in decimals for e.g. 1000000
Fixed rate: entered in decimals for e.g. 0.05 for 5 per cent
Last spot rate: entered in decimals for e.g. 0.05 for 5 per cent
Months for first payment: enter 3 for 3 months
Spot rates: enter with comma separation. e.g. $0.054,0.056,0.058$
Frequency of spot rates: chosen amongst continuous/quarterly/semi-annual/annual
Settlement frequency: chosen amongst quarterly/semi-annual/annual

Value

The Value of an interest rate swap.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

Description

Function to simulate and plot Jump Diffusion path(s)

Usage

JDPaths()

Details

The user inputs are as follows:
Drift (or mu)
Volatility(or sigma)
Mean of jumps
Std Dev of Jumps
Jump Intensity
Paths
Clicking on the ' + ' and '-' respectively increases and decreases the values of each of the above inputs.

Value

A graph of Jump Diffusion path(s) showing the parameter values.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

GBMPaths, ABMPaths

Description

Function to plot the option premium as a function of stock price/strike and time

Usage

Premium3D()

Details

The user inputs are as follows:
Type of Option: chosen between Call/Put
X-Y axis: chosen between Stock price-Time/Strike - Time sigma
Risk free rate
Clicking on the ' + ' l '-' respectively increases/decreases the values.

Value

A plot of the option premium as a function of stock price/strike and time

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

basicpayoffs

$$
\text { pricematurity } \quad \text { Plot the relationship between price and maturity of a bond. }
$$

Description

Function to Plot the relationship between price and maturity of a bond.

Usage

pricematurity()

Details

The user inputs are as follows:
Coupon rate (per cent p.a.)
Discount rate (or yield) p.a.
Moving the slider increases/decreases the values of the above two inputs.
Coupon frequency: chosen amongst quarterly, semi-annual and annual.

Value

A Plot of the reltionship between price and maturity of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

priceyield, bondprice

```
priceyield Plot the relationship between price and yield of a bond.
```


Description

Function to Plot the relationship between price and yield of a bond.

Usage

priceyield()

Details

The user inputs are as follows:
Coupon rate (per cent p.a.)
Maturity (yrs)
Moving the slider increases/decreases the values of the above two inputs.
Coupon frequency: chosen amongst quarterly, semi-annual and annual.

Value

A Plot of the reltionship between price and yield of a bond.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also
pricematurity,bondprice
pv

> Calculate the Present value of an amount.

Description

Function to calculate the Present value of an amount.

Usage

pv()

Details

The user inputs are as follows:
Future Value: entered in decimals. For e.g. 105.50
Rate: entered in decimals. For e.g. $5 \backslash$ per cent is entered as 0.05
Time: entered in number of years. For e.g. half year is 0.5
Compounding frequency: chosen amongst continuous/Quarterly/Semi-annual/Annual

Value

The Present value of an amount.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

pvann,fv

Calculate the cumulative probability corresponding to a given az value from a normal distribution.

Description

Function to calculate the cumulative probability corresponding to a given a z value from a normal distribution.

Usage

pval()

Details

The user input is as follows:
z value: A number that can be from - infinity to + infinity. E.g. - 1.65

Value

The cumulative probability from the left tail of the distribution till the given z value.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also zval pvann	Calculate the Present value of an annuity.

Description

Function to calculate the Present value of an annuity.

Usage

pvann()

Details

The user inputs are as follows:
Installment: entered in decimals. For e.g. 105.50
Rate: entered in decimals. For e.g. 5 per cent is entered as 0.05
Time: entered in number of years. For e.g. half year is 0.5
Payment frequency: chosen amongst Monthly/Quarterly/Semi-annual/Annual

Value

The Present value of an annuity.

Author(s)

S Subramanian <ssubramanian@ sssihl.edu.in>

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also
pv,fvann
rate \quad Calculate rate in the desired frequency.

Description

Function to calculate rate in the desired frequency.

Usage

rate()

Details

The user inputs are as follows:
Given frequency: chosen amongst continuous/Quarterly/Semi-annual/Annual
Required frequency: chosen amongst continuous/Quarterly/Semi-annual/Annual
Given rate: entered in decimals. For e.g. 5 per cent is entered as 0.05

Value

Rate expressed the desired frequency.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

$$
\mathrm{pv}, f v
$$

```
ratetreegui Plot a interest rate tree
```


Description

Function to plot a interest rate tree

Usage

```
ratetreegui()
```


Details

The user inputs are as follows:
Rate: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Rate tree steps: Clicking on the ' + ' and '-' respectively increases and decreases the value.

Value

A plot of interest rate tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

bondtreegui
reversebutterfly Profit \& Loss plot of reverse butterfly.

Description

Function to plot Profit \& Loss of reverse butterfly.

Usage

reversebutterfly()

Details

Short call 1 check box: checking it plots the Profit and loss of a Short call position. Short call 2 check box: checking it plots the Profit and loss of a Short call position. Long two calls check box: checking it plots the Profit and loss of 2 long calls position. Profit check box: checking it plots the over all Profit and loss of a reverse butterfly.

Value

Profit \& Loss plot of reverse butterfly.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

butterfly,trading.menu

```
reversestraddle Profit & Loss plot of reverse straddle.
```


Description

Function to plot Profit \& Loss of reversestraddle.

Usage

reversestraddle()

Details

Long Put check box: checking it plots the Profit and loss of a long put position. Long Call check box: checking it plots the Profit and loss of a long call position. Profit check box: checking it plots the over all Profit and loss of a reverse straddle.

Value

Profit \& Loss plot of reversestraddle.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
straddle,trading.menu
```

```
    reversestrangle Profit & Loss plot of reverse strangle.
```


Description

Function to plot Profit \& Loss of reversestrangle.

Usage

reversestrangle()

Details

Long Put check box: checking it plots the Profit and loss of a long put position. Long Call check box: checking it plots the Profit and loss of a long call position. Profit check box: checking it plots the over all Profit and loss of a reverse strangle.

Value

Profit \& Loss plot of reversestrangle.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
    strangle,trading.menu
```

stockoptiontreegui Plot a stock option Tree

Description

Function to plot a Binomial stock Tree

Usage

stockoptiontreegui()

Details

The user inputs are as follows:
Type of Option: chosen between Call/Put
Exercise style: chosen between European/American
Stock Price: to be entered in numbers for e.g. 120.50
Strike price: to be entered in numbers for e.g. 110.50
Time in number of years: to be entered in decimals. For e.g. 0.25 for a quarter year
Volatility(or sigma) per annum: to be entered in decimals. For e.g. 0.25 for 25 percent
Risk free rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Dividend yield: to be entered in decimals. For e.g. 0.02 for 2 percent
No of steps: Clicking on the ' + ' and '-' respectively increases and decreases the value. Plot type: chosen between Stock tree / option tree

Value

A plot of Stock Tree / Option Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

blackscholes
stockTimeGreeks
Plot of option greeks for a European Call/Put as a function of stock price and time.

Description

Function to plot of option greeks for a European Call/Put as a function of stock price and time.

Usage

stockTimeGreeks()

Details

The user inputs are as follows:
Type of Option: chosen between Call/Put
Greek: chosen amongst Delta, Gamma, Vega, Theta, Rho
Sigma (Volatility) per annum
Risk free rate per annum:
Clicking "+ / -" increases/decreases the value of the above two inputs.

Value

Plot of option greeks for a European Call/Put as a function of stock price and time.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

calcgreeks
straddle

Description

Function to plot Profit \& Loss of straddle.

Usage

straddle()

Details

Long Put check box: checking it plots the Profit and loss of a long put position.
Long Call check box: checking it plots the Profit and loss of a long call position. Profit check box: checking it plots the over all Profit and loss of a straddle.

Value

Profit \& Loss plot of straddle.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

reversestraddle,trading.menu

```
strangle Profit & Loss plot of strangle.
```


Description

Function to plot Profit \& Loss of strangle.

Usage

strangle()

Details

Long Put check box: checking it plots the Profit and loss of a long put position.
Long Call check box: checking it plots the Profit and loss of a long call position. Profit check box: checking it plots the over all Profit and loss of a strangle.

Value

Profit \& Loss plot of strangle.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

reversestrangle, trading.menu
strap Profit \& Loss plot of strap.

Description

Function to plot Profit \& Loss of strap.

Usage

strap()

Details

Two Long Calls check box: checking it plots the Profit and loss of a long put position.
Long Put check box: checking it plots the Profit and loss of a long call position.
Profit check box: checking it plots the over all Profit and loss of a strap.

Value

Profit \& Loss plot of strap.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

> strip,trading.menu
strip Profit \& Loss plot of strip.

Description

Function to plot Profit \& Loss of strip.

Usage

strip()

Details

Two Long Puts check box: checking it plots the Profit and loss of a long put position.
Long Call check box: checking it plots the Profit and loss of a long call position.
Profit check box: checking it plots the over all Profit and loss of a strip.

Value

Profit \& Loss plot of strip.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

strap, trading.menu

Description

Function to plot a Swaption Tree

Usage

swaptiontreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Strike price: to be entered in numbers for e.g. 110.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Swap Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Option Maturity: must be lesser than Swap Maturity. Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Swaption tree / Swap tree

Value

A plot of Swaption Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

bondoptiontreegui, swaptreegui

Description

Function to plot a Swap Tree

Usage

swaptreegui()

Details

The user inputs are as follows:
Face Value: to be entered in numbers for e.g. 120.50
Rate per annum: to be entered in percent. For e.g. enter 5.0 for 5 percent
u: up move factor- to be entered in decimals. For e.g. 1.25
d: down move factor- to be entered in decimals. For e.g. 0.80
q: probability of up move- to be entered in decimals. For e.g. 0.60
Fixed Rate: to be entered in percent. For e.g. 4.5 for 4.5 percent
Swap Maturity: Clicking on the ' + ' and '-' respectively increases and decreases the value.
Plot type: chosen between Swap tree / Rate tree

Value

A plot of Swap Tree with user specified parameters.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

David G. Luenberger, "Investment Science", 2/E, Oxford University Press, 2013.

See Also

ratetreegui, swaptiontreegui

Description

Function to bring up the menu for option trading strategies.

Usage

trading.menu()

Details

Brings up a menu of option trading strategies to choose from. Strategies include:
Bull spread
Bear spread
Butterfly
Reverse butterfly
Straddle
Reverse straddle
Strangle
Reverse Strangle
Strip
Strap

Making a choice plots the chosen trading strategy.

Value

A menu of various Option trading strategies.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

basicpayoffs
var1stock Calculate the value at risk of a single stock.

Description

Function to calculate the value at risk of a single stock.

Usage

var1stock()

Details

The user inputs are as follows:
Value of the stock: to be entered in numbers for e.g. 110.50
mu: the expected return- to be entered in decimals. For e.g. 0.05 for 5 per cent
Sigma (or Volatility) per annum: to be entered in decimals. For e.g. 0.25 for 25 per cent
Confidence level: to be entered in decimals. For e.g. 0.95 for 95 per cent
Horizon (in months): For e.g. enter 12 for a year
Distribution: chosen between normal/lognormal

Value

The dollar value at risk of a single stock.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
var2stocks
```


Description

Function to calculate the value at risk of two stocks.

Usage

```
    var2stocks()
```


Details

The user inputs are as follows:
Value of the first stock: to be entered in numbers for e.g. 110.50
Value of the second stock: to be entered in numbers for e.g. 170.50
mu1: the expected return- to be entered in decimals. For e.g. 0.05 for 5 per cent
mu2: the expected return- to be entered in decimals. For e.g. 0.06 for 6 per cent
Sigma1 (or Volatility) per annum: to be entered in decimals. For e.g. 0.25 for 25 per cent
Sigma2 (or Volatility) per annum: to be entered in decimals. For e.g. 0.3 for 30 per cent
Confidence level: to be entered in decimals. For e.g. 0.95 for 95 per cent
Correlation: a number between -1 and +1 to be entered in decimals. For e.g. 0.6
Horizon (in months): For e.g. enter 12 for a year
Distribution: chosen between normal/lognormal

Value

The dollar value at risk of two stocks.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
var1stock
```


Description

Function to plot the behavior of value at risk as a function of its determinants.

Usage

varbehavior()

Details

The user inputs are as follows:
weight1: The weight of stock 1
mu1: the expected return
Sigma1 (or Volatility) per annum:
mu2: the expected return
Sigma2 (or Volatility) per annum:
Clicking on "+/-" increases/decreases the values of each of the above parameters.

Value

A graph of the behavior of value at risk as a function of its determinants.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

```
var1stock,var2stocks
```


Description

Function to calculate the cumulative probability corresponding to a given a z value from a normal distribution.

Usage

zval()

Details

The user input is as follows:
z value: A number that can be from - infinity to + infinity. E.g. -1.65

Value

The cumulative probability from the left tail of the distribution till the given z value.

Author(s)

S Subramanian ssubramanian@sssihl.edu.in

References

John C. Hull, "Options, Futures, and Other Derivatives", 8/E, Prentice Hall, 2012.

See Also

pval

Index

ABMPaths, 4, 15, 34, 38
basicpayoffs, 5, 39, 54
bearspreadputs, 5, 16
blackscholes, 6, 17, 36, 47
bondchange, 7, 8, 9, 13, 22, 23
bondconv, 8
bonddur, $8,9,13$
bondforwardtreegui, 10, 11
bondfuturestreegui, 10, 11
bondoptiontreegui, 12, 52
bondprice, 8, 9, 13, 22, 23, 40, 41
bondtreegui, 10-12, 14, 44
BrownianPaths, 4, 15, 34
bullspreadcalls, 6, 15
butterfly, 16, 45
calcgreeks, 17, 35, 48
captreegui, 18, 25
cashprice, 19
cdswap, 19, 20, 21, 37
curswapvalue, 20, 20, 37
durcoupon, 21
durmaturity, 22
duryield, 23
eurodollar, 23
floortreegui, 18, 24
forwardcommodity, 25, 26-28
forwardcurrency, 26, 26, 27, 28
forwardstock, 26, 27
fra, 28, 29
fravalue, 29
futurescommodity, 19, 24, 29, 31, 32
futurescurrency, 19, 24, 30, 30, 32
futuresstock, 30, 31, 31
fv, 32, 33, 41, 44
fvann, 32, 33, 43

GBMPaths, 4, 15, 33, 38
greekneutrality, 34
GUIDE, 35
GUIDE-package, 3
impvol, 36
irswapvalue, 21, 37
JDPaths, 38
Premium3D, 39
pricematurity, 39,41
priceyield, 40, 40
pv, 32, 41, 43, 44
pval, 42, 58
pvann, 33, 41, 42
rate, 43
ratetreegui, $14,18,25,44,53$
reversebutterfly, 17,45
reversestraddle, 45,49
reversestrangle, 46, 50
stockoptiontreegui, 7, 47
stockTimeGreeks, 48
straddle, 46, 49
strangle, 47, 49
strap, 50, 51
strip, 51, 51
swaptiontreegui, 52, 53
swaptreegui, 52, 53
trading.menu, 5, 6, 16, 17, 45-47, 49-51, 54
var1stock, 55, 56, 57
var2stocks, 55, 56, 57
varbehavior, 57
zval, 42, 58

