
The algorithm for calculating unimodal isotonic regression in Iso

Rolf Turner

For Iso version 0.0-18

Abstract

The Iso package provides an algorithm for applying isotonic regression to data having an
underlying unimodal structure. This algorithm consists essentially of “divide and conquer”
approach to this class of isotonic regression problems. Repeated application of the algorithm
permits the estimation of the location of the maximum of a data set assumed to have an
underlying unimodal structure. This estimation procedure is “easily” (for some value of
the word “easily”) shown to be consistent. The performance of the resulting procedure for
locating a maximum has been assessed through a simulation study described in one of the
references. This document supplies some of the background on the algorithm used calculating
unimodal isotonic regression and gives a theoretical justification of why this algorithm works.

Contents

1 Introduction 2

2 Notation and Terminology, and the Main Result 3

3 Estimating the Location of a Maximum 6
3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Estimating a maximum in Iso . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

References 9

1



1 Introduction

Algorithms for implementing isotonic regression under orderings other than the simple linear
order are difficult to construct. The best known of such algorithms is the Maximum Lower Sets
algorithm [1, p. 24]. This algorithm is complicated and hard to program. It is also reputed to
run rather slowly, and indeed the number of operations required grows exponentially in certain
cases.
The motivation for developing an improved algorithm for performing such regressions came in
part from a data set being studied by members of the Faculty of Forestry at the University of
New Brunswick. These data consisted of observations which had been made of the “vigour” of
growth of five stands of black spruce. The stands each had different initial tree densities. It was
expected that vigour would initially increase (as the trees increased in size) and then level off
and start to decrease as the growing trees encroached upon each others’ space and competed
more strongly for resources such as moisture, nutrients, and light. It was further expected that
the position of the mode of the vigour observations would depend upon the initial densities.
Plots of the data did not make it completely clear as to where the leveling-off point or mode
occurred; the Forestry researchers requested a procedure for determining the location of this
mode. A procedure which comes immediately to mind is to fit unimodal isotonic regressions
with mode at each of the possible locations in turn. The location yielding minimal error sum of
squares is then chosen as the location of the mode. It is thus desirable to be able to perform a
large number of unimodal isotonic regressions quickly and efficiently.
Formally the unimodal isotonic regression problem may be stated as follows: Suppose that Yij ,
i = 1, . . . , p, j = 1, . . . , ni, are independent random variables such that Yij = µi + Eij for all i
and j, where the Eij have mean 0 and variance σ2. Further suppose that the µi have a unimodal
ordering, i.e. that

µ1 ≤ µ2 ≤ . . . ≤ µk0 ≥ µk0+1 ≥ . . . ≥ µp (1)

for some k0, 1 ≤ k0 ≤ p. Of course if k0 = p then we have the usual linear isotonic regression
problem and if k0 = 1 we the linear decreasing order isotonic regression problem.
The problem is to estimate the values of µ1, . . . , µp. The (weighted) least squares estimates of
the µi are given by minimizing

SS =
∑
i

∑
j

(Yij − µ̂i)2wi

subject to the constraint (1), where w1, . . . , wp are a (given) set of positive weights. This
problem may initially be subdivided into three sub-problems involving only linear orderings: (a)
estimating µ1, . . . , µk−1; (b) estimating µk; and (c) estimating µk+1, . . . , µn. Sub-problem (b)
is of course trivial as it stands, and sub-problems (a) and (c) can be solved by standard and
well-known techniques. The question is how to combine the solutions of the three subproblems
appropriately.
The answer is essentially to “interleaf” the estimates resulting from solving sub-problems (a)
and (c) in numerical order, tack on µ̂k = Ȳk. at the upper end, solve the corresponding isotonic
regression with respect to the resulting linear ordering, and then put the estimates back in their
original order.
In the next section we make this answer slightly more precise and demonstrate that it is indeed
correct. The idea may be generalised to other partial orderings and to other“tree-like” structures
as well as to unimodal ones but we will not elaborate on the details.
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2 Notation and Terminology, and the Main Result

Let k0 ∈ S = {1, . . . , p} be given (to avoid trivialitie assume 1 < k0 < p and let ≺ be the partial
order on given by x ≺ y if either x ≤ y ≤ k0 or x ≥ y ≥ k0. If x < k0 and y > k0 or vice versa
then x and y are not comparable under ≺.
Recall that an isotonic function (with respect to the partial order ≺) is a (real-valued) function f
such that x ≺ y implies f(x) ≤ f(y). If g is an arbitrary function on S, and w is a non-negative
(weight) function on S, then the isotonic regression of g, with respect to ≺ and w, (denoted g∗)
is that value of ĝ which minimizes ∑

s∈S
[g(s)− ĝ(s)]2w(s)

over all isotonic functions ĝ.
Let S1 and S2 be two subsets of S. We say that S2 follows S1, (in symbols S1≺≺S2) if x ≺ y
for every x in S1 and every y in S2.
Let S1 = {k ∈ S | k 6= k0} and S2 = {k0}. Let g1 be the restriction of g to S1, and let g1∗ be
the isotonic regression of g1r. The weight function used to form g1∗ is of course the restriction
of the overall weight function w to S1.
An elementary but important fact about isotonic regression is that g∗ takes the form

g∗(s) = ci on Li, i = 1, . . . , r

where L1, . . . , Lr form a disjoint and exhaustive collection of subsets of S, and c1 < c2 < . . . < cr.
Moreover ci is the weighted mean over Li of the values of g(s); i.e.

ci =

∑
s∈Li

w(s)g(s)∑
s∈Li

w(s)
.

(See [1, p. 18, Theorem 1.3.5].) We call the sets Li the level sets and the values ci the level
values of the isotonic regression.
Let the level sets and level values for g1∗ be L1, . . . , Lr and c1 < . . . < cr, and let Lr+1 = {k0}
and let cr+1 = g(k0). Define a function f on {1, . . . , r + 1}, by f(t) = ct for t = 1, . . . r + 1, and
a weight function u by

u(t) =
∑
x∈Lt

w(x) .

Theorem 1: Let f and u be as given above. Let f∗ be the isotonic regression of f with respect
to the usual order on {1, . . . , r + 1} and the weight function u. Then the isotonic regression of
g with respect to ≺ and w is given by

g∗(s) = f∗(t) for s ∈ Lt .

Remark: Note that S1 consists of the two disjoint sets {1, . . . , k− 1} and {k+ 1, . . . , n} which
are unrelated with respect to ≺. It is easy to see (and well-known; see, e.g. [1, p. 57]) that an
isotonic regression on their union is simply the amalgamation of separate isotonic regressions
on each component. That is g1∗ is obtained by doing an “ordinary” isotonic regression of the
restriction of g to {1, . . . , k−1} and an isotonic regression of the restriction of g to {k+1, . . . , p}
with respect to decreasing order on this set.
To prove Theorem 1 we require the following definitions and a couple of preliminary lemmas.
Definition: For any constant c we define

Ic = {g|g is isotonic and g(s) ≤ c for all s ∈ S}
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and
Ic = {g|g is isotonic and g(s) ≥ c for all s ∈ S} .

Let g∗(s) be the isotonic regression of g and define

gcu(s) =

{
g∗(s) if g∗(s) ≤ c
c if g∗(s) > c .

Lemma 1: The function gcu uniquely minimizes∑
s∈S

[g(s)− ĝ(s)]2w(s) (2)

subject to ĝ ∈ Ic.
Proof: For any ĝ in Ic,∑

s∈S
[g(s)− gcu(s)][gcu(s)− ĝ(s)]w(s) =

∑
s∈S

[g(s)− g∗(s)][gcu(s)− g∗(s)]w(s)

+
∑
s∈S

[g∗(s)− gcu(s)][gcu(s)− ĝ(s)]w(s)

+
∑
s∈S

[g(s)− g∗(s)][g∗(s)− ĝ(s)]w(s)

= Σ1 + Σ2 + Σ3

Now Σ1 = 0 by [1, Theorem 1.3.6, p. 23] since gcu(s)−g∗(s) is a function of g∗(s). It is also true
that Σ3 ≥ 0 since g∗ is the isotonic regression of g (applying [1, Theorem 1.3.1, p. 15]). Finally

Σ2 =
∑

g∗(s)>c

[g∗(s)− gcu(s)][gcu(s)− ĝ(s)]w(s)

=
∑

g∗(s)>c

[g∗(s)− c][c− ĝ(s)]w(s) ≥ 0 .

Since Ic is a convex lattice we may apply the converse part of [1, Theorem 1.3.1, p. 15] and the
result follows.
Exactly analogous to Lemma 1 is
Lemma 2: The function

gcl(s) =

{
g∗(s) if g∗(s) ≥ c
c if g∗(s) < c .

uniquely minimizes (2) for ĝ ∈ Ic.
Lemma 3, given below, is an immediate consequence of Lemma 1 and 2:
Lemma 3: Let ck1 , . . . , ckm be a subset of the level values of g∗, and let

S′ = S \
m⋃
l=1

{s|g∗(s) = ckl} 6= φ

The isotonic regression of g restricted to S′ is g∗ restricted to S′.
We can now prove the main result:
Proof of Theorem 1: Since x ≺ k0 for all x ∈ S1 it is easy to see that there is a constant c
such that:

g∗(s) < c implies s ∈ S1and

g∗(s) > c implies s = k0 .
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The set {s|g(s) = c} may contain elements from S1 and may contain k0 as well.
For this c

g∗(s) =

{
gcu(s) if s ∈ S1
gcl(s) if s = k0

otherwise we would contradict the definition of g∗. Applying Lemmas 1 and 2, it follows that

gcu(s) =

{
g1∗(s) if g1∗(s) < c
c if g1∗(s) ≥ c

for s ∈ S1 and

glu(s) =

{
c if g2∗(s) ≤ c

g2∗(s) if g2∗(s) > c

for s ∈ S2. Therefore g∗(s) is a function of g1∗(s) on S1. In other words, g∗(s) is constant on all
of the level sets Li of g1∗. (Since Lr+1 consists of the single point k0, g∗(s) is trivially constant
on Lr+1.) Let g∗(s) = di on Li for i = 1, . . . , r + 1. Now∑

S

[g(s)− g∗(s)]2w(s) =
∑
S1

[g(s)− g1∗(s) + g1∗(s)− g∗(s)]2w(s)

+
∑
S2

[g(s)− g2∗(s) + g2∗(s)− g∗(s)]2w(s)

=
∑
S1

[g(s)− g1∗(s)]2w(s) +
∑
S2

[g(s)− g2∗(s)]2w(s)

+
∑
S1

[g1∗(s)− g∗(s)]2w(s) +
∑
S2

[g2∗(s)− g∗(s)]2w(s)

+2
∑
S1

[g(s)− g1∗(s)][g1∗(s)− g∗(s)]w(s)

+2
∑
S2

[g(s)− g2∗(s)][g2∗(s)− g∗(s)]w(s)

The last two terms are zero by [1, Theorem 1.3.1, p. 15] since g1∗(s) − g∗(s) is a function of
g1∗(s), and g2∗(s)−g∗(s) is a function of g2∗(s). The first two terms do not involve g∗(s). Hence
g∗(s) minimizes ∑

S1

[g1∗(s)− g∗(s)]2w(s) +
∑
S2

[g2∗(s)− g∗(s)]2w(s) (3)

and hence is the isotonic regression of

h(s) =

{
g1∗(s) if s ∈ S1
g(s) if s = k0

It follows readily that the values of g∗(s) on Li, i.e. di, are in increasing order. Since g∗(s)
minimizes (3), equal to

r∑
t=1

[ct − dt]2u(t)

under the assumption that g∗ is isotonic, it follows that d1, d2, . . . , dr minimize this expression
under simple linear order on 1, 2, . . . , r, and hence dt = f∗(t) for all t.
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3 Estimating the Location of a Maximum

3.1 Consistency

Let Yij and wi, i = 1, . . . , p, j = 1, . . . , ni, be as described in Section 1. Suppose that the value
of k0 is unknown and one wishes to estimate it in some rational manner. The (weighted) least
squares estimate of k0 may be determined by assuming that k0 = k for each k = 1, . . . , p and
finding the (weighted) least squares estimates of the µi, say µ̂i(k) under this assumption. Let
SS(k) be the corresponding error sum of squares, i.e.

SS(k) =
∑
i

∑
j

(Yij − µ̂i(k))2wi

The estimated value of k0 is then that value of k which minimizes SS(k).
If we assume that the mode is a strict one, i.e. that

µ1 ≤ µ2 ≤ . . . ≤ µk0−1 < µk0 > µk0+1 ≥ . . . ≥ µp , (4)

then it is not hard to demonstrate that this procedure yields a consistent estimate of k0. We
will not go into the details here.
There are other “obvious” ways of estimating the location of the maximum of a theoretical
function underlying an observed data set. These include using the maximum of a fitted quadratic
function or the single knot of a fitted “broken stick” (piecewise linear) model. The performance
of unimodal isotonic regression is compared with these and other methods in [2].

3.2 Estimating a maximum in Iso

For a given data set, the Iso function ufit (“unimodal fit”) calculates the best (least squares)
unimodal fit with mode at a specified location given by the argument lmode (“location of mode”).
If lmode is unspecified (i.e. left with its default value of NULL) then ufit searches over all possible
modal locations and chooses that which yields the minimal error sum of squares.
The search is feasible since there are a finite and limited number of possibilities for the modal
location. If the largely notional “predictor” vector is x then the possible modal locations are
x[i], with i running from 1 to n = length(x) and (x[i] + x[i+1])/2 with i running from
1 to n-1. Note that all possible modal locations that are strictly between x[i] and x[i+1] are
equivalent, so we restrict attention to the midpoints.
The possibilities are even more limited than that, however. Suppose that the optimal mode is
at x[i] with i > 1. This says that the correponding isotoniation of y, y* say, is increasing on
x[1] to x[i] and decreasing on x[i] to x[n]. Let the corresponding error sum of squares be
SSEi. Now consider the isotonisation of y with respect to the unimodal structure with mode at
(x[i-1]+x[i])/2, say y** and let the corresponding error sum of squares be SSEi−0.5. Note
that y* satisfies the unimodal constraint that y** has to satisfy and hence SSEi−0.5 ≤ SSEi.
But SSEi is minimal over all possible modal locations, whence SSEi ≤ SSEi−0.5 and so SSEi is
equal to SSEi−0.5.
If the optimal mode is at x[1] then similar reasoning shows that SSE1 is equal to SSE1.5. Thus
to find the optimal mode we need only search over the “half-points” (x[i] + x[i+1])/2, i

running from 1 to n-1

If values of y are only meaningful at x[1], . . . , x[n], e.g. if the values of y are some sort of annual
amount or annual maximum, then the “half-points” only constitute a computational device and
the optimal mode would be said to occur at the “whole-point” x[i] having the co-minimal value
of SSE.
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Note that if in searching over the “half-points” we find the minimal sum of squares to be at
(x[i] + x[i+1])/2, then either x[i] or x[i+1] will give rise to a co-minimal value of SSE.
Letting y* be the isotonisation of y corresponding to a mode at (x[i] + x[i+1])/2, we see
that if y*[i] ≥ y*[i+1] then y* is also the isotonisation of y corresponding to a mode at x[i].
In this case x[i] will be an optimal modal location. Likewise if y*[i] ≤ y*[i+1] then y* is
also the isotonisation of y corresponding to a mode at x[i+1]. In this case x[i+1] will be an
optimal modal location.
If y consists of response values which can be observed over a continuum of x values but which
was observed only at x[1], . . . , x[n], then it is meaningful for the response in question to have
a mode at a “half-point”. In this case there is ambiguity — there are always (at least) two
“optimal” modal locations.
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Figure 1: Unimodal isotonisation of growth vigour for each of five stands of spruce trees over
the years 1965 to 1987. The black line represents the optimal unimodal isotonic fit. The red +
symbols represent the raw data.

3.3 Examples

Consider the data set vigour which is included in the Isopackage. We can find the optimal
location of maximum vigour over the years 1965 to 1987 for each stand. The code to fit the
isotonic models and plot the graphs of the fits follows. The resulting plots are shown in Figure 1.

> par(mfrow=c(3,2),mar=c(4,4,3,1))

> for(i in 2:6) {

+ plot(ufit(vigour[,i],x=vigour[,1]),type="l",ylim=c(0,0.3),

+ xlab="year",ylab="vigour",main=paste("stand",i-1),cex.main=1.5)

+ points(vigour[,1],vigour[,i],pch="+",col="red")

+ }
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Note that in this setting the “vigour” values are determined in terms of an annual growth cycle
whence they make sense only for integrer values of “year”. Hence “half=point” modes are not
meaningful.
It may also be of interest to look for the optimal unimodal fit to the mean, over stands. A plot
of the resulting fit is shown in Figure 2.

> xm <- apply(vigour[,2:6],1,mean)

> par(mar=c(4,4,3,1))

> plot(ufit(xm,x=vigour[,1]),type="l",ylim=c(0,0.3),

+ xlab="year",ylab="vigour",main="Mean over stands",cex.main=1.5)

> points(vigour[,1],xm,pch=22,col="red")

> for(i in 2:6) points(vigour[,1],vigour[,i],pch="+",col="blue")

1965 1970 1975 1980 1985

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Mean over stands

year

vi
go

ur

+

+ +

+ +

+
+ +

+

+
+

+ +

+

+
+

+

+

+

+
+

+

+

+

+

+ + +

+

+ +
+

+ +

+

+ +
+

+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+
+

+

+ +

+
+ +

+

+ +
+

+

+

+

+

+

+ +

+
+

+

+
+

+
+ +

+ +
+

+ +

+
+

+
+ + +

+

+

+
+

+

+

+ + +
+ +

+
+ +

+ +

+

+

+
+

+

+
+

Figure 2: Unimodal isotonisation of the mean growth vigour over five stands of spruce trees for
the years 1965 to 1987. The black line represents the optimal unimodal isotonic fit. The blue 2
symbols represent the raw means. The red + symbols represent the data for all of the individual
stands.
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