
GaSP: Train and Apply a Gaussian Stochastic Process Model

Yilin Yang and William J. Welch

2022-01-17

1. Introduction
Controlled physical experiments for complex phenomena may be expensive and time-consuming or, in some
cases, impossible. Thus, the need for computer models to emulate such physical systems arises. Generally,
computer experiments using statistical models will take a vector of d inputs x and produce a corresponding
scalar output response y(x). One distinction from physical experiments is that computer experiments may be
deterministic: the same set of inputs will generate the same results. Hence there is need for special statistical
methods.

Among these models is the popular model archetype called a Gaussian Stochastic Process (GaSP) or simply a
Gaussian Process (GP). The core components are the mean function µ(x), the zero-mean stochastic process
Z(x), and an optional random error ε (absent if y(x) is deterministic). The stochastic process will have a
correlation function denoted as R(x,x′), it quantifies the relationship of the two response variables y and y′
from the inputs x and x′. The objective of package GaSP is to train a GaSP model via maximum likelihood
estimation (MLE) or maximum a posteriori (MAP) estimation, run model diagnostics, and make predictions
following Sacks et al. (1989). It can also perform sensitivity analysis and visualize low-order effects following
Schonlau and Welch (2006).

The regression model is fairly flexible as defined by a model formula, and GaSP implements two popular
correlation function families for the stochastic process: the Matérn and the power-exponential families.
These families will be detailed in Section 3.3, but we note that the smoothness can be optimized in both
cases. Following the prediction method described in Sacks et al. (1989), GaSP uses the “plug-in” estimated
parameters obtained from the fitting method to calculate the best linear unbiased predictor of the response
at any untried input vector x along with a standard error. Leave-one-out cross-validated predictions are also
available along with many model diagnostic plots such as residual plots, standardized residual plots, and
normal Q-Q plots for both CV and out-of-sample predictions.

For sensitivity analysis and visualization of low-order effects, GaSP has the capability to perform functional
analysis of variance (FANOVA) decomposition and plot estimated main and two-factor joint effects. This will
be detailed in Section 9.

The package has little R overhead: all computationally intense matrix calculations are coded in C for efficiency.

This vignette aims to explain how to utilize GaSP in a research setting and help users to interpret the results.
The authors have inevitably made implementation choices, some different from other packages, and those
details need to be emphasized. The vignette will be divided into sections that follow the standard workflow
order. Each section will feature code examples, interpretation of the results, and implementation details. Use
help(package = GaSP) in R to access the full documentation.

2. Data Setup
GaSP uses training data passed in by two arguments:

• x is a dataframe containing n runs in the rows and the values of d input variables in the columns;

1

• y is a vector or dataframe containing the corresponding n values of a single output variable in the rows.

A matrix type is also allowed instead of a dataframe.

We will use the borehole data provided in GaSP for the data setup as follows:

library(GaSP)
x <- borehole$x
y <- borehole$y
x_pred <- borehole$x_pred
y_true <- borehole$y_true

If we look at the first three rows of inputs in x and the corresponding outputs in y

head(borehole$x, n = 3)
rw r Tu Hu Tl Hl L Kw

1 0.0730769 14174.34 64416.92 1057.692 116.00000 733.8461 1191.795 12045.00
2 0.0961539 6497.43 112906.16 1048.461 98.36668 813.8462 1421.539 11595.77
3 0.0935897 38484.63 107518.47 1066.923 106.50514 798.4616 1148.718 11090.39
head(borehole$y, n = 3)

y
1 54.75499
2 55.35180
3 70.95713

we see that the variables in x are on the original scales of the application. For the user’s convenience and
scientific interpretability (especially in plots), the columns of x need not be scaled by the user to [0, 1].
Similarly, y need not be rescaled to have, say, mean zero or standard deviation 1. Where necessary, GaSP will
perform scaling internally but report back results on the original scales.

For brevity, unless otherwise stated, x and y will be refer to borehole$x and borehole$y in further examples
of this vignette.

Similarly, x_pred is a dataset of the inputs for untried runs where we want to predict y, and y_true contains
true values for benchmarking of prediction accuracy; x_pred and y_true are set up analogously to x and y.
For more details of the borehole function, please refer to the website in the citations by Surjanovic and
Bingham (2013).

Currently GaSP does not handle missing values. If one or more inputs or the response is missing from an
observation, that observation should be deleted.

3. GaSP Model Formulation
GaSP functions communicate through what we call a GaSPModel object, because it can be generated by the
function GaSPModel. It contains the model formulation as well as quantities computed by GaSP. The function
GaSPModel is described further in Section 4, but often the user will rely on Fit in Section 5 to implicitly create
the same object from the model specification, along with parameter estimates. Either way, the components
of the model need to be defined; their descriptions in this section will also help interpretation of the model
parameters and their estimates.

3.1 GaSP model components
Following the approach of Sacks et al. (1989), GaSP treats observations of an unknown function Y (x) as
arising from the data model

Y (x) = µ(x) + Z(x) + ε.

2

It comprises a mean function µ(x), a Gaussian stochastic process Z(x) and an optional random error ε. The
random error term is in principle absent for evaluations of a deterministic function, as from a computer
experiment, but even here we need to think of a random function Y (x) to provide a framework for quantifying
uncertainty about the value of the function where it has not been observed. We now explain the details of
the model components; those details will aid the interpretation of parameter estimates, etc.

3.2 Mean (regression) function
We can write the mean (regression) function as:

µ(x) =
k∑
j=1

βjfj(x)

Here, the βj are unknown linear model regression coefficients to be estimated by GaSP, and the fj(x) are
user-defined functions. In a GaSPModel, the mean function formula is specified by parameter reg_model
using syntax that is similar to the formula parameter in say lm(). There is a restriction, however, to only
polynomial models, i.e., powers of the inputs and interaction terms.

The simplest model is a constant regression µ(x) = β11 = β1, i.e., k = 1 and f1(x) = 1, where GaSP functions
would have the argument

reg_model = ~ 1

Note first that the formula has no left-hand side, like in y ~ 1: the response variable is always the single
variable appearing in the training data, say borehole$y. Secondly, while this simple model often works well,
as demonstrated by Chen et al. (2016), and is very widely used, it is not a default. The regression model
must always be specified.

As a slightly more complicated illustration, a regression model with first-order terms in the first three
borehole inputs, plus a constant or intercept, is given by

reg_model_first = ~ 1 + r + rw + Tu

and passed to functions via reg_model = reg_model_first. Mathematically, we can express this model as:

µ(x) = β1 + β2xr + β3xrw + β4xTu

A more complicated model such as

reg_model_bizarre <- ~ 1 + (r + rw + Tu)ˆ2 + I(Huˆ2)

could also be passed to the reg_model argument. Mathematically, the regression model is

µ(x) = β1 + β2xr + β3xrw + β4xTu + β5x
2
r + β6x

2
rw + β7x

2
Tu + β8xrxrw + β9xrxTu + β10xrwxTu + β11x

2
Hu

which is bizarre and definitely not recommended but demonstrates the flexibility. As usual, Huˆ2 has to be
protected by I().

3.3 Stochastic process component
The random process Z(x) is assumed to have mean zero, variance σ2

Z , and correlation function R(x,x′) for
the correlation between Z(x) and Z(x′) at any two input vectors x and x′. The correlation structure is
important in predicting at untried inputs not in the training data.

3

Mathematically, GaSP uses a so-called product correlation structure,

R(x,x′) =
d∏
j=1

Rj(hj),

where the product is over the d inputs, hj = |xj − x′j | is a distance in the input j dimension, and Rj(hj) is a
correlation function on [0, 1]

We next show that the variables called xj here can be derived from the original inputs, before moving on to
the important topic of the choice of correlation function.

The variables in the stochastic process component are specified by the parameter sp_model. The default
sp_model = NULL uses in the above product all of the orginal inputs xj appearing in the training data, and
the user does not need to do anything in this typical case. If for some reason in the borehole application the
sp_model argument is say

sp_model = ~ r + rw + Tu

then the product would only be over the inputs r, rw and Tu. Note there is no constant term in sp_model as
the correlation function works on differences, and a constant cancels; a warning would be generated but there
is no need for alarm. Note also that different variables or derived variables can appear in the regression and
stochastic-process components.

Similar to reg_model, powers and interaction terms are allowed. For example, a set of variables in the
stochastic process component of the model could be specified by

sp_model_bizarre = ~ (r + rw + Tu)ˆ2 + I(Huˆ2)

whereupon the variables

xr, xrw, xTu, x
2
r , x

2
rw, x

2
Tu, xrxrw, xrxTu, xrwxTu, x

2
Hu

are the 10 “inputs” used in the correlation function. Again, the choice here is not recommended but shows
the flexibility.

Next we describe the two families of correlation functions implemented by GaSP for the Rj(·) in the product
correlation structure.

• Power-exponential. We parameterize the power-exponential correlation function as

Rj(hj) = exp(−θjh2−αj

j).

Here Rj(hj) depends on a distance-scale parameter θj ≥ 0, controlling the rate of correlation decay as
the distance hj (from xj) increases. Different from some other packages, θj is in the numerator. Thus
θj = 0 implies perfect correlation, making xj an inactive input. The smoothness parameter 0 ≤ αj ≤ 1
defines the power as 2− αj , and again the specification is different from some other implementations.
Hence, αj = 0 gives the extremely smooth squared-exponential (Gaussian) special case. Similarly,
αj = 1 gives the special case known as the exponential correlation. Power-exponential is a generalization
of these special cases and is much more flexible, though we will also describle later how to impose such
special cases. Subject to any user constraints, GaSP will estimate the θj and αj parameters separately
for each input for a so-called anisotropic correlation function.

• Matérn. The parameterization of the Matérn correlation function follows Chen et al. (2016) and allows
four discrete levels of smoothness controlled by the parameter δj , which is the number of derivatives:

Rj(hj) =

exp(−θjhj) for δj = 0 (the exponential correlation)
exp(−θjhj)(θjhj + 1) for δj = 1
exp(−θjhj)((θjhj)2/3 + θjhj + 1) for δj = 2
exp(−θjh2

j) for δj →∞ (the squared-exponential correlation)

4

In GaSP, δ is called Derivatives taking values 0, 1, 2, or 3, with δj →∞ coded as 3. The setup here
implies that θj has the same interpretation for the exponential and squared-exponential special cases
common to the power-expontential and Matérn families. Similar to the power-exponential case, GaSP
will fit the θj and δj parameters separately for each input, though the user is again allowed to constrain
their ranges, for example restricting to exactly one or two derivatives, as is sometimes done.

GaSP stores the values of the correlation parameters in a dataframe named cor_par with one row for each
term in the stochastic process model and two columns. The first column is named Theta, and the second is
either Alpha for the power-exponential case or Derivatives for the Matérn case.

3.4 Random error component
The random error term ε is independent “white noise” with variance σ2

ε . Its main purpose is to represent
genuine measurement error, but it is also sometimes used for computational stability as a so-called “nugget”
term even when the input-output relationship is deterministic.

To understand the (possibly confusing) interplay of the two distinct roles of the random error term, it is
helpful to know how GaSP handles variance parameters internally. Let σ2 = σ2

Z + σ2
ε be the total variance,

and let γ = σ2
Z/σ

2 be the proportion of the total variance due to the stochastic process. Internally GaSP
optimizes σ2 and γ but reports back σ2

Z = γσ2 and σ2
ε = (1− γ)σ2 as sp_var and error_var, respectively.

For computational stability, the user argument nugget taking values in [0, 1] is available to provide a ceiling
on γ: for example, the default nugget = 1e-9 means that γ cannot exceed 1− 10−9. Thus, no correlation
can exceed that ceiling, ruling out correlations of 1 and singular matrices. (In practice, GaSP has few problems
with ill-conditioning even with zero nugget: warnings may be issued but the final result is rarely an error
flag.)

The boolean argument random_error indicates whether GaSP should optimize γ and hence estimate a genuine
σ2
ε = (1 − γ)σ2. If the user passes random_error = TRUE, γ is optimized subject to not exceeding the

complement of nugget as above.

Thus, we can think of four combinations of random_error (TRUE / FALSE) and nugget (zero and non-zero).

• random_error = FALSE and nugget = 0: the estimate of the proportion of the total variance due to
the stochastic process will be 1, i.e., the pure deterministic model with only σ2 = σ2

Z to be estimated.
• random_error = FALSE and nugget > 0: the proportion of the total variance due to the stochastic

process is fixed at 1− nugget, usually to represent a deterministic model with a small amount of random
error for numerical stability.

• random_error = TRUE and nugget = 0: the estimate of the proportion of the total variance due to
the stochastic process versus random error will be unbounded between 0 and 1 during optimization, i.e.,
the ‘noisy data’ model where σ2

Z and σ2
ε are both estimated without any restriction.

• random_error = TRUE and nugget > 0: again both variances are estimated but the proportion of the
total variance due to the stochastic process will be upper bounded by 1− nugget during optimization.

It should be noted that when random_error = FALSE and nugget > 0, the resulting error variance error_var
will be greater than 0, and we have a contradiction as random_error = FALSE assumes error_var = 0. For
consistency with Fit, functions such as Predict that require a GaSPModel object as input will generate a
warning that GaSP is assuming random_error = TRUE in these cases. There is no need to be alarmed, as
these functions simply will use random_error = TRUE instead; the values of sp_var and error_var passed
in will not be changed by the function.

4. GaSPModel object
After setting up our data and deciding on a model, GaSP provides two options to obtain a GaSPModel object:
Fit and GaSPModel. Fit returns such an object with the model parameters trained via the MLE or MAP
methods detailed in Section 5. Alternatively, the user can specify the model’s parameters directly, perhaps

5

taking the results of another package, with the function GaSPModel. Either way the object is needed as input
to the GaSP functions Predict, CrossValidate, and Visualize.

A GaSPModel object must have the following components:

• x and y: the input (explanatory variable) training data and output (response) training data.
• reg_model and sp_model: respectively the regression model and an optional stochastic process model,

as specified in Sections 3.2 and 3.3.
• cor_family and cor_par: respectively the correlation family and the data frame containing the

correlation parameters, as specified in Section 3.3.
• random_error, sp_var and error_var: respectively the boolean to indicate presence of a random error

term, the stochastic process variance, and the random error variance, as described in Section 3.4.

The following additional components are optional (and generated by Fit) in the sense that Predict,
CrossValidate and Visualize will ignore the user’s values (and compute them from scratch if necessary):

• beta: the regression parameters βj for the mean function in Section 3.2.
• objective, cond_num and CVRMSE: diagnostics from Fit, which are respectively the maximum objective

found, the condition number of the matrix calculations, and the model’s cross-validated root mean
squared error (see Section 5).

To illustrate how the user can directly create a GaSPModel object:

theta <- c(
5.767699e+01, 0.000000e+00, 0.000000e+00, 1.433571e-06,
0.000000e+00, 2.366557e-06, 1.695619e-07, 2.454376e-09

)
alpha <- c(
1.110223e-16, 0.000000e+00, 0.000000e+00, 0.000000e+00,
0.000000e+00, 0.000000e+00, 2.494862e-03, 0.000000e+00

)
cor_par <- data.frame(Theta = theta, Alpha = alpha)
rownames(cor_par) <- colnames(borehole$x)
sp_var <- 38783.7
borehole_gasp <- GaSPModel(
x = x, y = y,
reg_model = ~1, cor_family = "PowerExponential",
cor_par = cor_par, random_error = FALSE,
sp_var = sp_var

)

The behavior of defaults is the same as with Fit in Section 5. Here the cor_family will default to
"PowerExponential", and sp_model will by default use all variables in x. However, it should be noted that
sp_var needs to be specified, and error_var will also require specification when random_error = FALSE.
Note also that cor_par takes its row names for the variables in the stochastic process model from the column
names of x, because of the use of default stochastic process model here. In general the row names of cor_par
should match the terms implied by sp_mod, so that the results are easy to interpret. GaSP makes several
compatibility checks of this kind, and issues helpful warning/error messages if there is a problem. Despite the
plethora of parameter checks, GaSP has no way of knowing if the parameters will generate a good, stable
result, and it is up to the user to ensure the values generate the desired model.

5. Fit
Following the methods introduced by Sacks et al. (1989), in GaSP we specify the objective that Fit at-
tempts to maximize by setting fit_objective to "Likelihood" for maximum likelihood estimation (MLE).
Alternatively, fit_objective = "Posterior" for Bayesian maximum a posteriori (MAP) estimation.

6

5.1 Maximum likelihood estimation
To train a model via MLE we can run Fit as in the following example:

borehole_fit <- Fit(
reg_model = ~1, x = x, y = y, cor_family = "PowerExponential",
random_error = TRUE, fit_objective = "Likelihood", model_comparison = "Objective"

)

Here x = x refers to the borehole x in Section 2, and similarly for y. We choose the power-exponential
correlation family with random error and the default nugget value. The parameter model_comparison is
the criterion used to select from multiple solutions when there are multiple optimization tries from different
starting points: either the objective function used in optimization "Objective" or leave-one-out cross
validation "CV". With MLE the objective function is the profile log likelihood:

−n2 ln(2π)− n

2 ln(σ̂2)− 1
2 ln(det(R))− n

2

We operate on the log-scale for numerical stability.

In the profile log likelihood,
σ̂2 = 1

n
(y− Fβ̂)TR−1(y− Fβ̂)

is the generalized least squares estimate of the total variance σ2 in Section 3.4, which is available in closed
form. The correlation parameters have to be numerically optimized, however. As well as the parameters in
cor_par, if random_error = TRUE then γ in Section 3.4 is another correlation parameter to be simultaneously
optimized. When Fit terminates it reports back

σ̂2
Z = γ

n
(y− Fβ̂)TR−1(y− Fβ̂)

and
σ̂2
ε = (1− γ)

n
(y− Fβ̂)TR−1(y− Fβ̂)

as sp_var and error_var, respectively.

Fit returns a GaSPModel class object, to be used in further calculations.

5.2 Maximum a posteriori (MAP) estimation
MAP estimation is chosen via fit_objective = "Posterior", e.g.,

borehole_fit <- Fit(
reg_model = ~1, x = x, y = y, cor_family = "Matern",
random_error = FALSE, nugget = 0, fit_objective = "Posterior"

)

Again, it is actually the log of the profile objective, now the posterior, that is numerically maximized:

λ
∑
j

θj −
n− k

2 ln(σ̂2)− 1
2 ln(det(R))− 1

2 ln(det((FTR−1F))).

This expression differs from the profile log likelihood in several ways. First, independent exponential priors
with rate parameter λ on each correlation parameter θj give the term λ

∑
j θj . The user can set λ via

lambda_prior, which takes the default 0.1 here. (The same λ applies to all correlation parameters θj , and
this is the only place where the scaling of the inputs and hence the θj matters.) Secondly, independent

7

limiting constant priors for the linear model regression coefficients βj and a Jeffery’s prior for σ2 proportional
to 1/σ2 generate a degrees of freedom adjustment

σ̂2 = 1
n− k

(y− Fβ̂)TR−1(y− Fβ̂)

in the MAP estimate of σ2 as well as the multiplier (n − k)/2 in the log profile; see Handcock and Stein
(1993).

The example also specifies the Matérn correlation family via cor_family = "Matern", a choice that could
also be made for MLE.

5.3 Further details of Fit
In both estimation methods we did not address two parameters log_obj_tol and log_obj_diff as they
relate to details of the optimization process. Here are their definitions:

• log_obj_tol: An absolute tolerance for terminating the maximization of the log of the objective. It is
the stopping criterion for Fit.

• log_obj_diff: The default value is 0 and will have no effect on the maximization. However, if set
to a value greater than 0, during iterations of the optimization an informal hypothesis test of θj = 0
is repeatedly carried out to try to simplify the model. The test compares the difference in the log
objective with and without the hypothesis imposed against log_obj_diff.

In summary, here are all the parameters for Fit that always need to be specified.

• x and y: the user has to specify the training data.
• reg_model: the user has to specify the mean function.
• random_error: the user has to specify whether there is random error.

In contrast, most parameters for Fit have defaults.

• sp_model: the default is NULL and all variables in x will be used.
• cor_family: the default is "PowerExponential".
• cor_par: user-specified starting values for the first try to maximize the objective; the default empty

dataframe simply communicates to the optimizer that Fit always generates its own starting values.
• sp_var and error_var: user-specified starting values for the first try to maximize the objective; the

defaults of −1, which are clearly illegal for variances, communicate to the optimizer that Fit always
generates its own starting values. Note the values are not used at all if random_error = FALSE.

• nugget: the default for the random error nugget is 1e-9.
• tries: the number of tries to optimize the objective from different starts; the default is 10.
• seed: the default for the random seed number is 500.
• fit_objective: the default is "Likelihood".
• theta_standardized_min and theta_standardized_max: the lower and upper bound on each θj ,

standardized for the scale of the corresponding stochastic-process term. They take the defaults 0 and
∞, respectively.

• alpha_min and alpha_max: the lower and upper bound on each αj in the power-exponential correlation
family, with defaults 0 and 1.

• derivatives_min and derivatives_max: These are the ranges for the number of derivative in the
Matérn correlation family, with defaults 0 (no derivatives) and 3 (a code for the infinitely differentiable
squared-exponential).

• log_obj_tol: the default is 1e-5.
• log_obj_diff: the default is 0 (no attempt to simplify the model).
• lambda_prior: the default is 0.1.
• model_comparison: the default is "Objective".

One parameter often manipulated is alpha_max: setting it to zero will give the squared-exponential correlation
family. Similarly, the Matérn correlation function with 2 derivatives, another popular choice, is specified by
cor_family = "Matern", derivatives_min = 2 and derivatives_max = 2.

8

This list is just to get a general idea of why many variables are not specified in our examples. Furthermore,
GaSP performs thorough parameter checks, for example:

borehole_fit <- Fit(x = x, y = y,
reg_model = ~ 1 + a, sp_model = ~ 1 + r, random_error = FALSE

)
Warning: intercept term in 'sp_model' will not be used.
Error:
1: components of 'reg_model' terms must be column names in 'x'.

The error occurs bcecause a is not a variable in the (borehole) inputs x.

Warnings will be printed as soon as one is detected, and Errors will be compiled into a list before quitting
gracefully.

As stated in Section 4, Fit will generate a GaSPModel object with some summaries from the optimization:

• objective: the maximum value found for the objective function, i.e., the log likelihood for
fit_objective = "Likelihood" or the log posterior for fit_objective = "Posterior".

• cond_num: the worst condition number arising in the matrix calculations for the returned object.
• CVRMSE: The leave-one-out cross-validation root mean squared error.

To see the values of these parameters, or any parameter of a GaSPModel object, use the $ symbol, e.g.,
borehole_fit$cor_par to access the estimated correlation parameters. The user can also type borehole_fit
to print the whole object on the console.

Sometimes the R console will print an error matrix with the header: “The following warning/error messages
were generated:”. This matrix is feedback generated by the underlying C code. There is no need for alarm as
long as there are no errors (just warnings).

6 Predict
We can use a trained GaSPModel to predict the response y(x′) for untried input vectors x′ in a test set.
Specifically, we can obtain the estimated predictive means (or best linear unbiased predictors) and the
predictive variances, with the latter incorporating the uncertainty inherent in a GaSP model because it is
a stochastic process, as well as that from estimating the coefficients β. Uncertainty from estimating the
correlation parameters is not included, however. For the details of the derivation refer to Sacks et al. (1989).

We illustrate Predict using the first three rows of the borehole x_pred data frame and the true response
values y_true (see Section 2):

head(borehole$x_pred, n = 3)
rw r Tu Hu Tl Hl L Kw

1 0.1266540 4737.606 71057.92 1075.227 105.06737 781.0703 1316.775 10763.67
2 0.1345655 31551.870 113416.59 1085.278 109.88709 761.2122 1527.622 10303.86
3 0.1427761 18935.703 103624.42 1073.503 71.53184 783.3706 1414.381 12044.93
head(borehole$y_true, n = 3)

y
1 120.3835
2 123.4973
3 155.9978

We apply the Predict function as follows:

borehole_pred <- Predict(
GaSP_model = borehole_gasp,

9

x_pred = x_pred,
generate_coefficients = TRUE

)

Here, borehole_gasp is from the GaSPModel function in Section 4, but use of the Predict function is the
same for GaSPModel objects generated by either the MLE and MAP training methods. The first three rows
of the resulting y_pred data frame are:

head(borehole_pred$y_pred, n = 3)
Pred SE

1 119.6256 0.2442234
2 123.5648 0.7313592
3 156.4542 1.1220239

It can be seen that the estimated predictive means (Pred) match the true response values in y_true fairly
well. For the MLE method, a prediction follows a normal distribution with the given predictive mean and
estimated standard deviation (SE), whereas for the MAP method the prediction will follow a t-distribution
instead. Both these results are conditional on the correlation parameters, i.e., their fitted values are taken as
true.

generate_coefficients is an option for generating a vector of prediction coefficients pred_coeffs. They
can be used as follows. Let c denote the coefficients and let r denote a vector with element i containing
the correlation between the output at a given new point and the output at training point i. Then the
prediction of the output at the new point is the dot product of c and r. The vector c is obtained as
borehole_pred$pred_coeffs here.

7 CrossValidate
We can apply the CrossValidate function to a GaSPModel object as follows:

borehole_cv <- CrossValidate(borehole_gasp)
head(borehole_cv, n = 3)

Pred SE
1 54.61808 1.0232074
2 55.01855 0.7859013
3 71.42804 0.7572146

It computes a “fast” version of leave-one-out cross-validation where the correlation parameters are not
re-optimized every time a training observation is removed. The output is similar to that of Predict: cross-
validated predictions and standard errors are in the columns Pred and SE. The first three predictions track
well the training data shown in Section 2.

8 Plots and diagnostics for Predict and CrossValidate
One of the main strengths of GaSP is its wide variety of plots. Here we introduce diagnostics based on
Predict and CrossValidate:

• PlotPredictions: plot the true output (response) versus predictions generated by Predict or
CrossValidate.

• PlotResiduals: plot residuals versus each input variable.
• PlotStdResiduals: plot the standardized residuals versus predictions made by Predict or

CrossValidate. Here, a standardized residual is the residual divided by an estimate of its standard
deviation.

10

• PlotQQ: make a normal Q-Q plot of the standardized residuals of predictions from Predict or
CrossValidate.

The same plotting functions are used for predictions from Predict or CrossValidate, with slight differences
in the setup as described in the following two sections.

8.1 Plots for Predict
Here we showcase plots from Predict results:

PlotPredictions(borehole_pred$y_pred, y_true,
y_name = "Water Flow Rate", y_units = "mˆ3/yr", title = "Predict")

PlotStdResiduals(borehole_pred$y_pred, y_true,
y_name = "Water Flow Rate", y_units = "mˆ3/yr", title = "Predict")

50 100 150 200

50
10

0
15

0
20

0

Predicted Water Flow Rate (m^3/yr)

W
at

er
 F

lo
w

 R
at

e
(m

^3
/y

r)

True Water Flow Rate versus prediction

50 100 150 200

−
4

−
2

0
2

4

Predicted Water Flow Rate (m^3/yr)

S
ta

nd
ar

di
ze

d
re

si
du

al

Water Flow Rate standardized residual versus prediction

PlotResiduals(x_pred[, 1:4], borehole_pred$y_pred,
y_true, y_name = "Water Flow Rate", y_units = "mˆ3/yr")

0.06 0.08 0.10 0.12 0.14

−
2

−
1

0
1

2
3

4

rw

W
at

er
 F

lo
w

 R
at

e
re

si
du

al
 (

m
^3

/y
r)

Water Flow Rate residual versus rw

0 10000 20000 30000 40000 50000

−
2

−
1

0
1

2
3

4

r

W
at

er
 F

lo
w

 R
at

e
re

si
du

al
 (

m
^3

/y
r)

Water Flow Rate residual versus r

11

70000 80000 90000 100000 110000

−
2

−
1

0
1

2
3

4

Tu

W
at

er
 F

lo
w

 R
at

e
re

si
du

al
 (

m
^3

/y
r)

Water Flow Rate residual versus Tu

1000 1020 1040 1060 1080 1100

−
2

−
1

0
1

2
3

4

Hu

W
at

er
 F

lo
w

 R
at

e
re

si
du

al
 (

m
^3

/y
r)

Water Flow Rate residual versus Hu

PlotQQ(borehole_pred$y_pred, y_true, y_name = "Water Flow Rate")

−4 −2 0 2 4

−
4

−
2

0
2

4

Normal Q−Q Plot

Standard normal quantile

W
at

er
 F

lo
w

 R
at

e
st

an
da

rd
iz

ed
 r

es
id

ua
l

Note that we need to specify the y_pred component from the borehole_pred object returned by Predict. A
value for the title parameter is mandatory ("Predict", "CrossValidate", or "") for the first two functions
to distinguish the possible purposes. The call to PlotResiduals passes only the first four columns of x_pred
here just to reduce plotting space; usually, all input columns would be of interest. The parameters y_name
and y_units are only used for label construction in all these functions and do not need to be specified.

8.2 Plots for CrossValidate
The plots for predictions from CrossValidate are similar to those for Predict, and we therefore just give
the syntax without showing the plots:

PlotPredictions(borehole_cv, y,
y_name = "Water Flow Rate", y_units = "mˆ3/yr", title = "CrossValidate")

PlotStdResiduals(borehole_cv, y,
y_name = "Water Flow Rate", y_units = "mˆ3/yr", title = "CrossValidate")

PlotResiduals(x, borehole_cv, y, y_name = "Water Flow Rate", y_units = "mˆ3/yr")
PlotQQ(borehole_cv, y, y_name = "Water Flow Rate")

Here borehole_cv can be directly used, as it is a data frame like borehole_pred$y_pred. And naturally for
cross validation, we have y instead of y_true.

12

8.3 RMSE
We also provide a function RMSE that calculates the root mean squared error (RMSE) of prediction or the
normalized RMSE. The RMSE formula we use is√∑n

i=1(yi − ŷi)2

n
,

whereas the normalized version is √∑n
i=1(yi − ŷi)2

n

/√∑n
i=1(yi − ȳ)2

n
,

i.e., relative to the sample standard deviation.
Here, n could be the size of the training data (the ŷi are from CrossValidate) or the size of a test set (the
ŷi are from Predict).

For instance,

RMSE(borehole_predy_predPred, y_true, normalized = FALSE)
[1] 0.7824142
RMSE(borehole_predy_predPred, y_true, normalized = TRUE)
[1] 0.01738657

shows that the RMSE is small relative to the variability in the test data.

9. Visualize
Following Schonlau and Welch (2006), GaSP performs an analysis of variance (ANOVA) decomposition of
the total function variability into contributions from main effects and 2-factor interactions, to assess how
sensitive the response is to individual inputs and low-order effects. Furthermore, it can generate plotting
coordinates to visualize the estimated main and 2-factor joint effects. As detailed by Schonlau and Welch
(2006), the low-order effect of one or two inputs is obtained by integrating out all the other inputs. Hence,
GaSP needs ranges of integration for all input variables. Optionally, integration over a continuous range for
a given input can be replaced by summation over a grid. The first task, therefore, is to describe the input
variables via DescribeX.

9.1 DecribeX
The user must give the input names, as well as their minima and maxima. For the borehole application we
can set up the usual engineering ranges:

borehole_x_names <- colnames(x)
borehole_min <- c(0.05, 100.00, 63070.00, 990.00, 63.10, 700.00, 1120.00, 9855.00)
borehole_max <- c(0.15, 50000.00, 115600.00, 1110.00, 116.00, 820.00, 1680.00, 12045.00)
borehole_x_desc <- DescribeX(borehole_x_names, borehole_min, borehole_max)

The result is a data frame that combines these vectors:

borehole_x_desc
Variable Min Max

1 rw 0.05 0.15
2 r 100.00 50000.00
3 Tu 63070.00 115600.00
4 Hu 990.00 1110.00

13

5 Tl 63.10 116.00
6 Hl 700.00 820.00
7 L 1120.00 1680.00
8 Kw 9855.00 12045.00

Optionally, we can include three further vectors:

• support: A vector of strings for additional description of the input-variable domains. Valid strings for
the elements are:
– "Continuous" to indicate the input is continuous over its range. This is the default assumption

for all variables.
– "Fixed" to indicates the input has a range of 0, i.e., its x_min must equal its x_max.
– "Grid" to indicate a discrete grid for the variable, which requires the next argument.

• num_levels: A vector of integers for the number of levels of each input. It must be present if the
support argument includes at least one instance of "Grid". Set an input’s number of levels to 0 if it is
"Continuous", 1 if it is "Fixed", or to the appropriate number > 1 if it is "Grid" to define an equally
spaced grid inclusive of the input’s x_min and x_max.

• distribution: A vector of strings to define the weight distributions of the input variables. Valid
strings are "Uniform" or "Normal", which will be ignored for “Fixed” inputs. The default is "Uniform"
for all variables.

For the default behavior, GaSP will perform continuos integration on all variables with respect to uniform
weight. When distribution is normal, automatically the mean is the middle of the range, and the standard
deviation is 1/6 of the range.

9.2 Visualize
Here, we perform Visualize on borehole with the default input descriptions:

borehole_vis <- Visualize(borehole_gasp, borehole_x_desc)

Visualize returns a list with three components: anova_percent, main_effect, and joint_effect. These
are respectively the ANOVA percentages, the plotting coordinates for the main effects, and the coordinates
for the joint effects.

The ANOVA percentages are estimates of the relative importances of low-order effects. For instance,

head(borehole_vis$anova_percent, n = 3)
y

rw 82.87164
r 0.00000
Tu 0.00000
tail(borehole_vis$anova_percent, n = 3)

y
Hl:L 0.058709174
Hl:Kw 0.003898361
L:Kw 0.022251103

shows that input rw by itself accounts for 82.9% of the variability of the estimated prediction function over
the entire 8-dimensional input space, whereas r as a main effect accounts for 0%. Interaction effects between
two factors at a time typically have small contributions, and we see that the estimated interaction between L
and Kw (denoted L:Kw) accounts for only 0.02% of the total variation.

The data frames main_effect and joint_effect can be quite large. Thus we can add two parameters
main_percent and interaction_percent to output results only for main and joint effects that have ANOVA

14

percentages greater than these thresholds. Here we set main_percent = 1 and interaction_percent = 1:

borehole_vis <- Visualize(borehole_gasp, borehole_x_desc,
main_percent = 1, interaction_percent = 1)

The main effect and joint effect data frames will look like the following:

head(borehole_vis$main_effect, n = 3)
Variable.x_i x_i y SE

1 rw 0.05 18.42223 0.5062615
2 rw 0.06 25.76570 0.2033376
3 rw 0.07 35.06013 0.1725205
head(borehole_vis$joint_effect, n = 3)
Variable.x_i Variable.x_j x_i x_j y SE

1 rw Hu 0.05 990 14.87616 1.0059070
2 rw Hu 0.05 1002 15.41472 0.7806689
3 rw Hu 0.05 1014 16.01475 0.6337129

where the first three rows are the first three plotting coordinates for the main effect of rw or the joint effect
of rw and Hu, respectively. Typically the user will be uninterested in these large dataframes of plotting
coordinates. Rather, they are plotted by special functions in the next section.

9.3 Plots for Visualize
GaSP also provides plotting functions for main effects and joint effects from Visualize:

• PlotMainEffects: Using the coordinates given by Visualize, we can generate main effect plots, with
each plot showing an estimated main effect (red solid line) and point-wise approximate 95% confidence
limits (green dashed lines).

• PlotJointEffects: Similar to PlotMainEffects, using the coordinates given by Visualize, we can
make a contour plot of the two-way joint effects for two inputs at a time, as well as a contour plot of
the estimated standard error.

Applying the first function to our Visualize results

PlotMainEffects(borehole_vis$main_effect, borehole_vis$anova_percent)

0.06 0.08 0.10 0.12 0.14

50
10

0
15

0

rw

y

y(rw) : 82.9%

1000 1020 1040 1060 1080 1100

50
10

0
15

0

Hu

y

y(Hu) : 4.0%

700 720 740 760 780 800 820

50
10

0
15

0

Hl

y

y(Hl) : 4.3%

1100 1200 1300 1400 1500 1600 1700

50
10

0
15

0

L

y

y(L) : 3.9%

10000 10500 11000 11500 12000

50
10

0
15

0

Kw

y

y(Kw) : 1.0%

15

we can see, for instance, in the first plot the main effect of rw, which is the prediction of y with the other 7
variables integrated out. There are only five main effects plotted; r does not appear, for example, because its
ANOVA percentage did not meet the threshold of 1%. The red solid line in any of these plots is the estimated
main effect, and the green dashed lines are the point wise approximate 95% confidence limits. Borehole is an
easy modeling task for GaSP, and thus the three lines are tight.

Plotting the joint effects with

PlotJointEffects(borehole_vis$joint_effect, borehole_vis$anova_percent)

rw

H
u

 20

 40

 60

 80

 100

 120
 140

 160
 180

0.06 0.08 0.10 0.12 0.14

1.
00

1.
04

1.
08

y(rw, Hu) : 82.9+4.0+1.2=88.1%

rw

H
u

 0.2

 0.3

 0.4 0.4

 0.5 0
.5

 0.6

 0
.6

 0.7

 0.7

 0
.8

 0.9
 1

0.06 0.08 0.10 0.12 0.14

1.
00

1.
04

1.
08

se[y(rw, Hu)]

rw

H
l

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

0.06 0.08 0.10 0.12 0.14

0.
70

0.
74

0.
78

0.
82

y(rw, Hl) : 82.9+4.3+1.2=88.4%

rw

H
l 0.2

 0.2

 0
.2

 0.3

 0.4 0.4 0.5

 0
.5

 0.5 0.6

 0.6

 0.6

 0.7 0
.7

 0.8
 0.9

 1

0.06 0.08 0.10 0.12 0.14

0.
70

0.
74

0.
78

0.
82

se[y(rw, Hl)]

rw

L

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

0.06 0.08 0.10 0.12 0.14

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

y(rw, L) : 82.9+3.9+1.1=87.9%

rw
L

 0.2

 0
.4

 0.6

 0
.6

 0.6

 0.8

 0.8

 0.8

 1

 1

 1

 1.2

0.06 0.08 0.10 0.12 0.14

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

se[y(rw, L)]

shows that only three of them satisfy the 1% interaction threshold. (If the interaction percentage is small it
is sufficent to look at the respective main effects.) The first contour plot depicts the estimated joint effect of
rw and Hu, i.e., the prediction as a function of these two inputs with the other six inputs integrated out.
The title reports that the main effects of rw and Hu account for 82.9% and 4.0% of the total variation,
respectively, with their interaction effect accounting for another 1.2%. The next plot shows the standard
error of the estimated joint effect of rw and Hu. Two more pairs of plots follow, corresponding to the two
further interactions exceeding the threshold.

10. PlotAll
Last but not least, if all methods are run, GaSP provides PlotAll to get a quick picture of the utility of
the model. It executes PlotPredictions, PlotResiduals, PlotStdResiduals (all applied to CV only),
PlotMainEffects, and PlotJointEffects.

PlotAll(borehole_gasp, borehole_cv, borehole_vis)

The output will be the same as directly calling each method individually, as it includes all the parameters
from all the plotting functions. Note that PlotAll will only generate cross-validation plots. Predictions on a
test set would have to be performed and assessed in a follow-up.

Thus our workflow for the borehole illustration concludes.

11. Future
GaSP is currently under development of version 2.0.0 and will feature full Bayesian methods that have shown
to give better estimates and uncertainty quantification. There will be backwards compatibility with the
version described here, however.

16

References
Chen, H., Loeppky, J. L., Sacks, J., and Welch, W. J. (2016). Analysis methods for computer experiments:
How to assess and what counts? Statistical Science, 31(1):40–60.

Handcock, M. S. and Stein, M. L. (1993). A Bayesian analysis of kriging. Technometrics, 35(4):403–410.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer
Experiments. Statistical Science, 4(4):409 – 423.

Schonlau, M. and Welch, W. J. (2006). Screening the Input Variables to a Computer Model Via Analysis of
Variance and Visualization, pages 308–327. Springer New York, New York, NY.

Surjanovic, S. and Bingham, D. (2013). Virtual library of simulation experiments: Test functions and datasets.
Retrieved from http://www.sfu.ca/~ssurjano.

17

http://www.sfu.ca/~ssurjano

	1. Introduction
	2. Data Setup
	3. GaSP Model Formulation
	3.1 GaSP model components
	3.2 Mean (regression) function
	3.3 Stochastic process component
	3.4 Random error component

	4. GaSPModel object
	5. Fit
	5.1 Maximum likelihood estimation
	5.2 Maximum a posteriori (MAP) estimation
	5.3 Further details of Fit

	6 Predict
	7 CrossValidate
	8 Plots and diagnostics for Predict and CrossValidate
	8.1 Plots for Predict
	8.2 Plots for CrossValidate
	8.3 RMSE

	9. Visualize
	9.1 DecribeX
	9.2 Visualize
	9.3 Plots for Visualize

	10. PlotAll
	11. Future

