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for use in function hmm0norm2d
Viterbi.hmm0norm Viterbi Path of a 1-D HMM with Extra Zeros
Viterbi.hmm0norm2d Viterbi Path of a Bivariate HMM with Extra

Zeros
cumdist.hmm0norm Cumulative distribution of an HMM with Extra

Zeros
hmm0norm Parameter Estimation of an HMM with Extra Zeros
hmm0norm2d Parameter Estimation of a bivariate HMM with

Extra Zeros
plotVitloc2d Plot the Classified 2-D Data of a Bivariate HMM

With Extra Zeros
plotVitpath2d Plot the Viterbi Path of a Bivariate HMM With

Extra Zeros
sim.hmm0norm Simulation of a 1-D HMM with Extra Zeros
sim.hmm0norm2d Simulation of a Bivariate HMM with Extra Zeros

This package contains functions to estimate the parameters of the HMMs with extra zeros using
hmm0norm (1-D HMM) and hmm0norm2d (2-D HMM), to calculate the cumulative distribution of the
1-D HMM using cumdist.hmm0norm, to estimate the Viterbi path using Viterbi.hmm0norm (1-D
HMM) and Viterbi.hmm0norm2d (2-D HMM), to simulate this class of models using sim.hmm0norm
(1-D HMM) and sim.hmm0norm2d (2-D HMM), to plot the classified 2-D data with different
colours representing different hidden states using plotVitloc2d, and to plot the Viterbi path using
plotVitloc2d.

Details

This package is used to estimate the parameters, carry out simulations, and estimate the Viterbi path
for 1-D and 2-D HMMs with extra zeros as defined in the two publications in the reference (also
briefly defined below). It contains examples using simulated data for how to set up initial values for
a data analysis and how to plot the results.

An HMM is a statistical model in which the observed process is dependent on an unobserved
Markov chain. A Markov chain is a sequence of states which exhibits a short-memory prop-
erty such that the current state of the chain is dependent only on the previous state in the case
of a first-order Markov chain. Assume that the Markov chain has m states, where m can be
estimated from the data. Let St ∈ {1, · · · ,m} denote the state of the Markov chain at time
t. The probability of a first-order Markov chain in state j at time t given the previous states is
P (St = j|St−1, · · · , S1) = P (St = j|St−1). These states are not observable. The observation Yt
at time t depends on the state St of the Markov chain.

In this framework, we are interested in estimating the transition probability matrix Γ = (γij)m×m

of the Markov chain that describes the migration pattern and the density function f(yt|St = i) that
gives the distribution feature of observations in state i, where γij = P (St = j|St−1 = i).

Let Zt be a Bernoulli variable, with Zt = 1 if an event is present at t, and Zt = 0, otherwise.
Let Xt be the response variable (e.g., location of the tremor cluster in 2D space) at time t. We set
P (Zt = 0|St = i) = 1 − pi and P (Zt = 1|St = i) = pi. We assume that, given Zt = 1 and
St = i, Xt follows a univariate or bivariate normal distribution, e.g. for a bivariate normal,

f(xt|Zt = 1, St = i) =
1

2π|Σi|1/2
exp

(
−1

2
(xt − µi)

TΣ−1
i (xt − µi)

)
.
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The joint probability density function of Zt and Xt conditional on the system being in state i at
time t is

f(xt, zt|St = i) = (1− pi)1−zt

[
pi

1

2π|Σi|1/2
exp

(
−1

2
(xt − µi)

TΣ−1
i (xt − µi)

)]zt
,

where pi, µi = E(Xt|St = i, Zt = 1) and Σi = V ar(Xt|St = i, Zt = 1) are parameters to be
estimated.

Author(s)

Ting Wang, Wolfgang Hayek, and Alexander Pletzer

Maintainer: Ting Wang <ting.wang@otago.ac.nz>

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time
Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C,
Applied Statistics, 66, Part 4, 691-715.

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence
patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of
Geophysical Research, doi: 10.1029/2017JB015360.

Some of the functions in the package are based on those of the R package “HiddenMarkov":

Harte, D. (2021) HiddenMarkov: Hidden Markov Models. R package version 1.8-13. URL: https:
//cran.r-project.org/package=HiddenMarkov

cumdist.hmm0norm Cumulative distribution of an HMM with Extra Zeros

Description

Calculates the cumulative distribution of an HMM with extra zeros.

Usage

cumdist.hmm0norm(x,HMMest)

Arguments

x x is a value at which the cumulative distribution is evaluated.

HMMest is a list which contains pie, gamma, sig, mu, and delta (the HMM parameter
estimates).

Value

prob is the calculated cumulative distribution.

https://doi.org/10.1029/2017JB015360
https://cran.r-project.org/package=HiddenMarkov
https://cran.r-project.org/package=HiddenMarkov
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Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time
Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C,
Applied Statistics, 66, Part 4, 691-715.

Examples

pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
R <- as.matrix(y$x,ncol=1)
Z <- y$z
HMMEST <- hmm0norm(R, Z, pie, gamma, mu, sig, delta)
xx <- seq(0,1,0.05)
cumdist <- apply(t(xx),2,cumdist.hmm0norm,HMMest=HMMEST)

hmm0norm Parameter Estimation of an HMM with Extra Zeros

Description

Calculates the parameter estimates of a 1-D HMM with observations having extra zeros.

Usage

hmm0norm(R, Z, pie, gamma, mu, sig, delta, tol=1e-6, print.level=1, fortran = TRUE)

Arguments

R is the observed data. R is a T ∗ 1 matrix, where T is the number of observations.

Z is the binary data with the value 1 indicating that an event was observed and 0
otherwise. Z is a vector of length T .

pie is a vector of length m, the jth element of which is the probability of Z = 1
when the process is in state j.

gamma is the transition probability matrix (m ∗m) of the hidden Markov chain.

mu is a 1 ∗m matrix, the jth element of which is the mean of the (Gaussian) distri-
bution of the observations in state j.
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sig is a 1 ∗ m matrix, the jth element of which is the standard deviation of the
(Gaussian) distribution of the observations in state j.

delta is a vector of length m, the initial distribution vector of the Markov chain.
tol is the tolerance for testing convergence of the iterative estimation process. The

default tolerance is 1e-6. For initial test of model fit to your data, a larger toler-
ance (e.g., 1e-3) should be used to save time.

print.level controls the amount of output being printed. Default is 1. If print.level=1,
only the log likelihoods and the differences between the log likelihoods at each
step of the iterative estimation process, and the final estimates are printed. If
print.level=2, the log likelihoods, the differences between the log likeli-
hoods, and the estimates at each step of the iterative estimation process are
printed.

fortran is logical, and determines whether Fortran code is used; default is TRUE.

Value

pie is the estimated probability of Z = 1 when the process is in each state.
mu is the estimated mean of the (Gaussian) distribution of the observations in each

state.
sig is the estimated standard deviation of the (Gaussian) distribution of the observa-

tions in each state.
gamma is the estimated transition probability matrix of the hidden Markov chain.
delta is the estimated initial distribution vector of the Markov chain.
LL is the log likelihood.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time
Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C,
Applied Statistics, 66, Part 4, 691-715.

Examples

pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
R <- as.matrix(y$x,ncol=1)
Z <- y$z
yn <- hmm0norm(R, Z, pie, gamma, mu, sig, delta)
yn



hmm0norm2d 7

hmm0norm2d Parameter Estimation of a bivariate HMM with Extra Zeros

Description

Calculates the parameter estimates of an HMM with bivariate observations having extra zeros.

Usage

hmm0norm2d(R, Z, pie, gamma, mu, sig, delta, tol=1e-6, print.level=1, fortran = TRUE)

Arguments

R is the observed data. R is a T ∗ 2 matrix, where T is the number of observations.

Z is the binary data with the value 1 indicating that an event was observed and 0
otherwise. Z is a vector of length T .

pie is a vector of length m, the jth element of which is the probability of Z = 1
when the process is in state j.

gamma is the transition probability matrix (m ∗m) of the hidden Markov chain.

mu is an m ∗ 2 matrix, the jth row of which is the mean of the bivariate (Gaussian)
distribution of the observations in state j.

sig is a 2 ∗ 2 ∗m array. The matrix sig[,,j] is the variance-covariance matrix of
the bivariate (Gaussian) distribution of the observations in state j.

delta is a vector of length m, the initial distribution vector of the Markov chain.

tol is the tolerance for testing convergence of the iterative estimation process. De-
fault is 1e-6. For initial test of model fit to your data, a larger tolerance (e.g.,
1e-3) should be used to save time.

print.level controls the amount of output being printed. Default is 1. If print.level=1,
only the log likelihoods and the differences between the log likelihoods at each
step of the iterative estimation process, and the final estimates are printed. If
print.level=2, the log likelihoods, the differences between the log likeli-
hoods, and the estimates at each step of the iterative estimation process are
printed.

fortran is logical, and determines whether Fortran code is used; default is TRUE.

Details

Setting up initial values for the real world data can be challenging, especially when the model is
large (the number of states is big). In the example below, we include a simple way to set up initial
values. If the model is large, the model fitting process should be repeated for many different initial
values. In the example below, we set the number of initial values to be N = 2 for the ease of
compilation. For real-world data analysis, taking the 2D model for the tremor data in Wang et al.
(2018) for example, we used at least N = 1000 initial values for the large models with more than
15 hidden states.
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Value

pie is the estimated probability of Z = 1 when the process is in each state.

mu is the estimated mean of the bivariate (Gaussian) distribution of the observations
in each state.

sig is the estimated variance-covariance matrix of the bivariate (Gaussian) distribu-
tion of the observations in each state.

gamma is the estimated transition probability matrix of the hidden Markov chain.

delta is the estimated initial distribution vector of the Markov chain.

LL is the log likelihood.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence
patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of
Geophysical Research, doi: 10.1029/2017JB015360.

Examples

pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(35.03,137.01,
35.01,137.29,
35.15,137.39),byrow=TRUE,nrow=3)

sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,

-0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,

-0.0002,0.0006),byrow=TRUE,nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,

0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
yn <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
yn

# Setting up initial values when analysing real-world data
## nk is the number of states for the fitted model
### In this example we use nk=3

LL <- -10^200 ## A very small value to compare with
## the log likelihood from the model

https://doi.org/10.1029/2017JB015360
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nk = 3

gamma <- array(NA,dim=c(nk,nk))
mu <- array(NA,dim=c(nk,2))
sig <- array(NA,dim=c(2,2,nk))
pie <- array(NA,dim=c(1,nk))

kk <- 1
N <- 2
while(kk<N)
{

temp <- matrix(runif(nk*nk,0,1),ncol=nk)
diag(temp) = diag(temp) + rpois(1,6) * apply(temp, 1, sum)
temp <- temp * matrix(rep(1/apply(temp, 1, sum), ncol(temp)), ncol=ncol(temp), byrow=FALSE)
gamma <- temp

R1min <- min((R[,1])[R[,1]>=1e-6])
R1max <- max((R[,1])[R[,1]>=1e-6])
R2min <- min((R[,2])[R[,2]>=1e-6])
R2max <- max((R[,2])[R[,2]>=1e-6])
temp <- cbind(runif(nk,R1min,R1max),runif(nk,R2min,R2max))
temp <- temp[order(temp[,2]),]
mu <- temp

sdR1 <- sd((R[,1])[R[,1]>=1e-6])
sdR2 <- sd((R[,2])[R[,2]>=1e-6])
for (j in 1:nk){
temp <- matrix(runif(4,0.0001,max(sdR1,sdR2)), ncol=2)
temp[1,2] <- temp[2,1] <- runif(1,-1,1)* sqrt(prod(diag(temp)))
sig[, ,j] <- temp

}

pie <- matrix(sort(c(runif(1, 0, 0.01),runif(nk-1, 0, 1))), nrow = 1, byrow = TRUE )

delta <- c(6,runif(nk-1, 0,1))
delta <- delta/sum(delta)

tryCatch({
temp <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
kk<-kk+1
if( LL <= temp$LL){

HMMest <- temp
LL =HMMest$LL
eval(parse(text=paste('HMM',kk,'est = HMMest',sep="")))

# eval(parse(text=paste('save(HMM',kk,'est, file="HMM',kk,'est.image")',sep='')))
## Uncomment the line above if you would like to save the result into a .image file.

}
}, error=function(e){})

print(kk)
}



10 Kii

Kii Tremor data in the Kii region in 2002 and 2003 for use in function
hmm0norm2d

Description

A data frame containing a subset (in years 2002 and 2003) of Kii tremor data used in Wang et al.
(2018). The columns are named "year", "month", "day", "hour", "lat", "lon".

We provide some R code in the Examples below for how to convert this dataset into the variables
R and Z used in the function hmm0norm2d. This dataset can be obtained directly from the Slow
Earthquake Database http://www-solid.eps.s.u-tokyo.ac.jp/~sloweq/.

If you have your own way to convert the data into the variables R and Z, then you can go to the
function hmm0norm2d directly.

Usage

data(Kii)

Format

A data frame with 1112 rows, each row representing the hour in which tremor events occurred. It
contains the following variables:

year, month, day, hour time of tremor occurrence.

lat latitude of the tremor event in that hour.

lon longitude of the tremor event in that hour.

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence pat-
terns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geo-
physical Research, doi: 10.1029/2017JB015360. Obara, K., Tanaka, S., Maeda, T., & Matsuzawa,
T. (2010) Depth-dependent activity of non-volcanic tremor in southwest Japan, Geophysical Re-
search Letters, 37, L13306. doi: 10.1029/2010GL043679. Maeda, T., & Obara. K. (2009) Spatio-
temporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku,
Japan, J. Geophys. Res., 114, B00A09, doi: 10.1029/2008JB006043.

See Also

hmm0norm2d

Examples

data(Kii)
year <- Kii$year
month <- Kii$month
day <- Kii$day

https://doi.org/10.1029/2017JB015360
https://doi.org/10.1029/2010GL043679
https://doi.org/10.1029/2008JB006043
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hour <- Kii$hour
lat <- Kii$lat
lon <- Kii$lon

## Transform the time into days*100+hour. Can use other transformation.
## The purpose is to make sure that each hour of a day has a unique number.
xd <- NULL
for (i in 1:nrow(Kii))

xd[i] <- julian(as.Date(paste(year[i],month[i],day[i],sep="-")))*100+hour[i]

## Create a unique number for each hour in the years 2002 and 2003
## This is to match with xd above, so that we can create the Z variable
## which is 0 for the hours without any tremor occurrence and
## 1 for the hours with tremor events.
a <- seq( julian(as.Date("2002-01-01")), julian(as.Date("2002-12-31")), 1 )*100
b <- seq( julian(as.Date("2003-01-01")), julian(as.Date("2003-12-31")), 1 )*100
aa <- rep(a,each=24)+rep(0:23,times=length(a))
bb <- rep(b,each=24)+rep(0:23,times=length(b))

## Combine all the tremor events which occurred
## in the same hour to be one tremor cluster.
## Kii has maximum 4 events in the same hour
## so we used the code below.
## One can adjust the code for regions with more
## tremor events in the same hour.
## indt: actual time as in each hour
Time <- c(aa,bb)
lt <- length(Time)
indt <- 1:lt

Tim <- Lat <- Lon <- NULL
j <- 1
while (j <= nrow(Kii)-3){

i <- j
if (xd[i+3]==xd[i] & xd[i+2]==xd[i] & xd[i+1]==xd[i]){
Tim <- append(Tim,xd[i])
Lat <- append(Lat,mean(lat[i:(i+3)]))
Lon <- append(Lon,mean(lon[i:(i+3)]))
j <- i+4

}else{
if (xd[i+2]==xd[i] & xd[i+1]==xd[i]){

Tim <- append(Tim,xd[i])
Lat <- append(Lat,mean(lat[i:(i+2)]))
Lon <- append(Lon,mean(lon[i:(i+2)]))
j <- i+3

}else{
if (xd[i+1]==xd[i]){

Tim <- append(Tim,xd[i])
Lat <- append(Lat,mean(lat[i:(i+1)]))
Lon <- append(Lon,mean(lon[i:(i+1)]))
j <- i+2

}else{
Tim <- append(Tim,xd[i])
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Lat <- append(Lat,lat[i])
Lon <- append(Lon,lon[i])
j <- i+1

}
}

}
}
Tim <- append(Tim,xd[(nrow(Kii)-1):nrow(Kii)])
Lat <- append(Lat,lat[(nrow(Kii)-1):nrow(Kii)])
Lon <- append(Lon,lon[(nrow(Kii)-1):nrow(Kii)])

## Create a data frame in which each hour is a point
## Those hours when there was no tremor, we set the
## number of tremors as 0

data1 <- array(0,dim=c(lt,3))
Thour <- NULL
for (i in 1:length(Tim)){

use <- Time==Tim[i]
idtem <- (1:lt)[use]
Thour <- append(Thour,idtem)
data1[idtem,2] <- Lat[i]
data1[idtem,3] <- Lon[i]

}
data1[,1] <- indt ## Every hour is one time point

###########################################################
########### Data for time series analysis #############
###########################################################
lt <- length(indt)
Z <- rep(0,lt)
Z[Thour] <- 1
R <- data1[,2:3]

###########################################################
# Setting up initial values for analysing real-world data
## nk is the number of states for the fitted model
### In this example we use nk=3
###########################################################

LL <- -10^200 ## A very small value to compare with
## the log likelihood from the model

nk = 3

gamma <- array(NA,dim=c(nk,nk))
mu <- array(NA,dim=c(nk,2))
sig <- array(NA,dim=c(2,2,nk))
pie <- array(NA,dim=c(1,nk))

kk <- 1
N <- 2
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while(kk<N)
{

temp <- matrix(runif(nk*nk,0,1),ncol=nk)
diag(temp) = diag(temp) + rpois(1,6) * apply(temp, 1, sum)
temp <- temp * matrix(rep(1/apply(temp, 1, sum), ncol(temp)), ncol=ncol(temp), byrow=FALSE)
gamma <- temp

R1min <- min((R[,1])[R[,1]>=1e-6])
R1max <- max((R[,1])[R[,1]>=1e-6])
R2min <- min((R[,2])[R[,2]>=1e-6])
R2max <- max((R[,2])[R[,2]>=1e-6])
temp <- cbind(runif(nk,R1min,R1max),runif(nk,R2min,R2max))
temp <- temp[order(temp[,2]),]
mu <- temp

sdR1 <- sd((R[,1])[R[,1]>=1e-6])
sdR2 <- sd((R[,2])[R[,2]>=1e-6])
for (j in 1:nk){
temp <- matrix(runif(4,0.0001,max(sdR1,sdR2)), ncol=2)
temp[1,2] <- temp[2,1] <- runif(1,-1,1)* sqrt(prod(diag(temp)))
sig[, ,j] <- temp

}

pie <- matrix(sort(c(runif(1, 0, 0.01),runif(nk-1, 0, 1))), nrow = 1, byrow = TRUE )

delta <- c(6,runif(nk-1, 0,1))
delta <- delta/sum(delta)

tryCatch({
temp <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
kk<-kk+1
if( LL <= temp$LL){

HMMest <- temp
LL =HMMest$LL
eval(parse(text=paste('HMM',kk,'est = HMMest',sep="")))

# eval(parse(text=paste('save(HMM',kk,'est, file="HMM',kk,'est.image")',sep='')))
## Uncomment the line above if you would like to save the result into a .image file.

}
}, error=function(e){})
print(kk)

}

plotVitloc2d Plot the Classified 2-D Data of a Bivariate HMM With Extra Zeros

Description

Plot the classified 2-D data with different colours representing different hidden states (or different
clusters) obtained from the Viterbi path and confidence contours.
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Usage

plotVitloc2d(object, R, Z, HMMest, CI.level=0.95, npoints=100, cols=NA,
cex.lab=1.5, cex.axis=1.5, cex=1, cex.text=2)

Arguments

object is a list containing y (the estimated Viterbi path) and v (the estimated probability
of each time point being in each state). This object is returned from running
Viterbi.hmm0norm2d(R,Z,HMMest).

R is the observed data. R is a T ∗ 2 matrix, where T is the number of observations.

Z is the binary data with the value 1 indicating that an event was observed and 0
otherwise. Z is a vector of length T .

HMMest is a list which contains pie, gamma, sig, mu, and delta (the bivariate HMM
parameter estimates).

CI.level is a scalar or a vector, the confidence level for the ellipse contour of each state.
Default is 0.95.

npoints is the number of points used in the ellipse. Default is 100.

cols is a vector defines the colors to be used for different states. If col=NA, then the
default colors will be used.

cex.lab specifies the size of the axis label text.

cex.axis specifies the size of the tick label numbers/text.

cex specifies the size of the points.

cex.text specifies the size of the text indicting the state number.

Author(s)

Ting Wang and Jiancang Zhuang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence
patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of
Geophysical Research, doi: 10.1029/2017JB015360.

Examples

pie <- c(0.008,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(35.03,137.01,
35.01,137.29,
35.15,137.39),byrow=TRUE,nrow=3)

sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,

-0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,

https://doi.org/10.1029/2017JB015360
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-0.0002,0.0006),byrow=TRUE,nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,

0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)
plotVitloc2d(Viterbi3, R, Z,HMMEST)

plotVitpath2d Plot the Viterbi Path of a Bivariate HMM With Extra Zeros

Description

Plot the 2-D data, Viterbi path and the probability of each time point being in each state over time.

Usage

plotVitpath2d(object, R, Z, HMMest, len.dat=96432, varb=8780,
yearstart=2005, yearend=2012, cols=NA, cex.lab=1.5, cex.axis=1.5)

Arguments

object is a list containing y (the estimated Viterbi path) and v (the estimated probability
of each time point being in each state). This object is returned from running
Viterbi.hmm0norm2d(R,Z,HMMest).

R is the observed data. R is a T ∗ 2 matrix, where T is the number of observations.

Z is the binary data with the value 1 indicating that an event was observed and 0
otherwise. Z is a vector of length T .

HMMest is a list which contains pie, gamma, sig, mu, and delta (the bivariate HMM
parameter estimates).

len.dat is the length of the data, that is, the number of time points. Default is 96432.

varb is an integer indicating the length of data that will be ploted on each page. The
default is 8780.

yearstart is the starting year of the data used. Default is 2005.

yearend is the end year of the data used. Default is 2012.

cols is a vector defines the colors to be used for different states. If col=NA, then the
default colors will be used.

cex.lab specifies the size of the axis label text.

cex.axis specifies the size of the tick label numbers/text.



16 sim.hmm0norm

Details

The returned object has four panels. Top two panels: Observed latitudes and longitudes with the
center µ̂i of each state overlaid as the red lines; third panel: tracked most likely state sequence
of the HMM; bottom panel: the estimated probability of the data being in each state, with blank
representing the probability of being in the last state (typically the plot looks better if the last state
represents the background state with the minimum proportion of tremor occurrence). Some example
plots are in the supplementary file of the reference Wang et al. (2018).

Author(s)

Ting Wang and Jiancang Zhuang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence
patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of
Geophysical Research, doi: 10.1029/2017JB015360.

Examples

pie <- c(0.008,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(35.03,137.01,
35.01,137.29,
35.15,137.39),byrow=TRUE,nrow=3)

sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,

-0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,

-0.0002,0.0006),byrow=TRUE,nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,

0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)
plotVitpath2d(Viterbi3, R, Z,HMMEST,len.dat=5000,varb=5000,yearstart=2005, yearend=2005)

sim.hmm0norm Simulation of a 1-D HMM with Extra Zeros

Description

Simulates the observed process and the associated binary variable of a 1-D HMM with extra zeros.

https://doi.org/10.1029/2017JB015360
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Usage

sim.hmm0norm(mu, sig, pie, gamma, delta, nsim = 1, seed = NULL)

Arguments

pie is a vector of length m, the jth element of which is the probability of Z = 1
when the process is in state j.

gamma is the transition probability matrix (m ∗m) of the hidden Markov chain.

mu is a 1 ∗m matrix, the jth element of which is the mean of the (Gaussian) distri-
bution of the observations in state j.

sig is a 1 ∗ m matrix, the jth element of which is the standard deviation of the
(Gaussian) distribution of the observations in state j.

delta is a vector of length m, the initial distribution vector of the Markov chain.

nsim is an integer, the number of observations to simulate.

seed is the seed for simulation. Default seed=NULL.

Value

x is the simulated observed process.

z is the simulated binary data with the value 1 indicating that an event was ob-
served and 0 otherwise.

mcy is the simulated hidden Markov chain.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time
Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C,
Applied Statistics, 66, Part 4, 691-715.

Examples

pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
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sim.hmm0norm2d Simulation of a Bivariate HMM with Extra Zeros

Description

Simulates the observed process and the associated binary variable of a bivariate HMM with extra
zeros.

Usage

sim.hmm0norm2d(mu, sig, pie, gamma, delta, nsim = 1, mc.hist = NULL, seed = NULL)

Arguments

pie is a vector of length m, the jth element of which is the probability of Z = 1
when the process is in state j.

gamma is the transition probability matrix (m ∗m) of the hidden Markov chain.

mu is an m ∗ 2 matrix, the jth row of which is the mean of the bivariate (Gaussian)
distribution of the observations in state j.

sig is a 2 ∗ 2 ∗m array. The matrix sig[,,j] is the variance-covariance matrix of
the bivariate (Gaussian) distribution of the observations in state j.

delta is a vector of length m, the initial distribution vector of the Markov chain.

nsim is an integer, the number of observations to simulate.

mc.hist is a vector containing the history of the hidden Markov chain. This is mainly
used for forecasting. If we fit an HMM to the data, and obtained the Viterbi
path for the data, we can let mc.hist equal to the Viterbi path and then forecast
futrue steps by simulation.

seed is the seed for simulation. Default seed=NULL.

Value

x is the simulated observed process.

z is the simulated binary data with the value 1 indicating that an event was ob-
served and 0 otherwise.

mcy is the simulated hidden Markov chain.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence
patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of
Geophysical Research, doi: 10.1029/2017JB015360.

https://doi.org/10.1029/2017JB015360
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Examples

## Simulating a sequence of data without using any history.
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(35.03,137.01,
35.01,137.29,
35.15,137.39),byrow=TRUE,nrow=3)

sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,

-0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,

-0.0002,0.0006),byrow=TRUE,nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,

0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)

## Forecast future tremor occurrences and locations when tremor occurs.
R <- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta,nsim=2,mc.hist=Viterbi3$y)
# This only forecasts two steps forward when we use nsim=2.
# One can increase nsim to get longer simulated forecasts.

Viterbi.hmm0norm Viterbi Path of a 1-D HMM with Extra Zeros

Description

Finds the most probable sequence of hidden states of an observed process.

Usage

Viterbi.hmm0norm(R, Z, HMMest)

Arguments

R is the observed data. R is a T ∗ 1 matrix, where T is the number of observations.

Z is the binary data with the value 1 indicating that an event was observed and 0
otherwise. Z is a vector of length T .

HMMest is a list which contains pie, gamma, sig, mu, and delta (the HMM parameter
estimates).
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Value

y is the estimated Viterbi path.

v is the estimated probability of each time point being in each state.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time
Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C,
Applied Statistics, 66, Part 4, 691-715.

Examples

pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
R <- as.matrix(y$x,ncol=1)
Z <- y$z
HMMEST <- hmm0norm(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm(R,Z,HMMEST)

Viterbi.hmm0norm2d Viterbi Path of a Bivariate HMM with Extra Zeros

Description

Finds the most probable sequence of hidden states of an observed process of a bivariate HMM with
extra zeros.

Usage

Viterbi.hmm0norm2d(R, Z, HMMest)

Arguments

R is the observed data. R is a T ∗ 2 matrix, where T is the number of observations.

Z is the binary data with the value 1 indicating that an event was observed and 0
otherwise. Z is a vector of length T .

HMMest is a list which contains pie, gamma, sig, mu, and delta (the bivariate HMM
parameter estimates).
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Value

y is the estimated Viterbi path.

v is the estimated probability of each time point being in each state.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence
patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of
Geophysical Research, doi: 10.1029/2017JB015360.

Examples

pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,

0.02,0.97,0.01,
0.04,0.01,0.95),byrow=TRUE, nrow=3)

mu <- matrix(c(35.03,137.01,
35.01,137.29,
35.15,137.39),byrow=TRUE,nrow=3)

sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,

-0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,

-0.0002,0.0006),byrow=TRUE,nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,

0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)

https://doi.org/10.1029/2017JB015360
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