Package 'JSM'

September 4, 2020

Type Package Title Semiparametric Joint Modeling of Survival and Longitudinal Data Version 1.0.1 Date 2020-07-22 Author Cong Xu, Pantelis Z. Hadjipantelis and Jane-Ling Wang Maintainer Cong Xu <helenxu1112@gmail.com> Description Maximum likelihood estimation for the semiparametric joint modeling of survival and longitudinal data. Refer to the Journal of Statistical Software article: <doi:10.18637/jss.v093.i02>. License BSD_3_clause + file LICENSE **Imports** Rcpp (>= 0.11.5) LinkingTo Rcpp, RcppEigen NeedsCompilation yes Depends R (>= 3.0.0), nlme, splines, statmod, survival Suggests testthat LazyData true **Repository** CRAN

R topics documented:

Date/Publication 2020-09-03 22:22:30 UTC

aids	2
confint	3
dataPreprocess	4
epilepsy	5
fitted	6
jmodelMult	
jmodelMultObject	
jmodelTM	
jmodelTMObject	
liver	18

																																									25
residuals	•	•	•	•	•	•	•	•	•	•	·	·	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
ranef			•		•	•		•			•	•	•		•	•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•		•		•		•	22
pbc			•								•	•	•		•	•							•	•	•	•	•	•		•			•	•					•	•	21
liver.surv .	•			•												•												•		•									•	•	20
liver.long .																																									

Index

aids

ddI versus ddC in HIV-infected Patients

Description

A randomized clinical trial in which both survival and longitudinal data were collected to compare the efficacy and safety of two antiretroviral drugs, namely ddI (didanosine) and ddC (zalcitabine), in treating HIV-infected patients intolerant or failing zidovudine (AZT) therapy.

Format

A data frame with 1405 observations on the following 12 variables.

ID patient ID, there are 467 patients in total.

Time survival time, i.e. time to death or censoring.

death death indicator: 0 denotes censoring; 1 denotes death.

obstime time points at which the longitudinal measurements, i.e. CD4 cell counts, are recorded.

CD4 CD4 cell counts measured at obstime.

drug drug indicator with two levels: ddI and ddC.

gender gender indicator with two levels: male and female.

prevDiag AIDS diagnosis at study entry indicator with two levels: AIDS and noAIDS.

AZT AZT intolerance/failure indicator with two levels: intolerance and failure.

- start same with obstime, starting time of the interval which contains the time of the CD4 cell count measurement.
- stop ending time of the interval which contains the time of the CD4 cell count measurement.
- event event indicator suggesting whether the event-of-interest, i.e. death, happens in the interval given by start and stop.

Source

Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L. and Abrams, D. (1996) Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. *Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology* **11**, 161–169.

confint

References

Guo, X. and Carlin, B. (2004) Separate and joint modeling of longitudinal and event time data using standard computer packages. *The American Statistician* **58**, 16–24.

Xu, C., Baines, P. D. and Wang, J. L. (2014) Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics* **15**, 731–744

Examples

head(aids)

confint

Obtain Confidence Intervals for Joint Model Parameters

Description

confint is a generic function which computes confidence intervals for parameters in models fitted by jmodelTM() or jmodelMult().

Usage

```
## S3 method for class 'jmodelTM'
confint(object, parm, level = 0.95, ...)
## S3 method for class 'jmodelMult'
confint(object, parm, level = 0.95, ...)
```

Arguments

object	an object inheriting from class jmodelTM or jmodelMult.
parm	a specification of which parameters are to be given confidence intervals. As currently implemented, always give confidence intervals for all regression coef- ficients.
level	the confidence level required.
	additional arguments required. None is used in this method.

Value

A list consists of the following components:

infoLong	a matrix with columns giving parameter estimates as well as their lower and up- per confidence limits for the regression parameters of the longitudinal process.
infoSurv	a matrix with columns giving parameter estimates as well as their lower and upper confidence limits for the regression parameters of the survival process.
level	the confidence level used in computing the confidence limits.

Author(s)

Cong Xu <helenxu1112@gmail.com>

Examples

```
## Not run:
fitLME <- lme(proth ~ Trt * obstime, random = ~ 1 | ID, data = liver)
fitCOX <- coxph(Surv(start, stop, event) ~ Trt, data = liver, x = TRUE)
fitJT.ph <- jmodelTM(fitLME, fitCOX, liver, timeVarY = 'obstime')
# 95% confidence intervals for the joint model parameters
confint(fitJT.ph)
## End(Not run)
```

dataPreprocess Preprocess Data to Be Fed into Joint Models

Description

dataPreprocess is a function to preprocess data to be used in fitting joint models. Suppose the situation is that the longitudinal measurements are recorded in a data frame with one row per measurement and the survival information are recorded in another data frame with one row per subject. This function merges the two data frames by subject identification and generate three new columns: start, stop, event. See **Value**.

Usage

Arguments

long	a data frame for the longitudinal data, one row per measurment, with subject identification, time of measurement, and longitudinal measurements, etc.
surv	a data frame for the survival data, one row per subject, with subject identification (column name should match that in long), possibly censored time-to-event, and event indicator (normally 0=censored, 1=event), etc.
id.col	a character string specifying the subject identification column in both long and surv.
long.time.col	a character string specifying the time of measurement column in long.
<pre>surv.time.col</pre>	a character string specifying the possibly censored time-to-event column in surv.
<pre>surv.event.col</pre>	a character string specifying the event status column in surv.
surv.event.ind	icator
	a list specifying the values in column surv.event.col corresponding to censored and event status.
suffix	a optional character string specifying the suffix to be added to the start, stop, event columns in case long or surv already have columns with these names.

4

epilepsy

Value

A data frame merging long and surv by subject identification, with one row per longitudinal measurment, and generate three new columns: start, stop, event (column names are added with suffix specified by suffix:

start starting time of the interval which contains the time of the longitudinal measurements.

stop ending time of the interval which contains the time of the longitudinal measurements.

event event indicator suggesting whether the event-of-interest, e.g. death, happens in the interval given by start and stop.

Note

1. If long and surv have columns sharing the same column names, the columns from long and surv would be named with suffixes ".long" and ".surv", respectively, in the output data frame. 2. The time of measurement of the longitudinal measurements and possibly censored time-to-event should be recorded consistently for each subject, i.e. time 0 means the same time point for the longitudinal and survival measurements.

Author(s)

Cong Xu <helenxu1112@gmail.com>

Examples

Not run: liver.join <- dataPreprocess(liver.long, liver.surv, 'ID', 'obstime', 'Time', 'death')</pre>

End(Not run)

epilepsy

CBZ versus LTG in Epilepsy Patients

Description

A randomised control trial, the SANAD (standard and new antiepileptic drugs) study, in which both survival and longitudinal data were collected to investigate the effect of drug titration on the relative effects of two antiepileptic drugs, namely CBZ (carbamazepine, a standard drug) and LTG (lamotrigine, a new drug), on treatment failure. Treatment failure, i.e. withdrawal of the randomized drug, is the event of interest. Two main reasons for withdrawal are unacceptable adverse effects (UAE) and inadequate seizure control (ISC).

Format

A data frame with 2797 observations on the following 16 variables.

ID patient ID, there are 605 patients in total.

Time survival time, i.e. time to withdrawal or censoring.

withdraw withdrawal indicator: 0 denotes censoring; 1 denotes withdrawal.

withdrawUAE withdrawal due to UAE indicator: 1 denotes withdrawal due to UAE; 0 otherwise.

withdrawISC withdrawal due to ISC indicator: 1 denotes withdrawal due to ISC; 0 otherwise.

obstime time points at which the longitudinal measurements, i.e. the dose, are recorded.

dose calibrated dose measured at obstime.

drug drug indicator with two levels: CBZ and LTG.

age age of patient at study entry.

gender gender indicator with two levels: male and female.

disab learning disability indicator with two levels: No and Yes.

start same with obstime, starting time of the interval which contains the time of the dose measurement.

stop ending time of the interval which contains the time of the dose measurement.

- event event indicator suggesting whether the event-of-interest, i.e. withdrawal, happens in the interval given by start and stop.
- eventUAE event indicator suggesting whether the event-of-interest, i.e. withdrawal due to UAE, happens in the interval given by start and stop.
- eventISC event indicator suggesting whether the event-of-interest, i.e. withdrawal due to ISC, happens in the interval given by start and stop.

Source

Marson, A. G., AI-Kharusi, A. M., Alwaidh, M., Appleton, R., Baker, G. A., Chadwick, D. W., Cramp, C., Cockerell, O. C. Cooper, P. N., Doughty, J. et al. (2007) The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. *The Lancet* **369**, 1000–1015.

References

Williamson P. R., Kolamunnage-Dona R., Philipson P. and Marson A. G. (2008) Joint modelling of longitudinal and competing risks data. *Statistics in Medicine* **27**, 6426–6438.

Examples

head(epilepsy)

fitted

Extract Fitted Values for Joint Models

Description

fitted is a generic function which extracts fitted values from objects returned by jmodelTM() or jmodelMult().

fitted

Usage

Arguments

object	an object inheriting from class jmodelTM or jmodelMult.
process	for which process the fitted values are calculated, i.e. the longitudinal or the survival process.
type	what type of fitted values to calculate for each process. See Details.
	additional arguments required. None is used in this method.

Details

We have implemented the fitted value calculation for process = "Longitudinal" but not for process = "Survival" yet as they are not well defined under the joint modeling setting. There are two types of fitted values depending on whether to compute the values conditional on the random effects. With type = "Marginal", the fitted values are $\mathbf{X}_i^{\top}(t)\boldsymbol{\beta}$ for objects returned by jmodelTM() and $\mathbf{B}^{\top}(t)\boldsymbol{\gamma}$ for objects returned by jmodelMult(). With type = "Conditional", the fitted values are $\mathbf{X}_i^{\top}(t)\boldsymbol{\beta} + \mathbf{Z}_i^{\top}(t)\mathbf{b}_i$ for objects returned by jmodelTM() and $b_i \times \mathbf{B}^{\top}(t)\boldsymbol{\gamma}$ for objects returned by jmodelTM().

Value

A numeric vector of fitted values.

Author(s)

Cong Xu <helenxu1112@gmail.com>

Examples

```
## Not run:
fitLME <- lme(proth ~ Trt * obstime, random = ~ 1 | ID, data = liver)
fitCOX <- coxph(Surv(start, stop, event) ~ Trt, data = liver, x = TRUE)
fitJT.ph <- jmodelTM(fitLME, fitCOX, liver, timeVarY = 'obstime')
# fitted values for the longitudinal process
fitted(fitJT.ph, type = "Conditional")
## End(Not run)
```

jmodelMult

Semiparametric Joint Models for Survival and Longitudinal Data with Nonparametric Multiplicative Random Effects

Description

This function applies a maximum likelihood approach to fit the semiparametric joint models of survival and normal longitudinal data. The survival model is assumed to come from a class of transformation models, including the Cox proportional hazards model and the proportional odds model as special cases. The longitudinal process is modeled by nonparametric multiplicative random effects (NMRE) model.

Usage

Arguments

fitLME	an object inheriting from class 1me representing a fitted nonparametric multi- plicative random effects model. See Details and Note and Examples .
fitCOX	an object inheriting from class $coxph$ representing a fitted Cox proportional haz- ards regression model. Specifying x = TRUE is required in the call to $coxph()$ to include the design matrix in the object fit. See Note .
data	a data.frame containing all the variables included in the joint modeling. See Note .
model	an indicator specifying the dependency between the survival and longitudinal outcomes. Default is 1. See Details .
rho	a nonnegative real number specifying the transformation model you would like to fit. Default is 0, i.e. the Cox proportional hazards model. See Details .
timeVarY	a character string indicating the time variable in the NMRE model. See Exam- ples .
timeVarT	a character string indicating the time variable in the coxph object. Normally it is NULL. See Note and Examples .
control	a list of control values for the estimation algorithm with components:
	tol.P tolerance value for convergence in the parameters with default value 1e-03. See Details .
	tol.L tolerance value for convergence in the log-likelihood with default value 1e-06. See Details .
	max.iter the maximum number of EM iterations with default value 250.
	SE.method a character string specifying the standard error estimation method. Default is "PRES". See Details and Note .
	delta a positive value used for numerical differentiation in the SE.method. Default is 1e-05 if "PRES" is used and 1e-03 otherwise. See Details .

nknot the number of Gauss-Hermite quadrature knots used to approximate the integrals over the random effects. Under the nonparametric multiplicative random effects model, there are only one-dimensional integrations and the default for nknot is 11.

additional options to be passed to the control argument.

Details

. . .

The jmodelMult function fits joint models for survival and longitudinal data. Nonparametric multiplicative random effects models (NMRE) are assumed for the longitudinal processes. With the Cox proportional hazards model and the proportional odds model as special cases, a general class of transformation models are assumed for the survival processes. The baseline hazard functions are left unspecified, i.e. no parametric forms are assumed, thus leading to semiparametric models. For detailed model formulation, please refer to Xu, Hadjipantelis and Wang (2017).

The longitudinal model (NMRE) is written as

$$Y_i(t) = \mu_i(t) + \varepsilon_i(t) = b_i \times \mathbf{B}^+(t)\boldsymbol{\gamma} + \varepsilon_i(t)$$

where $\mathbf{B}(t) = (B_1(t), \dots, B_L(t))$ is a vector of B-spline basis functions and b_i is a random effect $\sim \mathcal{N}(1, \sigma_b^2)$. Note that we also allow the inclusion of baseline covariates as columns of $\mathbf{B}(t)$. If model = 1, then the linear predictor for the survival model is expressed as

$$\eta(t) = \mathbf{W}_i^{\top}(t)\boldsymbol{\phi} + \alpha \mu_i(t),$$

indicating that the entire longitudinal process (free of error) enters the survival model as a covariate. If other values are assigned to the model argument, the linear predictor for the surival model is then expressed as

$$\eta(t) = \mathbf{W}_i^{\top}(t)\boldsymbol{\phi} + \alpha b_i,$$

suggesting that the survival and longitudinal models only share the same random effect.

The survival model is written as

$$\Lambda(t|\eta(t)) = G\left[\int_0^t \exp\{\eta(s)\} d\Lambda_0(s)\right],$$

where $G(x) = \log(1 + \rho x)/\rho$ with $\rho \ge 0$ is the class of logarithmic transformations. If rho = 0, then G(x) = x, yielding the Cox proportional hazards model. If rho = 1, then $G(x) = \log(1 + x)$, yielding the proportional odds model. Users could assign any nonnegative real value to rho.

An expectation-maximization (EM) algorithm is implemented to obtain parameter estimates. The convergence criterion is either of (i) max{ $|\theta^{(t)} - \theta^{(t-1)}| / (|\theta^{(t-1)}| + .Machine \$double.eps \times 2)$ } < tol.P, or (ii) $|L(\theta^{(t)}) - L(\theta^{(t-1)})| / (|L(\theta^{(t-1)})| + .Machine \$double.eps \times 2) < tol.L$, is satisfied. Here $\theta^{(t)}$ and $\theta^{(t-1)}$ are the vector of parameter estimates at the *t*-th and (t-1)-th EM iterations, respectively; $L(\theta)$ is the value of the log-likelihood function evaluated at θ . Users could specify the tolerance values tol.P and tol.L through the control argument.

For standard error estimation for the parameter estimates, three methods are provided, namely "PRES", "PFDS" and "PLFD" (detailed information are referred to Xu, Baines and Wang (2014)). In the control argument, if SE.method = "PRES", numerically differentiating the profile Fisher score vector with Richardson extrapolation is applied; if SE.method = "PFDS", numerically differentiating the profile Fisher score vector with forward difference is applied; if SE.method = "PLFD",

numerially (second) differentiating the profile likelihood with forward difference is applied. Generally, numerically differentiating a function f(x) (an arbitrary function) with forward difference is expressed as

$$f'(x) = \frac{f(x+\delta) - f(x)}{\delta},$$

and that with Richardson extrapolation is expressed as

$$f'(x) = \frac{f(x - 2\delta) - 8f(x - \delta) + 8f(x + \delta) - f(x + 2\delta)}{12\delta}.$$

Users could specify the value of δ through the delta item in the control argument.

Value

See jmodelMultObject for the components of the fit.

Note

1. To fit a nonparametric multiplicative random effects model, the fixed effect in the fitLME object should be a matrix of B-spline basis functions (an object from the bs function) with the possibility of including baseline covariates and the random effect should only include a random intercept. In the bs function, it is a good practice to specify the boundary knots through the Boundary.knots argument, where the upper boundary knot is typically the longest follow-up time among all subjects. See **Examples**.

2. Currently, jmodelMult() could only handle the fitLME object with a simple random-effects structure (only the pdDiag() class). Moreover, the within-group correlation and heteroscedasticity structures in the fitLME object (i.e. the correlation and weights argument of lme()) are ignored.

3. The data argument in jmodelMult(), lme() and coxph() should be the same data frame.

4. For the fitCOX object, only the $W_i(t)$ in the linear predictor $\eta(t)$ for the survial model (see **Details**) should be involved in the formula argument of coxph{}. Since coxph() uses the same data frame as lme() does, a time-dependent Cox model must be fitted by coxph() although $W_i(t)$ may only contain time-independent covariates. See **Examples**.

5. If $W_i(t)$ in the linear predictor $\eta(t)$ for the survial model (see **Details**) does involve timedependent covariate, then timeVarT must specify the name of the time variable involved (see **Ex-amples**).

6. The standard error estimates are obtained by numerical approximations which is naturally subject to numerical errors. Therefore, in extreme cases, there may be NA values for part of the standard error estimates.

Author(s)

Cong Xu <helenxu1112@gmail.com> Pantelis Z. Hadjipantelis <pantelis@ucdavis.edu>

References

Dabrowska, D. M. and Doksun K. A. (1988) Partial Likelihood in Transformation Models with Censored Data. *Scandinavian Journal of Statistics* **15**, 1–23.

jmodelMult

Ding, J. and Wang, J. L. (2008) Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. *Biometrics* **64**, 546–556.

Tsiatis, A. A. and Davidian, M. (2004) Joint modeling of longitudinal and time-to-event data: an overview. *Statistica Sinica* **14**, 809–834.

Xu, C., Baines, P. D. and Wang, J. L. (2014) Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics* **15**, 731–744

Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020) Semiparametric joint modeling of survival and longitudinal data: the R package JSM. *Journal of Statistical Software* <doi:10.18637/jss.v093.i02>.

Zeng, D. and Lin, D. (2007) Maximum likelihood estimation in semiparametric regression models with censored data. *Journal of the Royal Statistical Society: Series B* **69**, 507–564.

See Also

jmodelMultObject, lme, coxph, Surv, bs

Examples

```
# linear mixed-effects model fit where the fixed effect is modeled by
# quadratic B-splie basis with no internal knots
fitLME <- lme(log(serBilir) ~ bs(obstime, degree = 2, Boundary.knots = c(0, 15)),</pre>
              random = \sim 1 \mid ID, data = pbc)
# Cox proportional hazards model fit with a single time-independent covariate
fitCOX <- coxph(Surv(start, stop, event) ~ drug, data = pbc, x = TRUE)
# joint model fit which assumes the Cox proportional hazards model for the survival process
# and NMRE for the longitudinal process. Use 'max.iter = 25', 'nknot = 3' and
# the 'PFDS' method to calculate standard error estimates as a quick toy example
fitJTMult.ph <- jmodelMult(fitLME, fitCOX, pbc, timeVarY = "obstime",</pre>
                           control = list(SE.method = 'PFDS', max.iter = 25, nknot = 3))
summary(fitJTMult.ph)
## Not run:
# joint model fit with the default control
fitJTMult.ph2 <- jmodelMult(fitLME, fitCOX, pbc, timeVarY = "obstime")</pre>
summary(fitJTMult.ph2)
# joint model fit where the survival and longitudinal processes only share
# the same random effect
fitJTMult.ph3 <- jmodelMult(fitLME, fitCOX, pbc, model = 2, timeVarY = "obstime")</pre>
summary(fitJTMult.ph3)
# joint model fit which assumes the proportional odds model for the survival process
# and NMRE model for the longitudinal process
fitJTMult.po <- jmodelMult(fitLME, fitCOX, pbc, rho = 1, timeVarY = "obstime")</pre>
summary(fitJTMult.po)
# joint model fit where the survival and longitudinal processes only share
# the same random effect
fitJTMult.po2 <- jmodelMult(fitLME, fitCOX, pbc, model = 2, rho = 1, timeVarY = "obstime")</pre>
summary(fitJTMult.po2)
```

allow baseline covariates in the NMRE model for the longitudinal process

jmodelMultObject Fitted jmodelMult Object

Description

An object returned by the jmodelMult function, inheriting from class jmodelMult and representing a fitted joint model for survival and longitudinal data. Objects of this class have methods for the generic functions AIC, BIC, logLik, print, summary, and vcov.

Value

The following components must be included in a legitimate jmodelMult object.

- coefficients a list with the estimated parameters. The list is consist of the following components:
- **gamma** the vector of estimated coefficients for the B-spline basis functions in the nonparametric multiplicative random effects model.
- **phi** the vector of estimated coefficients for the covariates other than the covariate associated with the longitudinal process in the survival model.
- **alpha** the estimated coefficient for the covariate associated with the longitudinal process in the survival model.
- Ysigma the estimated measurement error standard deviation for the linear mixed-effects model.

Bsigma the estimated variance-covariance matrix of the random effects.

- **lamb** a numeric matrix with two columns: the first column contains the unique observed survival times in ascending order; the second column contains the corresponding estimated baseline hazard values.
- Vcov the variance-covariance matrix evaluated at the estimated parameter values.
- logLik the log-likelihood (the joint likelihood) value.
- est.bi the estimated values for the random effects

jmodelTM

call	a list containing an image of the jmodelTM call that produced the object.
numIter	the number of iterations used in the EM algorithm.
convergence	the convergence indicator: if "failure", usually more iterations are required.
control	the value of the control argument passed to jmodelTM.
time.SE	the CPU time used to compute the standard error estimates, i.e. the time use to compute the variance-covariance matrix for the parameter estimates.
Ν	the total number of repeated measurements for the longitudinal outcome.
n	the number of sample units.
d	the censoring indicator: 0 denotes censored survival time; 1 denotes observed survival time.
rho	the transformation parameter used for the survival model.

Author(s)

Cong Xu <helenxu1112@gmail.com> Pantelis Z. Hadjipantelis <pantelis@ucdavis.edu>

See Also

jmodelMult

jmodelTM

Semiparametric Joint Models for Survival and Longitudinal Data

Description

This function applies a maximum likelihood approach to fit the semiparametric joint models of survival and normal longitudinal data. The survival model is assumed to come from a class of transformation models, including the Cox proportional hazards model and the proportional odds model as special cases. The longitudinal process is modeled by liner mixed-effects models.

Usage

```
jmodelTM(fitLME, fitCOX, data, model = 1, rho = 0, timeVarY = NULL,
        timeVarT = NULL, control = list(), ...)
```

Arguments

fitLME	an object inheriting from class lme representing a fitted linear mixed-effects model. See Note .
fitCOX	an object inheriting from class coxph representing a fitted Cox proportional haz- ards regression model. Specifying x = TRUE is required in the call to coxph() to include the design matrix in the object fit. See Note .
data	a data.frame containing all the variables included in the joint modeling. See Note .

model	an indicator specifying the dependency between the survival and longitudinal outcomes. Default is 1. See Details .
rho	a nonnegative real number specifying the transformation model you would like to fit. Default is 0, i.e. the Cox proportional hazards model. See Details .
timeVarY	a character string indicating the time variable in the linear mixed-effects model. See Examples .
timeVarT	a character string indicating the time variable in the coxph object. Normally it is NULL. See Note and Examples .
control	a list of control values for the estimation algorithm with components:
	tol.P tolerance value for convergence in the parameters with default value 1e-03. See Details .
	tol.L tolerance value for convergence in the log-likelihood with default value 1e-06. See Details .
	max.iter the maximum number of EM iterations with default value 250.
	SE.method a character string specifying the standard error estimation method. Default is "PRES". See Details and Note .
	delta a positive value used for numerical differentiation in the SE.method. Default is 1e-05 if "PRES" is used and 1e-03 otherwise. See Details .
	nknot the number of Gauss-Hermite quadrature knots used to approximate the integrals over the random effects. Default is 9 and 7 for one- and two-dimensional integration, respectively, and 5 for those with higher dimensions.
	additional options to be passed to the control argument.

Details

The jmodelTM function fits joint models for survival and longitudinal data. Linear mixed-effects models are assumed for the longitudinal processes. With the Cox proportional hazards model and the proportional odds model as special cases, a general class of transformation models are assumed for the survival processes. The baseline hazard functions are left unspecified, i.e. no parametric forms are assumed, thus leading to semiparametric models. For detailed model formulation, please refer to Xu, Baines and Wang (2014).

The longitudinal model is written as

$$Y_i(t) = \mu_i(t) + \varepsilon_i(t) = \mathbf{X}_i^{\top}(t)\boldsymbol{\beta} + \mathbf{Z}_i^{\top}(t)\mathbf{b}_i + \varepsilon_i(t).$$

, then the linear predictor for the survival model is expressed as

$$\eta(t) = \mathbf{W}_i^{\top}(t)\boldsymbol{\phi} + \alpha \mu_i(t),$$

-

indicating that the entire longitudinal process (free of error) enters the survival model as a covariate. If other values are assigned to the model argument, the linear predictor for the surival model is then expressed as

$$\eta(t) = \mathbf{W}_i^{\mathsf{T}}(t)\boldsymbol{\phi} + \alpha \mathbf{Z}_i^{\mathsf{T}}(t)\mathbf{b}_i,$$

suggesting that the survival and longitudinal models only share the same random effects.

jmodelTM

The survival model is written as

$$\Lambda(t|\eta(t)) = G\left[\int_0^t \exp \eta(s) d\Lambda_0(s)\right],$$

where $G(x) = \log(1 + \rho x)/\rho$ with $\rho \ge 0$ is the class of logarithmic transformations. If rho = 0, then G(x) = x, yielding the Cox proportional hazards model. If rho = 1, then $G(x) = \log(1 + x)$, yielding the proportional odds model. Users could assign any nonnegative real value to rho.

An expectation-maximization (EM) algorithm is implemented to obtain parameter estimates. The convergence criterion is either of (i) $\max\{|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t-1)}|/(|\boldsymbol{\theta}^{(t-1)}| + .Machine\$double.eps \times 2)\} < tol.P,$ or (ii) $|L(\boldsymbol{\theta}^{(t)}) - L(\boldsymbol{\theta}^{(t-1)})|/(|L(\boldsymbol{\theta}^{(t-1)})| + .Machine\$double.eps \times 2) < tol.L$, is satisfied. Here $\boldsymbol{\theta}^{(t)}$ and $\boldsymbol{\theta}^{(t-1)}$ are the vector of parameter estimates at the *t*-th and (t-1)-th EM iterations, respectively; $L(\boldsymbol{\theta})$ is the value of the log-likelihood function evaluated at $\boldsymbol{\theta}$. Users could specify the tolerance values tol.P and tol.L through the control argument.

For standard error estimation for the parameter estimates, three methods are provided, namely "PRES", "PFDS" and "PLFD" (detailed information are referred to Xu, Baines and Wang (2014)). In the control argument, if SE.method = "PRES", numerically differentiating the profile Fisher score vector with Richardson extrapolation is applied; if SE.method = "PFDS", numerically differentiating the profile Fisher score vector with forward difference is applied; if SE.method = "PLFD", numerically (second) differentiating the profile likelihood with forward difference is applied. Generally, numerically differentiating a function f(x) (an arbitrary function) with forward difference is expressed as

$$f'(x) = \frac{f(x+\delta) - f(x)}{\delta}$$

and that with Richardson extrapolation is expressed as

$$f'(x) = \frac{f(x-2\delta) - 8f(x-\delta) + 8f(x+\delta) - f(x+2\delta)}{12\delta}.$$

Users could specify the value of δ through the delta item in the control argument.

Value

See jmodelTMObject for the components of the fit.

Note

1. Currently, jmodelTM() could only handle the fitLME object with a simple random-effects structure (only the pdDiag() class). Moreover, the within-group correlation and heteroscedasticity structures in the fitLME object (i.e. the correlation and weights argument of lme()) are ignored.

2. The data argument in jmodelTM(), lme() and coxph() should be the same data frame.

3. For the fitCOX object, only the $W_i(t)$ in the linear predictor $\eta(t)$ for the survial model (see **Details**) should be involved in the formula argument of coxph{}. Since coxph() uses the same data frame as lme() does, a time-dependent Cox model must be fitted by coxph() although $W_i(t)$ may only contain time-independent covariates. See **Examples**.

4. If $W_i(t)$ in the linear predictor $\eta(t)$ for the survial model (see **Details**) does involve timedependent covariate, then timeVarT must specify the name of the time variable involved. See **Examples**. 5. The standard error estimates are obtained by numerical approximations which is naturally subject to numerical errors. Therefore, in extreme cases, there may be NA values for part of the standard error estimates.

Author(s)

Cong Xu <helenxu1112@gmail.com> Pantelis Z. Hadjipantelis <pantelis@ucdavis.edu>

References

Dabrowska, D. M. and Doksun K. A. (1988) Partial Likelihood in Transformation Models with Censored Data. *Scandinavian Journal of Statistics* **15**, 1–23.

Tsiatis, A. A. and Davidian, M. (2004) Joint modeling of longitudinal and time-to-event data: an overview. *Statistica Sinica* **14**, 809–834.

Wulfsohn, M. S. and Tsiatis, A. A. (1997) A joint model for survival and longitudinal data measured with error. *Biometrics* **53**, 330–339.

Xu, C., Baines, P. D. and Wang, J. L. (2014) Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics* **15**, 731–744.

Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020) Semiparametric joint modeling of survival and longitudinal data: the R package JSM. *Journal of Statistical Software* <doi:10.18637/jss.v093.i02>.

Zeng, D. and Lin, D. (2007) Maximum likelihood estimation in semiparametric regression models with censored data. *Journal of the Royal Statistical Society: Series B* **69**, 507–564.

See Also

jmodelTMObject, lme, coxph, Surv

Examples

```
# linear mixed-effects model fit with random intercept
fitLME <- lme(sqrt(CD4) ~ obstime + I(obstime ^ 2) + drug : obstime + drug : I(obstime ^ 2),</pre>
              random = \sim 1 | ID, data = aids)
# Cox proportional hazards model fit with a single time-independent covariate
fitCOX <- coxph(Surv(start, stop, event) ~ drug, data = aids, x = TRUE)</pre>
# joint model fit which assumes the Cox proportional hazards model for the survival process
# Use 'max.iter = 5', 'nknot = 3' and the 'PFDS' method to calculate standard
# error estimates as a quick toy example
fitJT.ph <- jmodelTM(fitLME, fitCOX, aids, timeVarY = 'obstime',</pre>
                     control = list(SE.method = 'PFDS', max.iter = 5, nknot = 3))
summary(fitJT.ph)
## Not run:
# joint model fit with the default control
fitJT.ph2 <- jmodelTM(fitLME, fitCOX, aids, timeVarY = 'obstime')</pre>
summary(fitJT.ph2)
# joint model fit where the survival and longitudinal processes only share
# the same random effect
fitJT.ph3 <- jmodelTM(fitLME, fitCOX, aids, model = 2, timeVarY = 'obstime')</pre>
```

jmodelTMObject

```
summary(fitJT.ph3)
```

```
# joint model fit which assumes the proportional odds model for the survival process
fitJT.po <- jmodelTM(fitLME, fitCOX, aids, rho = 1, timeVarY = 'obstime')</pre>
summary(fitJT.po)
# joint model fit where the survival and longitudinal processes only share
# the same random effect
fitJT.po2 <- jmodelTM(fitLME, fitCOX, aids, model = 2, rho = 1, timeVarY = 'obstime')
summary(fitJT.po2)
# linear mixed-effects model fit with random intercept and random slope
fitLME2 <- lme(sqrt(CD4) ~ drug + obstime + I(obstime ^ 2) + drug : obstime +</pre>
               drug : I(obstime ^2), random = ~ obstime | ID, data = aids)
# Cox proportional hazards model fit with a time-dependent covariate
fitCOX2 <- coxph(Surv(start, stop, event) ~ drug + as.numeric(drug) : obstime,
                 data = aids, x = TRUE)
# joint model fit in which \code{timeVarT} must be specified
fitJT.ph4 <- jmodelTM(fitLME2, fitCOX2, aids, timeVarY = 'obstime', timeVarT = 'obstime')
summary(fitJT.ph4)
```

End(Not run)

jmodelTMObject Fitted jmodelTM Object

Description

An object returned by the jmodelTM function, inheriting from class jmodelTM and representing a fitted joint model for survival and longitudinal data. Objects of this class have methods for the generic functions AIC, BIC, logLik, print, summary, and vcov.

Value

The following components must be included in a legitimate jmodelTM object.

coefficients a list with the estimated parameters. The list is consist of the following components:

beta the vector of estimated coefficients for the fixed effects in the linear mixed-effects model.

- **phi** the vector of estimated coefficients for the covariates other than the covariate associated with the longitudinal process in the survival model.
- **alpha** the estimated coefficient for the covariate associated with the longitudinal process in the survival model.

Ysigma the estimated measurement error standard deviation for the linear mixed-effects model.

BSigma the estimated variance-covariance matrix of the random effects.

lamb a numeric matrix with two columns: the first column contains the unique observed survival times in ascending order; the second column contains the corresponding estimated baseline hazard values.

Vcov	the variance-covariance matrix evaluated at the estimated parameter values.
logLik	the log-likelihood (the joint likelihood) value.
est.bi	the estimated values for the random effects
call	a list containing an image of the jmodelTM call that produced the object.
numIter	the number of iterations used in the EM algorithm.
convergence	the convergence indicator: if "failure", usually more iterations are required.
control	the value of the control argument passed to jmodelTM.
time.SE	the CPU time used to compute the standard error estimates, i.e. the time use to compute the variance-covariance matrix for the parameter estimates.
Ν	the total number of repeated measurements for the longitudinal outcome.
n	the number of sample units.
d	the censoring indicator: 0 denotes censored survival time; 1 denotes observed survival time.
rho	the transformation parameter used for the survival model.

Author(s)

Cong Xu <helenxu1112@gmail.com> Pantelis Z. Hadjipantelis <pantelis@ucdavis.edu>

See Also

jmodelTM

liver

Prednisone versus Placebo in Liver Cirrhosis Patients

Description

A randomized control trial in which both survival and longitudinal data were collected to examine the development of prothrombin index over time and its relationship with the survival outcome. 488 patients were randomly allocated to prednisone (251) or placebo (237) and followed until death or end of the study.

Format

A data frame with 2968 observations on the following 9 variables.

ID patient ID, there are 488 patients in total.

Time survival time, i.e. time to death or censoring.

death death indicator: 0 denotes censoring; 1 denotes death.

obstime time points at which the longitudinal measurements, i.e. prothrombin index, are recorded.

proth prothrombin index measured at obstime.

Trt treatment indicator with two levels: placebo and prednisone.

liver.long

- start same with obstime, starting time of the interval which contains the time of the prothrombin index measurement.
- stop ending time of the interval which contains the time of the prothrombin index measurement.
- event event indicator suggesting whether the event-of-interest, i.e. death, happens in the interval given by start and stop.

Source

Andersen, P. K., Borgan O., Gill, R. D. and Kieding, N. (1993) Statistical Models Based on Counting Processes. New York: Springer.

References

Henderson, R., Diggle, P. and Dobson, A. (2002) Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50

See Also

liver.long, liver.surv

Examples

head(liver)

liver.long

Prednisone versus Placebo in Liver Cirrhosis Patients - Longitudinal Data

Description

A randomized control trial in which both survival and longitudinal data were collected to examine the development of prothrombin index over time and its relationship with the survival outcome. 488 patients were randomly allocated to prednisone (251) or placebo (237) and followed until death or end of the study. liver.long only contains the longitudinal data of the trial, with one row per prothrombin index measurement.

Format

A data frame with 2968 observations on the following 3 variables.

ID patient ID, there are 488 patients in total.

obstime time points at which the longitudinal measurements, i.e. prothrombin index, are recorded. proth prothrombin index measured at obstime.

Source

Andersen, P. K., Borgan O., Gill, R. D. and Kieding, N. (1993) Statistical Models Based on Counting Processes. New York: Springer.

References

Henderson, R., Diggle, P. and Dobson, A. (2002) Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50

See Also

liver.liver.surv

Examples

head(liver.long)

liver.surv

Prednisone versus Placebo in Liver Cirrhosis Patients - Survival Data

Description

A randomized control trial in which both survival and longitudinal data were collected to examine the development of prothrombin index over time and its relationship with the survival outcome. 488 patients were randomly allocated to prednisone (251) or placebo (237) and followed until death or end of the study. liver.surv only contains the survival data of the trial, with one row per patient.

Format

A data frame with 488 observations on the following 4 variables.

ID patient ID, there are 488 patients in total.

Time survival time, i.e. time to death or censoring.

death death indicator: 0 denotes censoring; 1 denotes death.

Trt treatment indicator with two levels: placebo and prednisone.

Source

Andersen, P. K., Borgan O., Gill, R. D. and Kieding, N. (1993) Statistical Models Based on Counting Processes. New York: Springer.

References

Henderson, R., Diggle, P. and Dobson, A. (2002) Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50

See Also

liver.long

Examples

head(liver.surv)

Description

A randomized control trial from Mayo Clinic in which both survival and longitudinal data were collected from 1974 to 1984 to study the progression of primary biliary cirrhosis.

Format

A data frame with 1945 observations on the following 16 variables.

ID patient ID, there are 312 patients in total.

Time survival time (in years), i.e. time to death, transplantion or censoring.

death death indicator: 0 denotes transplantion or censoring; 1 denotes death.

obstime time points at which the longitudinal measurements, e.g. serum bilirubin, albumin and alkaline phosphatase, are recorded.

serBilir serum bilirubin measured at obstime (mg/dl).

albumin albumin measured at obstime (gm/dl).

alkaline alkaline phosphatase measured at obstime (U/litter).

platelets platelets per cubic measured at obstime (ml/1000).

drug drug indicator with two levels: placebo and D-penicil.

age age of patient at study entry.

gender gender indicator with two levels: male and female.

ascites ascites indicator with two levels: No and Yes.

hepatom hepatomegaly indicator with two levels: No and Yes.

- start same with obstime, starting time of the interval which contains the time of the logitudinal measurements.
- stop ending time of the interval which contains the time of the longitudinal measurements.
- event event indicator suggesting whether the event-of-interest, i.e. death, happens in the interval given by start and stop.

Source

http://lib.stat.cmu.edu/datasets/pbcseq

Fleming, T. and Harrington, D. (1991) Counting Processes and Survival Analysis. Wiley, New York.

pbc

References

Murtaugh, P. A., Dickson, E. R., Van Dam, G. M., Malincho, M., Grambsch, P. M., Langworthy, A. L., and Gips, C. H. (1994) Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits. *Hepatology* **20**, 126–134.

Therneau, T. and Grambsch, P. (2000) *Modeling Survival Data: Extending the Cox Model*. New York: Springer.

Ding, J. and Wang, J. L. (2008) Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. *Biometrics* 64, 546–556.

Examples

head(pbc)

ranef

Extract Random Effects for Joint Models

Description

ranef is a generic function which extracts random effects from objects returned by jmodelTM() or jmodelMult().

Usage

```
## S3 method for class 'jmodelTM'
ranef(object, ...)
## S3 method for class 'jmodelMult'
ranef(object, ...)
```

Arguments

object	an object inheriting from class jmodelTM or jmodelMult.
	additional arguments required. None is used in this method.

Value

A numeric matrix with rows denoting the subjects and columns the random effects.

Author(s)

Cong Xu <helenxu1112@gmail.com>

residuals

Examples

```
## Not run:
fitLME <- lme(proth ~ Trt * obstime, random = ~ 1 | ID, data = liver)
fitCOX <- coxph(Surv(start, stop, event) ~ Trt, data = liver, x = TRUE)
fitJT.ph <- jmodelTM(fitLME, fitCOX, liver, timeVarY = 'obstime')
# random effect for the joint model
ranef(fitJT.ph)
## End(Not run)
```

residuals

Extract Residuals for Joint Models

Description

residuals is a generic function which extracts residuals from objects returned by jmodelTM() or jmodelMult().

Usage

Arguments

object	an object inheriting from class jmodelTM or jmodelMult.
process	for which process the residuals are calculated, i.e. the longitudinal or the survival process.
type	what type of residuals to calculate for each process. See Details.
	additional arguments required. None is used in this method.

Details

We have implemented the residual calculation for process = "Longitudinal" but not for process = "Survival" yet as they are not well defined under the joint modeling setting. There are four types of residuals depending on whether to compute the values conditional on the random effects and whether to standardize the residuals. Please refer to Nobre and Single (2007) for details.

With type = "Marginal", the residuals are $\varepsilon_{ij} = Y_{ij} - \mathbf{X}_{ij}^{\top}\beta$ for objects returned by jmodelTM() and $\varepsilon_{ij} = Y_{ij} - \mathbf{B}^{\top}(t_{ij})\gamma$ for objects returned by jmodelMult(). With type = "Conditional",

residuals

the residuals are $\varepsilon_{ij} = Y_{ij} - \mathbf{X}_{ij}^{\top} \boldsymbol{\beta} - \mathbf{Z}_{ij}^{\top} \mathbf{b}_i$ for objects returned by jmodelTM() and $\varepsilon_{ij} = Y_{ij} - b_i \times \mathbf{B}^{\top}(t_{ij})\gamma$ for objects returned by jmodelMult(). If type = "Standardized-Marginal" or type = "Standardized-Conditional", the above defined residuals are divided by the estimated standard deviation of the corresponding error term.

Value

A numerc vector of residual values.

Author(s)

Cong Xu <helenxu1112@gmail.com>

References

Nobre, J. S. and Singer, J. M. (2007) Residuals analysis for linear mixed models. *Biometrical Journal* **49**(6), 863–875.

See Also

fitted.jmodelTM, fitted.jmodelMult

Examples

```
## Not run:
fitLME <- lme(proth ~ Trt * obstime, random = ~ 1 | ID, data = liver)
fitCOX <- coxph(Surv(start, stop, event) ~ Trt, data = liver, x = TRUE)
fitJT.ph <- jmodelTM(fitLME, fitCOX, liver, timeVarY = 'obstime')</pre>
```

residuals for the longitudinal process
residuals(fitJT.ph, type = "Standardized-Conditional")

End(Not run)

24

Index

* datagen dataPreprocess, 4 * datasets aids, 2 epilepsy, 5 liver, 18 liver.long, 19 liver.surv, 20 pbc, 21 * methods confint, 3 fitted. 6 ranef, 22residuals, 23 * models jmodelMult, 8 jmodelMultObject, 12 jmodelTM, 13 jmodelTMObject, 17 * survival jmodelMult, 8 jmodelMultObject, 12 jmodelTM, 13 jmodelTMObject, 17 aids, 2 bs, 11 confint, 3 coxph, *11*, *16* dataPreprocess, 4 epilepsy, 5 fitted, 6 fitted.jmodelMult, 24 fitted.jmodelTM, 24 jmodelMult, 8, 13

jmodelMultObject, 10, 11, 12
jmodelTM, 13, 18
jmodelTMObject, 15, 16, 17
liver, 18, 20
liver.long, 19, 19, 20
liver.surv, 19, 20, 20
lme, 11, 16
pbc, 21
ranef, 22
residuals, 23
Surv, 11, 16