1 Data Generation

Load the necessary libraries:

library(HTLR)
library(bayesplot)
#> This is bayesplot version 1.7.1
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#>    * Does _not_ affect other ggplot2 plots
#>    * See ?bayesplot_theme_set for details on theme setting

The description of the dataset generating scheme is found from Li and Yao (2018).

There are 4 groups of features:

SEED <- 1234

n <- 510
p <- 2000

means <- rbind(
  c(0, 1, 0),
  c(0, 0, 0),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1)
) * 2

means <- rbind(means, matrix(0, p - 10, 3))

A <- diag(1, p)

A[1:10, 1:3] <-
  rbind(
    c(1, 0, 0),
    c(2, 1, 0),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1)
  )

set.seed(SEED)
dat <- gendata_FAM(n, means, A, sd_g = 0.5, stdx = TRUE)
str(dat)
#> List of 4
#>  $ X  : num [1:510, 1:2000] -1.423 -0.358 -1.204 -0.556 0.83 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2000] "V1" "V2" "V3" "V4" ...
#>  $ muj: num [1:2000, 1:3] -0.456 0 -0.456 -0.376 -0.376 ...
#>  $ SGM: num [1:2000, 1:2000] 0.584 0.597 0 0 0 ...
#>  $ y  : int [1:510] 1 2 3 1 2 3 1 2 3 1 ...

Look at the correlation between features:

# require(corrplot)
cor(dat$X[ , 1:11]) %>% corrplot::corrplot(tl.pos = "n")

Split the data into training and testing sets:

set.seed(SEED)
dat <- split_data(dat$X, dat$y, n.train = 500)
str(dat)
#> List of 4
#>  $ x.tr: num [1:500, 1:2000] 0.9157 0.0218 -0.6693 0.4797 0.4862 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2000] "V1" "V2" "V3" "V4" ...
#>  $ y.tr: int [1:500] 1 2 1 2 1 3 2 3 2 3 ...
#>  $ x.te: num [1:10, 1:2000] 1.031 -0.55 -1.208 -0.858 -1.035 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2000] "V1" "V2" "V3" "V4" ...
#>  $ y.te: int [1:10] 2 1 3 1 3 1 1 1 1 1

2 Model Fitting

Fit a HTLR model with all default settings:

set.seed(SEED)
system.time(
  fit.t <- htlr(dat$x.tr, dat$y.tr)
)
#>    user  system elapsed 
#> 103.543   0.072  18.435
print(fit.t)
#> Fitted HTLR model 
#> 
#>  Data:
#> 
#>   response:  3-class
#>   observations:  500
#>   predictors:    2001 (w/ intercept)
#>   standardised:  TRUE 
#> 
#>  Model:
#> 
#>   prior dist:    t (df = 1, log(w) = -10.0)
#>   init state:    lasso 
#>   burn-in:   1000
#>   sample:    1000 (posterior sample size) 
#> 
#>  Estimates:
#> 
#>   model size:    4 (w/ intercept)
#>   coefficients: see help('summary.htlr.fit')

With another configuration:

set.seed(SEED)
system.time(
  fit.t2 <- htlr(X = dat$x.tr, y = dat$y.tr, 
                 prior = htlr_prior("t", df = 1, logw = -20, sigmab0 = 1500), 
                 iter = 4000, init = "bcbc", keep.warmup.hist = T)
)
#>    user  system elapsed 
#> 180.828   0.363  31.796
print(fit.t2)
#> Fitted HTLR model 
#> 
#>  Data:
#> 
#>   response:  3-class
#>   observations:  500
#>   predictors:    2001 (w/ intercept)
#>   standardised:  TRUE 
#> 
#>  Model:
#> 
#>   prior dist:    t (df = 1, log(w) = -20.0)
#>   init state:    bcbc 
#>   burn-in:   2000
#>   sample:    2000 (posterior sample size) 
#> 
#>  Estimates:
#> 
#>   model size:    4 (w/ intercept)
#>   coefficients: see help('summary.htlr.fit')

3 Model Inspection

Look at the point summaries of posterior of selected parameters:

summary(fit.t2, features = c(1:10, 100, 200, 1000, 2000), method = median)
#>                 class 2       class 3
#> Intercept -3.2057501605 -0.7572061810
#> V1        10.7863600649  0.3382765258
#> V2        -6.7701256982 -0.3134671887
#> V3        -0.1955792631  3.1621270554
#> V4        -0.0038819957 -0.0089674488
#> V5         0.0008969358  0.0054764104
#> V6         0.0061773755  0.0797936181
#> V7         0.0140647886  0.0186878519
#> V8         0.0002888387 -0.0023150566
#> V9        -0.0038139108  0.0092575854
#> V10        0.0198427504  0.0153933706
#> V100      -0.0131670180 -0.0039492715
#> V200       0.0069327003 -0.0009540371
#> V1000      0.0080409405 -0.0022844461
#> V2000      0.0014780032  0.0024727814
#> attr(,"stats")
#> [1] "median"

Plot interval estimates from posterior draws using bayesplot:

post.t <- as.matrix(fit.t2, k = 2)
## signal parameters
mcmc_intervals(post.t, pars = c("Intercept", "V1", "V2", "V3", "V1000"))

Trace plot of MCMC draws:

as.matrix(fit.t2, k = 2, include.warmup = T) %>%
  mcmc_trace(c("V1", "V1000"), facet_args = list("nrow" = 2), n_warmup = 2000)

The coefficient of unrelated features (noise) are not updated during some iterations due to restricted Gibbs sampling Li and Yao (2018), hence the computational cost is greatly reduced.

4 Make Predictions

A glance at the prediction accuracy:

y.class <- predict(fit.t, dat$x.te, type = "class")
y.class
#>       y.pred
#>  [1,]      2
#>  [2,]      3
#>  [3,]      3
#>  [4,]      1
#>  [5,]      3
#>  [6,]      1
#>  [7,]      1
#>  [8,]      1
#>  [9,]      1
#> [10,]      1
print(paste0("prediction accuracy of model 1 = ", 
             sum(y.class == dat$y.te) / length(y.class)))
#> [1] "prediction accuracy of model 1 = 0.9"

y.class2 <- predict(fit.t2, dat$x.te, type = "class")
print(paste0("prediction accuracy of model 2 = ", 
             sum(y.class2 == dat$y.te) / length(y.class)))
#> [1] "prediction accuracy of model 2 = 0.9"

More details about the prediction result:

predict(fit.t, dat$x.te, type = "response") %>%
  evaluate_pred(y.true = dat$y.te)

#> $prob_at_truelabels
#>  [1] 0.979194928 0.008449285 0.859655156 0.967135714 0.995201056 0.903743061
#>  [7] 0.974073783 0.523414557 0.674799377 0.755160714
#> 
#> $table_eval
#>    Case ID True Label Pred. Prob 1 Pred. Prob 2 Pred. Prob 3 Wrong?
#> 1        1          2  0.006681587 9.791949e-01   0.01412348      0
#> 2        2          1  0.008449285 6.275159e-03   0.98527556      1
#> 3        3          3  0.140344799 4.517124e-08   0.85965516      0
#> 4        4          1  0.967135714 9.119180e-04   0.03195237      0
#> 5        5          3  0.004798943 1.613052e-09   0.99520106      0
#> 6        6          1  0.903743061 5.933941e-08   0.09625688      0
#> 7        7          1  0.974073783 5.548914e-06   0.02592067      0
#> 8        8          1  0.523414557 2.844161e-01   0.19216930      0
#> 9        9          1  0.674799377 2.853111e-01   0.03988953      0
#> 10      10          1  0.755160714 7.700381e-05   0.24476228      0
#> 
#> $amlp
#> [1] 0.6433173
#> 
#> $err_rate
#> [1] 0.1
#> 
#> $which.wrong
#> [1] 2

Li, Longhai, and Weixin Yao. 2018. “Fully Bayesian Logistic Regression with Hyper-Lasso Priors for High-Dimensional Feature Selection.” Journal of Statistical Computation and Simulation 88 (14). Taylor & Francis: 2827–51.