
Package ‘JointNets’
July 30, 2019

Version 2.0.1

Date 2019-7-20

Encoding UTF-8

Title End-to-End Sparse Gaussian Graphical Model Simulation,
Estimation, Visualization, Evaluation and Application

Author Zhaoyang Wang [aut],
Beilun Wang [aut],
Arshdeep Sekhon [aut, cre],
Yanjun Qi [aut]

Maintainer Arshdeep Sekhon <as5cu@virginia.edu>

Depends R (>= 3.4.4), lpSolve, pcaPP, igraph, parallel, JGL

Imports MASS, brainR, misc3d, oro.nifti, shiny, rgl, methods

Description An end-to-end package for learning multiple sparse Gaussian graphical models and non-
paranormal models from Heterogeneous Data with Additional Knowledge. It is able to simu-
late multiple related graphs as well as produce samples drawn from them. Multiple state-of-the-
art sparse Gaussian graphical model estimators are included to both multiple and difference esti-
mation. Graph visualization is available in 2D as well as 3D, designed specifically for brain. More-
over, a set of evaluation metrics are integrated for easy exploration with model validity. Fi-
nally, classification using graphical model is achieved with Quadratic Discriminant Analy-
sis. The package comes with multiple demos with datasets from various fields. Methods refer-
ences: SIMULE (Wang B et al. (2017) <doi:10.1007/s10994-017-5635-
7>), WSIMULE (Singh C et al. (2017) <arXiv:1709.04090v2>), DIF-
FEE (Wang B et al. (2018) <arXiv:1710.11223>), JEEK (Wang B et al. (2018) <arXiv:1806.00548>), JGL(Danaher P et al. (2012) <arXiv:1111.0324>) and kd-
iffnet (Sekhon A et al, preprint for publication).

License GPL-2

URL https://github.com/QData/JointNets

BugReports https://github.com/QData/JointNets

RoxygenNote 6.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-29 22:40:07 UTC

1

2 R topics documented:

R topics documented:
aal116coordinates . 2
ABIDE_aal116_timeseries . 2
add_name_to_out . 3
AUC . 4
BIC . 5
cancer . 5
compute_cov . 6
diffee . 7
dimension_reduce . 8
exampleData . 9
exampleDataGraph . 9
F1 . 10
F1.diffee . 11
F1.jeek . 11
F1.kdiffnet . 12
F1.simule . 13
F1.wsimule . 13
generateSampleList . 14
generateSamples . 14
jeek . 15
jgl . 17
jointplot . 17
kdiffnet . 19
nip_37_data . 20
plot.diffee . 21
plot.jeek . 22
plot.jgl . 23
plot.kdiffnet . 25
plot.simulation . 26
plot.simule . 28
plot.wsimule . 29
plot_brain . 31
plot_brain.diffee . 32
plot_brain.jeek . 33
plot_brain.jgl . 35
plot_brain.kdiffnet . 37
plot_brain.simule . 38
plot_brain.wsimule . 40
plot_brain_joint . 42
plot_gui . 43
QDA_eval . 44
returngraph . 45
returngraph.diffee . 46
returngraph.jeek . 47
returngraph.jgl . 48
returngraph.kdiffnet . 49

aal116coordinates 3

returngraph.simulation . 50
returngraph.simule . 52
returngraph.wsimule . 53
simulateGraph . 54
simulation . 55
simule . 56
train_valid_test_split . 58
wsimule . 58

aal116coordinates AAL116 brain atlas coordinates in MNI space

Description

Automated Anatomical Labeling (AAL): The AAL atlas distributed with the AAL Toolbox was
fractionated to functional resolution (3x3x3 mm3) using nearest-neighbor interpolation. This data is
available at http://preprocessed-connectomes-project.org/abide/Pipelines.
html as part of ABIDE-preprocessed dataset. It can be directly downloaded at https://fcp-indi.
s3.amazonaws.com/data/Projects/ABIDE_Initiative/Resources/aal_roi_
atlas.nii.gz

Usage

data(aal116coordinates)

Format

116 observations (Brain Region Names) of 7 variables (name, x.mni, y.mni, z.mni, lobe, hemi,
index)

References

Cameron Craddock, Yassine Benhajali, Carlton Chu, Francois Chouinard, Alan Evans, András
Jakab, Budhachandra Singh Khundrakpam, John David Lewis, Qingyang Li, Michael Milham,
Chaogan Yan, Pierre Bellec (2013). The Neuro Bureau Preprocessing Initiative: open sharing of
preprocessed neuroimaging data and derivatives. In Neuroinformatics 2013, Stockholm, Sweden.

4 add_name_to_out

ABIDE_aal116_timeseries
ABIDE I preprocessed time series grouped by control and autism and
partitioned by AAL116 atlas

Description

This time series data is available as part of Autism Brain Imaging Data Exchange (ABIDE). ABIDE
is a collaboration of 16 international imaging sites that have aggregated and are openly sharing
neuroimaging data from 539 individuals suffering from ASD and 573 typical controls. For data
access, please refer to http://preprocessed-connectomes-project.org/abide/
download.html. The data is preprocessed, cancatnated and organized into two data matrices for
easy input.

Usage

data(ABIDE_aal116_timeseries)

Format

a list of two data matrices of time series(1:2250, 1:116) and (1:2060,1:116)

References

Cameron Craddock, Yassine Benhajali, Carlton Chu, Francois Chouinard, Alan Evans, András
Jakab, Budhachandra Singh Khundrakpam, John David Lewis, Qingyang Li, Michael Milham,
Chaogan Yan, Pierre Bellec (2013). The Neuro Bureau Preprocessing Initiative: open sharing of
preprocessed neuroimaging data and derivatives. In Neuroinformatics 2013, Stockholm, Sweden.

add_name_to_out helper function to add row/col names to JointNets precision matrix
output To help label igraph object in returngraph and plot

Description

helper function to add row/col names to JointNets precision matrix output To help label igraph
object in returngraph and plot

Usage

add_name_to_out(output, datalist, ...)

Arguments

output output of jointnets
datalist orginial data list
... unused

AUC 5

Value

output with names from datalist

AUC return AUC score for JointNets method

Description

return AUC score for JointNets method

Usage

AUC(simulationresult, gm_method = "simule", lambdas, ...)

Arguments

simulationresult
output from the function simulation()

gm_method method name from any one of the JointNets methods

lambdas a vector of lambda values for the JointNets method to run with

... extra parameters passed to the JointNets method such as lambda, epislon and
etc, refer to each method for details (eg, ?simule)

Value

AUC score, a list of precisions and recalls

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

simulationresult = simulation(n=c(100,100,100))
AUC_result = AUC(simulationresult,lambdas = seq(0.1,2,0.5),epsilon = 2)
AUC_result
graphics.off()
par(ask = FALSE)
par(mfrow = c(1, 1))
plot(AUC_resultfPM,AUC_resulttPM)

6 cancer

BIC calculate BIC score for JointNets method

Description

calculate BIC score for JointNets method

Usage

BIC(datalist, result)

Arguments

datalist datalist used as an input to any of the JointNets method

result result generated from datalist using the same JointNets method

Details

not working with DIFFEE and kdiffnet (difference estimation)

Value

BIC score

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
simulateresult = simulation(p = 20, n = c(100,100))
result = simule(simulateresult$simulatedsamples, 0.2, 0.5, covType = "cov", FALSE)
BIC(simulateresult$simulatedsamples,result)

cancer Microarray data set for breast cancer

Description

et al’s paper. It concerns one hundred thirty-three patients with stage I–III breast cancer. Patients
were treated with chemotherapy prior to surgery. Patient response to the treatment can be classified
as either a pathologic complete response (pCR) or residual disease (not-pCR). Hess et al developed
and tested a reliable multigene predictor for treatment response on this data set, composed by a set
of 26 genes having a high predictive value.

compute_cov 7

Usage

data(cancer)

Format

a list of two objects: dataframe with 133 observations of 26 features and factors indicating whether
each sample (out of 133) is of type "not" or type "pcr"

Details

The dataset splits into 2 parts (pCR and not pCR), on which network inference algorithms should
be applied independently or in the multitask framework: only individuals from the same classes
should be consider as independent and identically distributed.

References

J.A. Mejia, D. Booser, R.L. Theriault, U. Buzdar, P.J. Dempsey, R. Rouzier, N. Sneige, J.S. Ross,
T. Vidaurre, H.L. Gomez, G.N. Hortobagyi, and L. Pustzai (2006). Pharmacogenomic predictor of
sensitivity to preoperative chemotherapy with Paclitaxel and Fluorouracil, Doxorubicin, and Cy-
clophosphamide in breast cancer, Journal of Clinical Oncology, vol. 24(26), pp. 4236–4244.

compute_cov helper function to add compute covariance matrix / kendall tau corre-
lation matrix

Description

helper function to add compute covariance matrix / kendall tau correlation matrix

Usage

compute_cov(X, covType = "cov")

Arguments

X data matrix

covType "cov" or "kendall"

Value

covriance matrix / kendall tau correlation matrix

8 diffee

diffee Fast and Scalable Learning of Sparse Changes in High-Dimensional
Gaussian Graphical Model

Description

Estimate DIFFerential networks via an Elementary Estimator under a high-dimensional situation.
Please run demo(diffee) to learn the basics. For further details, please read the original paper: Beilun
Wang, Arshdeep Sekhon, Yanjun Qi (2018) https://arxiv.org/abs/1710.11223.

Usage

diffee(C, D, lambda = 0.05, covType = "cov", intertwined = FALSE,
thre = "soft")

Arguments

C A input matrix for the ’control’ group. It can be data matrix or covariance ma-
trix. If C is a symmetric matrix, the matrices are assumed to be covariance
matrix.

D A input matrix for the ’disease’ group. It can be data matrix or covariance ma-
trix. If D is a symmetric matrix, the matrices are assumed to be covariance
matrix.

lambda A positive number. The hyperparameter controls the sparsity level of the matri-
ces. The λn in the following section: Details.

covType A parameter to decide which Graphical model we choose to estimate from the
input data.
If covType = "cov", it means that we estimate multiple sparse Gaussian Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing covariance
matrices) the sample covariance matrices as input to the simule algorithm.
If covType = "kendall", it means that we estimate multiple nonparanormal Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing correlation
matrices) the kendall’s tau correlation matrices as input to the simule algorithm.

intertwined indicate whether to use intertwined covariance matrix

thre A parameter to decide which threshold function to use for Tv . If thre = "soft",
it means that we choose soft-threshold function as Tv . If thre = "hard", it means
that we choose hard-threshold function as Tv .

Details

The DIFFEE algorithm is a fast and scalable Learning algorithm of Sparse Changes in High-
Dimensional Gaussian Graphical Model Structure. It solves the following equation:

min
∆
||∆||1

dimension_reduce 9

Subject to :
([Tv(Σ̂d)]−1 − [Tv(Σ̂c)]

−1)||∞ ≤ λn

Please also see the equation (2.11) in our paper. The λn is the hyperparameter controlling the
sparsity level of the matrix and it is the lambda in our function. For further details, please see our
paper: Beilun Wang, Arshdeep Sekhon, Yanjun Qi (2018) https://arxiv.org/abs/1710.
11223.

if labels are provided in the datalist as column names, result will contain labels (to be plotted)

Value

$graphs A matrix of the estimated sparse changes between two Gaussian Graphical Mod-
els

$share null

Author(s)

Beilun Wang

References

Beilun Wang, Arshdeep Sekhon, Yanjun Qi (2018). Fast and Scalable Learning of Sparse Changes
in High-Dimensional Gaussian Graphical Model Structure. https://arxiv.org/abs/1710.
11223

Examples

library(JointNets)
data(exampleData)
result = diffee(exampleData[[1]], exampleData[[2]], 0.45)
plot(result)

dimension_reduce reduce the dimensionality of the datalist if needed

Description

reduce the dimensionality of the datalist if needed

Usage

dimension_reduce(datalist)

Arguments

datalist a datalist of high dimensionality

10 exampleDataGraph

Value

a datalist of reduced dimensionality

Examples

library(JointNets)
data(exampleData)
reduction = dimension_reduce(exampleData)

exampleData A simulated toy dataset that includes 2 data matrices (from 2 related
tasks).

Description

A simulated toy dataset that includes 2 data matrices (from 2 related tasks). Each data matrix
is about 100 features observed in 200 samples. The two data matrices are about exactly the
same set of 100 features. This multi-task dataset is generated from two related random graphs.
Please run demo(diffee) to learn the basic functions provided by this package. For further de-
tails, please read the original paper: http://link.springer.com/article/10.1007/
s10994-017-5635-7.

Usage

data(exampleData)

Format

The format is: List of 2 matrices $: num (1:200, 1:100) -0.0982 -0.2417 -1.704 0.4- attr(,
"dimnames")=List of 2$: NULL$: NULL $: num (1:200, 1:100) -0.161 0.41 0.17 0.-
attr(, "dimnames")=List of 2$: NULL$: NULL

exampleDataGraph A simulated toy dataset that includes 3 igraph objects

Description

(first one being the shared graph and second and third being task specific 1 and 2 graphs) The graphs
are generated from two related random graphs and the underlaying high dimensional gaussian dis-
tribution generates the exampleData dataset. exampleDataGraph serves as a groundtruth to compare
in demo(synthetic).

Usage

data(exampleDataGraph)

F1 11

Format

A list of 3 igraph objects

F1 Compute F1 score for JointNets result

Description

Compute F1 score for JointNets result

Usage

F1(result, simulatedgraphs, ...)

Arguments

result output generated from any one of the jointnet algorithms

simulatedgraphs
$simulatedgraphs from function simulation()

... unused

Value

F1 scores (F1 score for each context and the shared part (for simule and wsimule))

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
simulationresult = simulation(p = 20, n = c(100,100))
truth = simulationresult$simulatedgraphs
result = simule(simulationresult$simulatedsamples, 0.2, 0.5, covType = "cov", FALSE)
F1(result,truth)

12 F1.jeek

F1.diffee computes F1 score for jointnet result

Description

computes F1 score for jointnet result

Usage

S3 method for class 'diffee'
F1(result, simulatedgraphs, ...)

Arguments

result output generated from any one of the jointnet algorithms
simulatedgraphs

$simulatedgraphs from function simulation()

... unused

Examples

library(JointNets)
simulationresult = simulation(p = 20, n = c(100,100))
truth = simulationresult$simulatedgraphs
result = diffee(simulationresult$simulatedsamples[[1]],
simulationresult$simulatedsamples[[2]], 0.01)
F1(result,truth)

F1.jeek computes F1 score for jointnet result

Description

computes F1 score for jointnet result

Usage

S3 method for class 'jeek'
F1(result, simulatedgraphs, ...)

Arguments

result output generated from any one of the jointnet algorithms
simulatedgraphs

$simulatedgraphs from function simulation()

... unused

F1.kdiffnet 13

Examples

library(JointNets)
simulationresult = simulation(p = 20, n = c(100,100))
truth = simulationresult$simulatedgraphs
result = jeek(simulationresult$simulatedsamples,0.25,covType = "kendall",parallel = FALSE)
F1(result,truth)

F1.kdiffnet computes F1 score for jointnet result

Description

computes F1 score for jointnet result

Usage

S3 method for class 'kdiffnet'
F1(result, simulatedgraphs, ...)

Arguments

result output generated from any one of the jointnet algorithms

simulatedgraphs
$simulatedgraphs from function simulation()

... unused

Examples

library(JointNets)
simulationresult = simulation(p = 20, n = c(100,100))
truth = simulationresult$simulatedgraphs
result = kdiffnet(simulationresult$simulatedsamples[[1]],
simulationresult$simulatedsamples[[2]],
W = matrix(1,20,20), g = rep(0,20),epsilon = 0.2,
lambda = 0.4,covType = "cov")
F1(result,truth)

14 F1.wsimule

F1.simule computes F1 score for jointnet result

Description

computes F1 score for jointnet result

Usage

S3 method for class 'simule'
F1(result, simulatedgraphs, ...)

Arguments

result output generated from any one of the jointnet algorithms
simulatedgraphs

$simulatedgraphs from function simulation()

... unused

Examples

library(JointNets)
simulationresult = simulation(p = 20, n = c(100,100))
truth = simulationresult$simulatedgraphs
result = simule(simulationresult$simulatedsamples, 0.2, 0.5, covType = "cov", FALSE)
F1(result,truth)

F1.wsimule computes F1 score for jointnet result

Description

computes F1 score for jointnet result

Usage

S3 method for class 'wsimule'
F1(result, simulatedgraphs, ...)

Arguments

result output generated from any one of the jointnet algorithms
simulatedgraphs

$simulatedgraphs from function simulation()

... unused

generateSampleList 15

Examples

library(JointNets)
simulationresult = simulation(p = 20, n = c(100,100))
truth = simulationresult$simulatedgraphs
result = wsimule(simulationresult$simulatedsamples,
0.2, 1, W = matrix(1,20,20), covType = "cov", FALSE)

F1(result,truth)

generateSampleList function to generate a list of samples from simulatedGraph result

Description

function to generate a list of samples from simulatedGraph result

Usage

generateSampleList(simulate, n)

Arguments

simulate result from simulateGraph

n a vector of corresponding size to indicate number of samples for each task

Details

if n is c(100,200,300) and p is 20, the function will return a list of 3 data matrices of size (100x20,200x20,300x20)

Value

a list of length(n) data matrices

generateSamples function to generate samples from a single precision matrix

Description

function to generate samples from a single precision matrix

Usage

generateSamples(precision, n = 100)

Arguments

precision pxp precision matrix (generated from simulateGraph)

n number of samples

16 jeek

Value

a list of nXp randomly generated gaussian samples from pxp precision matrix

jeek A Fast and Scalable Joint Estimator for Integrating Additional Knowl-
edge in Learning Multiple Related Sparse Gaussian Graphical Models

Description

A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple
Related Sparse Gaussian Graphical Models. Please run demo(jeek) to learn the basic functions
provided by this package. For further details, please read the original paper: Beilun Wang, Arshdeep
Sekhon, Yanjun Qi (2018).

Usage

jeek(X, lambda, W = NA, covType = "cov", intertwined = FALSE,
parallel = FALSE)

Arguments

X A List of input matrices. They can be data matrices or covariance/correlation
matrices. If every matrix in the X is a symmetric matrix, the matrices are as-
sumed to be covariance/correlation matrices.

lambda A positive number. The hyperparameter controls the sparsity level of the matri-
ces. The λn in the following section: Details.

W A list of weight matrices. The hyperparameter intergrating the additional knowl-
edge into the model. The Wij is large means that node i and node j have less
probability to connect with each other. The default value of each entry is 1,
which means there is no additional knowledge in the formulation.

covType A parameter to decide which Graphical model we choose to estimate from the
input data.
If covType = "cov", it means that we estimate multiple sparse Gaussian Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing covariance
matrices) the sample covariance matrices as input to the JEEK algorithm.
If covType = "kendall", it means that we estimate multiple nonparanormal Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing correlation
matrices) the kendall’s tau correlation matrices as input to the JEEK algorithm.

intertwined indicate whether to use intertwined covariance matrix

parallel A boolean. This parameter decides if the package will use the multithreading
architecture or not.

jeek 17

Details

The JEEK algorithm is a novel Joint Elementary Estimator incorporating additional Knowledge
(JEEK) to infer multiple related sparse Gaussian Graphical models from large-scale heterogeneous
data. It solves the following equation:

min
Ωtot

I
,Ωtot

S

||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||

Subject to :

||W tot
I ◦ (Ωtot − inv(Tv(Σ̂tot)))||∞ ≤ λn

||W tot
S ◦ (Ωtot − inv(Tv(Σ̂tot)))||∞ ≤ λn

Ωtot = Ωtot
S + Ωtot

I

Please also see the equation (3.7) in our paper. The λn is the hyperparameter controlling the sparsity
level of the matrices and it is the lambda in our function. For further details, please see our paper:
Beilun Wang, Arshdeep Sekhon, Yanjun Qi. A Fast and Scalable Joint Estimator for Integrating
Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models. ICML
2018

if labels are provided in the datalist as column names, result will contain labels (to be plotted)

Value

$graphs A list of the estimated inverse covariance/correlation matrices.

Author(s)

Beilun Wang

References

Beilun Wang, Arshdeep Sekhon, Yanjun Qi. A Fast and Scalable Joint Estimator for Integrating
Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models. https:
//arxiv.org/abs/1806.00548

Examples

library(JointNets)
data(exampleData)
result = jeek(X = exampleData, 0.3, covType = "cov", parallel = FALSE)
plot(result)

18 jointplot

jgl wrapper for function JGL fromo package "JGL"

Description

wrapper for function JGL fromo package "JGL"

Usage

jgl(X, lambda1, lambda2, ...)

Arguments

X data list

lambda1 The tuning parameter for the graphical lasso penalty.

lambda2 The tuning parameter for the fused or group lasso penalty.

... optional parameters passed to JGL() from "JGL" package

Value

a list of estimated precision matrix

Examples

library(JointNets)
data(exampleData)
result = jgl(exampleData,0.1,0.01)
plot(result)

jointplot core function to plot

Description

core function to plot

Usage

jointplot(x, type = "task", neighbouroption = "task", subID = NULL,
index = NULL, hastitle = TRUE, haslegend = TRUE, ...)

jointplot 19

Arguments

x output generated from JointNets

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)

• "taskspecific" (graph for each task specific graph (excluding shared part)
specified further by subID (task number))

• "neighbour" (zoom into nodes in the graph specified further by neighbourop-
toin, subID (task number) and index (node id))

neighbouroption
determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))

• "taskspecific" (zoom into graph for each task specific (excluding shared
part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)

• a vector of task number (selects multiple tasks)

• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

... extra parameters passed to plot.igraph() and legend() (only the argument "leg-
end" for legend() is available). Please see plot.igraph and legend

Value

a plot of graph

20 kdiffnet

kdiffnet Fast and Scalable Estimator for Using Additional Knowledge in
Learning Sparse Structure Change of High Dimensional of Sparse
Changes in High-Dimensional Gaussian Graphical Models

Description

The kdiffnet algorithm

Usage

kdiffnet(C, D, W, g = rep(1, 100), epsilon = 1, lambda = 0.05,
knowledgeType = "EV", gamma = 4, covType = "cov",
intertwined = FALSE, thre = "soft", rho = 0.05, iterMax = 20)

Arguments

C A input matrix for the ’control’ group. It can be data matrix or covariance ma-
trix. If C is a symmetric matrix, the matrices are assumed to be covariance
matrix.

D A input matrix for the ’disease’ group. It can be data matrix or covariance ma-
trix. If D is a symmetric matrix, the matrices are assumed to be covariance
matrix.

W known edge level additional knowledge. It is a square matrix of dimension p X
p where p is the input dimension.

g known node level additional knowledge. It is a vector of dimension 1 X p where
p is the input dimension, each entry indicating membership of node to a group,
0 for a node belonging to no group. For example, in a dataset with dimen-
sion=3,g=c(0,1,1) indicates node 1 belongs to no group, and node 2 and node 3
belong to group index 1.

epsilon A positive number. The hyperparameter controls the sparsity level of the groups
in g of the difference matrix

lambda A positive number. The hyperparameter controls the sparsity level of the differ-
ence matrix

knowledgeType
"EV": if use overlapping node and edge level additional knowledge,"E": if only
edge level additional knowledge or "V": only group level knowledge

gamma : A positive number. This hyperparameter is used in calculating each proximity
during optimization

covType A parameter to decide which Graphical model we choose to estimate from the
input data.
If covType = "cov", it means that we estimate multiple sparse Gaussian Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing covariance
matrices) the sample covariance matrices as input to the simule algorithm.

nip_37_data 21

If covType = "kendall", it means that we estimate multiple nonparanormal Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing correlation
matrices) the kendall’s tau correlation matrices as input to the simule algorithm.

intertwined indicate whether to use intertwined covariance matrix

thre A parameter to decide which threshold function to use for Tv . If thre = "soft",
it means that we choose soft-threshold function as Tv . If thre = "hard", it means
that we choose hard-threshold function as Tv .

rho A positive number. This hyperparameter controls the learning rate of the proxi-
mal gradient method.

iterMax An integer. The max number of iterations in the optimization of the proximal
algorithm

Value

$graphs A matrix of the estimated sparse changes between two Gaussian Graphical Mod-
els

$share null

Author(s)

Arshdeep Sekhon

Examples

library(JointNets)
data(exampleData)
result = kdiffnet(exampleData[[1]], exampleData[[2]],
W = matrix(1,20,20), g = rep(0,20),epsilon = 0.2,
lambda = 0.4,covType = "cov")
plot(result)

nip_37_data NIPS word count dataset

Description

This NIPS Conference Papers 1987-2015 Data set is avaiable at UCI Machine Learning Repository.
The original dataset is in the form of a 11463 x 5812 matrix of word counts (11463 words and 5812
conference papers) Due to the size of the original dataset, it is preprocessed and reduced to a list of
two matrices (2900 x 37 and 2911 x 37) The dataset consists of two tasks (early (up to 2006) and
recent (after 2006) NIPS conference papers) with 37 words

Usage

data(nip_37_data)

22 plot.diffee

Format

a list of two nonnegative integer matrices (1:2900, 1:37) and (1:2911,1:37) Columns are named
with year_paperid and rows are names with word name

References

’Poisson Random Fields for Dynamic Feature Models’. Perrone V., Jenkins P. A., Spano D., Teh Y.
W. (2016)

plot.diffee plot diffee result specified by user input

Description

This function can plot diffee result

Usage

S3 method for class 'diffee'
plot(x, type = "task", index = NULL,

hastitle = TRUE, ...)

Arguments

x output generated from diffee function (diffee class)

type type of graph. There are two options:

• "task" (difference graph)
• "neighbour" (zoom into nodes in the difference graph specified further by

parameter "index" (node id)

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

... extra parameters passed to plot.igraph (zoom into one node or multiple
nodes)

Details

when only the diffee result is provided, the function will plot all graphs with default numeric labels.
Users can specify multiple subID to zoom in multiple nodes. Each graph will include a descriptive
title.

Value

a plot of the difference graph from diffee result specified by user input

plot.jeek 23

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = diffee(exampleData[[1]], exampleData[[2]], 0.45)
plot.diffee(result)

plot.jeek Plot jeek result specified by user input

Description

This function can plot and return multiple sparse graphs distinguished by edge colors from the result
generated by jeek

Usage

S3 method for class 'jeek'
plot(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
...)

Arguments

x output generated from jeek function (jeek class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

24 plot.jgl

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

... extra parameters passed to plot.igraph() and legend() (only the argument "leg-
end" for legend() is available). Please see plot.igraph and legend

Details

when only the jeek result is provided, the function will plot all graphs with default numeric labels
User can specify multiple subID and multiple index to zoom in multiple nodes on multiple graphs
Each graph will include a descriptive title and legend to indicate correspondence between edge color
and task.

Value

a plot of graph / subgraph from jeek result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = jeek(X = exampleData, 0.3, covType = "cov", parallel = FALSE)
plot(result)

plot.jgl Plot jgl result specified by user input

Description

This function can plot and return multiple sparse graphs distinguished by edge colors from the result
generated by jgl

plot.jgl 25

Usage

S3 method for class 'jgl'
plot(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
...)

Arguments

x output generated from jgl function (jgl class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

... extra parameters passed to plot.igraph() and legend() (only the argument "leg-
end" for legend() is available). Please see plot.igraph and legend

Details

when only the jgl result is provided, the function will plot all graphs with default numeric labels
User can specify multiple subID and multiple index to zoom in multiple nodes on multiple graphs
Each graph will include a descriptive title and legend to indicate correspondence between edge color
and task.

26 plot.kdiffnet

Value

a plot of graph / subgraph from jgl result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = jgl(exampleData,0.1,0.5)
plot(result)

plot.kdiffnet plot kdiffnet result specified by user input

Description

This function can plot kdiffnet result

Usage

S3 method for class 'kdiffnet'
plot(x, type = "task", index = NULL,

hastitle = TRUE, ...)

Arguments

x output generated from diffee function (diffee class)

type type of graph. There are two options:

• "task" (difference graph)
• "neighbour" (zoom into nodes in the difference graph specified further by

parameter "index" (node id)

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

... extra parameters passed to plot.igraph (zoom into one node or multiple
nodes)

Details

when only the kdiffnet result is provided, the function will plot all graphs with default numeric
labels. Users can specify multiple subID to zoom in multiple nodes. Each graph will include a
descriptive title.

plot.simulation 27

Value

a plot of the difference graph from kdiffnet result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = kdiffnet(exampleData[[1]], exampleData[[2]],
W = matrix(1,20,20), g = rep(0,20),epsilon = 0.2,
lambda = 0.4,covType = "cov")
plot(result)

plot.simulation Plot simulatedgraph result (generated from function simulation())
(class simulation)

Description

This function can plot and return multiple sparse graphs distinguished by edge colors from the result
generated by simulation()

Usage

S3 method for class 'simulation'
plot(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
...)

Arguments

x output generated from simule function (simule class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

28 plot.simulation

• "task" (zoom into graph for each task (including shared part))

• "taskspecific" (zoom into graph for each task specific (excluding shared
part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)

• a vector of task number (selects multiple tasks)

• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

... extra parameters passed to plot.igraph() and legend() (only the argument "leg-
end" for legend() is available). Please see plot.igraph and legend

Details

when only the simulatedgraph is provided, the function will plot all graphs with default numeric
labels. User can specify multiple subID and multiple index to zoom in multiple nodes on multiple
graphs. Each graph will include a descriptive title and legend to indicate correspondence between
edge color and task.

Value

a plot of graph / subgraph from simulatedgraph result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = simulation(n = c(100,100,100))$simulatedgraphs
plot(result)

plot.simule 29

plot.simule Plot simule result specified by user input

Description

This function can plot and return multiple sparse graphs distinguished by edge colors from the result
generated by simule

Usage

S3 method for class 'simule'
plot(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
...)

Arguments

x output generated from simule function (simule class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

30 plot.wsimule

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

... extra parameters passed to plot.igraph() and legend() (only the argument "leg-
end" for legend() is available). Please see plot.igraph and legend

Details

when only the simule result is provided, the function will plot all graphs with default numeric labels.
User can specify multiple subID and multiple index to zoom in multiple nodes on multiple graphs.
Each graph will include a descriptive title and legend to indicate correspondence between edge color
and task.

Value

a plot of graph / subgraph from simule result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = simule(X = exampleData , lambda = 0.1, epsilon = 0.45, covType = "cov", FALSE)
plot(result)

plot.wsimule Plot wsimule result specified by user input

Description

This function can plot and return multiple sparse graphs distinguished by edge colors from the result
generated by wsimule

Usage

S3 method for class 'wsimule'
plot(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
...)

plot.wsimule 31

Arguments

x output generated from wsimule function (wsimule class)
type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))
subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

... extra parameters passed to plot.igraph() and legend() (only the argument "leg-
end" for legend() is available). Please see plot.igraph and legend

Details

when only the wsimule result is provided, the function will plot all graphs with default numeric
labels. User can specify multiple subID and multiple index to zoom in multiple nodes on multiple
graphs. Each graph will include a descriptive title and legend to indicate correspondence between
edge color and task.

Value

a plot of graph / subgraph from wsimule result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

32 plot_brain

Examples

library(JointNets)
data(exampleData)
result = wsimule(X = exampleData , lambda = 0.1, epsilon = 0.45,
W = matrix(1,20,20), covType = "cov", FALSE)
plot(result)

plot_brain plot 3d brain network from JointNets result

Description

This function plots 3d brain network from JointNets result

Usage

plot_brain(x, ...)

Arguments

x output generated from any one of the JointNets functions

... additional arguments, please see plot_brain.simule, plot_brain.wsimule
and etc for details

Details

The function plots brain network using rglplot.igraph

Value

3d (rgl) brain network

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)
par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,
aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "simule"

plot_brain.diffee 33

plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = simule(ABIDE_aal116_timeseries, 0.2, 1, covType = "cov", FALSE)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

plot_brain.diffee plot 3d brain network from diffee result

Description

This function plots 3d brain network from diffee result

Usage

S3 method for class 'diffee'
plot_brain(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
hasbackground = TRUE, ...)

Arguments

x output generated from diffee function (diffee class)

type type of graph. There are two options:

• "task" (difference graph)
• "neighbour" (zoom into nodes in the difference graph specified further by

parameter "index" (node id)
neighbouroption

not used

subID not used

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend not used
hasbackground

determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot()

Details

The function plots brain network using rglplot.igraph

34 plot_brain.jeek

Value

3d (rgl) brain network

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)
par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,
aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "simule"
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = diffee(ABIDE_aal116_timeseries[[1]],
ABIDE_aal116_timeseries[[2]], 0.001)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

plot_brain.jeek plot 3d brain network from jeek result

Description

This function plots 3d brain network from jeek result

Usage

S3 method for class 'jeek'
plot_brain(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
hasbackground = TRUE, ...)

Arguments

x output generated from jeek function (jeek class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

plot_brain.jeek 35

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

hasbackground
determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot()

Details

The function plots brain network using rglplot.igraph

Value

3d (rgl) brain network

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)

36 plot_brain.jgl

par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,
aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "simule"
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = jeek(X = ABIDE_aal116_timeseries,0.25,
covType = "kendall",parallel = FALSE)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

plot_brain.jgl plot 3d brain network from jgl result

Description

This function plots 3d brain network from jgl result

Usage

S3 method for class 'jgl'
plot_brain(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
hasbackground = TRUE, ...)

Arguments

x output generated from jgl function (jgl class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

plot_brain.jgl 37

subID selects which task to display. There are four options:
• 0 (only allowed when "type" is "task" or "type" is "neighbour" and

"neighbouroption" is "task") (selects share graph)
• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

hasbackground
determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot()

Details

The function plots brain network using rglplot.igraph

Value

3d (rgl) brain network

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)
par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,
aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "jgl"
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = jgl(ABIDE_aal116_timeseries, 0.2, 1)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

38 plot_brain.kdiffnet

plot_brain.kdiffnet
plot 3d brain network from kdiffnet result

Description

This function plots 3d brain network from kdiffnet result

Usage

S3 method for class 'kdiffnet'
plot_brain(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL,
hastitle = TRUE, haslegend = TRUE, hasbackground = TRUE, ...)

Arguments

x output generated from kdiffnet function (kdiffnet class)

type type of graph. There are two options:

• "task" (difference graph)
• "neighbour" (zoom into nodes in the difference graph specified further by

parameter "index" (node id)
neighbouroption

not used

subID not used

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend not used
hasbackground

determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot()

Details

The function plots brain network using rglplot.igraph

Value

3d (rgl) brain network

plot_brain.simule 39

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)
par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,
aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "simule"
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = kdiffnet(ABIDE_aal116_timeseries[[1]], ABIDE_aal116_timeseries[[2]],
W = matrix(1,116,116), g = rep(0,116), epsilon = 0.1, lambda = 0.001)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

plot_brain.simule plot 3d brain network from simule result

Description

This function plots 3d brain network from simule result

Usage

S3 method for class 'simule'
plot_brain(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
hasbackground = TRUE, ...)

Arguments

x output generated from simule function (simule class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))

40 plot_brain.simule

• "neighbour" (zoom into nodes in the graph specified further by neighbourop-
toin, subID (task number) and index (node id))

neighbouroption
determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

hasbackground
determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot()

Details

The function plots brain network using rglplot.igraph

Value

3d (rgl) brain network

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)
par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,

plot_brain.wsimule 41

aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "simule"
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = simule(ABIDE_aal116_timeseries, 0.2, 1, covType = "cov", FALSE)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

plot_brain.wsimule plot 3d brain network from wsimule result

Description

This function plots 3d brain network from wsimule result

Usage

S3 method for class 'wsimule'
plot_brain(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL,
hastitle = TRUE, haslegend = TRUE, hasbackground = TRUE, ...)

Arguments

x output generated from wsimule function (wsimule class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

42 plot_brain.wsimule

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

hasbackground
determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot()

Details

The function plots brain network using rglplot.igraph

Value

3d (rgl) brain network

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
graphics.off()
par(ask=FALSE)
par(mfrow=c(1,1))
data(ABIDE_aal116_timeseries)
data(aal116coordinates)
layout = cbind(aal116coordinates$x.mni + 90,
aal116coordinates$y.mni+126, aal116coordinates$z.mni+72)
result = simulation(p=116, s = 0.001, ss = 0.001, n = c(1,1))$simulatedgraphs
class(result) = "simule"
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout, hasbackground = FALSE)

result = wsimule(ABIDE_aal116_timeseries, 0.2, 1,
W = matrix(1,116,116), covType = "cov", FALSE)
plot_brain(result, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, layout = layout)

plot_brain_joint 43

plot_brain_joint plot 3d brain network

Description

plot 3d brain network

Usage

plot_brain_joint(x, type = "task", neighbouroption = "task",
subID = NULL, index = NULL, hastitle = TRUE, haslegend = TRUE,
hasbackground = TRUE, ...)

Arguments

x output generated from JointNets Methods

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

hastitle determines whether the graph title is displayed or not (TRUE to display / FALSE
to hide)

haslegend determines whether the graph legend is displayed or not (TRUE to display /
FALSE to hide)

44 plot_gui

hasbackground
determines whether the reference brain is plotted or not (TRUE to display /
FALSE to hide)

... extra parameters passed to igraph::rglplot() and level in misc::contour3d()

Value

3d (rgl) brain network

plot_gui GUI of JointNets plot

Description

GUI version of JointNets plot (input from the global environment)

Usage

plot_gui()

Details

please refer to plot.simule, plot.wsimule and etc for details in plotting. value -1 for subID and index
corresponds to NUL value

Author(s)

Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
if(interactive()){
plot_gui()
}

QDA_eval 45

QDA_eval graphical model model evaluation using QDA as a classifier

Description

graphical model model evaluation using QDA as a classifier

Usage

QDA_eval(train, valid, test, lambda_range, v_seeking_length = 10,
method = "diffee", ...)

Arguments

train a list of training data

valid a list of validation data

test a list of test data

lambda_range a vector of lambda values to train to given method, eg c(0.1,0.2,0.3)

v_seeking_length
second hyperparameter length, default to 10

method name of the method to be evaluated

... optional parameters passed to your method from JointNets package

Value

covriance matrix / kendall tau correlation matrix

Examples

library(JointNets)
data("nip_37_data")
split = train_valid_test_split(nip_37_data,c(0.8,0.1,0.1),10000)
train = split[["train"]]
valid = split[["valid"]]
test = split[["test"]]
v_seeking_length = 2
lambda_range = seq(0.5,1, length.out = 2)
result = QDA_eval(train,valid,test,lambda_range, v_seeking_length, method = "diffee")
result[["best test accuracy"]]

46 returngraph

returngraph return igraph object from jointnet result specified by user input

Description

This function returns an igraph object from jointnet result for user to work with directly

Usage

returngraph(x, ...)

Arguments

x output generated from any one of the jointnet functions

... additional arguments, see returngraph.simule, returngraph.wsimule,
returngraph.diffee, returngraph.jeek for details.

Details

the function aims to provide users the flexibility to explore and visualize the graph on their own
generated from jointnet

Value

an igraph object of graph / subgraph from jointnet result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = jeek(X = exampleData, 0.3, covType = "cov", parallel = FALSE)
graph = returngraph(result)

returngraph.diffee 47

returngraph.diffee return igraph object from diffee result specified by user input

Description

This function can return an igraph object from diffee result for user to work with directly

Usage

S3 method for class 'diffee'
returngraph(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL, ...)

Arguments

x output generated from diffee function (diffee class)
type type of graph. There are two options:

• "task" (difference graph)
• "neighbour" (zoom into nodes in the difference graph specified further by

parameter "index" (node id)
neighbouroption

unused
subID unused
index determines which node(s) to zoom into when parameter "type" is "neighbour".

This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... unused

Details

the function aims to provide users the flexibility to explore and visualize the graph own their own
generated from diffee

Value

an igraph object of graph / subgraph from diffee result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = diffee(exampleData[[1]], exampleData[[2]], 0.45)
graph = returngraph(result)

48 returngraph.jeek

returngraph.jeek return igraph object from jeek result specified by user input

Description

This function can return an igraph object from jeek result for user to work with directly

Usage

S3 method for class 'jeek'
returngraph(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, ...)

Arguments

x output generated from jeek function (jeek class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... not used

Details

the function aims to provide users the flexibility to explore and visualize the graph on their own
generated from jeek

returngraph.jgl 49

Value

an igraph object of graph / subgraph from jeek result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = jeek(X = exampleData, 0.3, covType = "cov", parallel = FALSE)
graph = returngraph(result)

returngraph.jgl return igraph object from jgl result specified by user input

Description

This function can return an igraph object from jgl result for user to work with directly

Usage

S3 method for class 'jgl'
returngraph(x, type = "task", neighbouroption = "task",

subID = NULL, index = NULL, ...)

Arguments

x output generated from jgl function (jgl class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

50 returngraph.kdiffnet

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... not used

Details

the function aims to provide users the flexibility to explore and visualize the graph on their own
generated from jgl

Value

an igraph object of graph / subgraph from jgl result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = jgl(X = exampleData , lambda1 = 1, lambda2 = 1)
graph = returngraph(result)

returngraph.kdiffnet
return igraph object from kdiffnet result specified by user input

Description

This function can return an igraph object from kdiffnet result for user to work with directly

Usage

S3 method for class 'kdiffnet'
returngraph(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL, ...)

returngraph.simulation 51

Arguments

x output generated from kdiffnet function (kdiffnet class)

type type of graph. There are two options:

• "task" (difference graph)
• "neighbour" (zoom into nodes in the difference graph specified further by

parameter "index" (node id)
neighbouroption

unused

subID unused

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... unused

Details

the function aims to provide users the flexibility to explore and visualize the graph own their own
generated from kdiffnet

Value

an igraph object of graph / subgraph from kdiffnet result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = kdiffnet(exampleData[[1]], exampleData[[2]],
W = matrix(1,20,20), g = rep(0,20),epsilon = 0.2,
lambda = 0.4,covType = "cov")
graph = returngraph(result)

returngraph.simulation
return igraph object from simulation result specified by user input

Description

This function can return an igraph object from simulation result for user to work with directly

52 returngraph.simulation

Usage

S3 method for class 'simulation'
returngraph(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL, ...)

Arguments

x output generated from simulatino functino

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... not used

Details

the function aims to provide users the flexibility to explore and visualize the graph on their own
generated from simulation

Value

an igraph object of graph / subgraph from simulation result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

returngraph.simule 53

Examples

library(JointNets)
data(exampleData)
result = simulation(n=c(100,100,100))$simulatedgraphs
graph = returngraph(result)

returngraph.simule return igraph object from simule result specified by user input

Description

This function can return an igraph object from simule result for user to work with directly

Usage

S3 method for class 'simule'
returngraph(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL, ...)

Arguments

x output generated from simule function (simule class)
type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))
subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... not used

54 returngraph.wsimule

Details

the function aims to provide users the flexibility to explore and visualize the graph on their own
generated from simule

Value

an igraph object of graph / subgraph from simule result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = simule(X = exampleData , lambda = 0.1, epsilon = 0.45, covType = "cov", FALSE)
graph = returngraph(result)

returngraph.wsimule
return igraph object from wsimule result specified by user input

Description

This function can return an igraph object from wsimule result for user to work with directly

Usage

S3 method for class 'wsimule'
returngraph(x, type = "task",

neighbouroption = "task", subID = NULL, index = NULL, ...)

Arguments

x output generated from wsimule function (wsimule class)

type type of graph. There are four options:

• "task" (graph for each task (including shared part) specified further by subID
(task number))

• "share" (shared graph for all tasks)
• "taskspecific" (graph for each task specific graph (excluding shared part)

specified further by subID (task number))
• "neighbour" (zoom into nodes in the graph specified further by neighbourop-

toin, subID (task number) and index (node id))
neighbouroption

determines what type of graph to zoom into when parameter "type" is "neigh-
bour". There are two options:

simulateGraph 55

• "task" (zoom into graph for each task (including shared part))
• "taskspecific" (zoom into graph for each task specific (excluding shared

part))

subID selects which task to display. There are four options:

• 0 (only allowed when "type" is "task" or "type" is "neighbour" and
"neighbouroption" is "task") (selects share graph)

• positive task number (selects that particular task)
• a vector of task number (selects multiple tasks)
• NULL (selects all tasks (all graphs))

index determines which node(s) to zoom into when parameter "type" is "neighbour".
This parameter could either be an integer or vector of integers representing node
ids (zoom into one node or multiple nodes)

... not used

Details

the function aims to provide users the flexibility to explore and visualize the graph on their own
generated from wsimule

Value

an igraph object of graph / subgraph from wsimule result specified by user input

Author(s)

Beilun Wang, Zhaoyang Wang (Author), Zhaoyang Wang (maintainer) <zw4dn@virginia.edu>

Examples

library(JointNets)
data(exampleData)
result = wsimule(X = exampleData , lambda = 0.1, epsilon = 0.45,
W = matrix(1,20,20), covType = "cov", FALSE)
graph = returngraph(result)

simulateGraph function to simulate multiple sparse graphs

Description

function to simulate multiple sparse graphs

Usage

simulateGraph(p = 20, N = 2, seedNum = 37, s = 0.1, ss = 0.1)

56 simulation

Arguments

p number of features

N number of tasks

seedNum seed number for random simulation

s controls sparsity of the generated graph

ss controls sparsity of the generated graph

Value

a list of N related sparse pXp precision matrices (graphs)

simulation simulate multiple sparse graphs and generate samples

Description

simulate multiple sparse graphs and generate samples

Usage

simulation(p = 20, n, seedNum = 37, s = 0.1, ss = 0.1)

Arguments

p number of features (number of nodes)

n a vector indicating number of samples and tasks, for example c(100,200,300)
for 3 tasks and 100,200 and 300 samples for task 1, 2 and 3

seedNum seed number for random simulation

s positive number that controls sparsity of the generated graphs

ss positive number that controls sparsity of the shared part of generated graphs

Value

a list comprising $simulatedgraphs (multiple related simulated graphs) and $simulatedsamples (sam-
ples generated from multiple related graphs)

Examples

library(JointNets)
simulateresult = simulation(p = 20, n = c(100,100))
plot(simulateresult$simulatedgraphs)

simule 57

simule A constrained l1 minimization approach for estimating multiple
Sparse Gaussian or Nonparanormal Graphical Models Estimate mul-
tiple, related sparse Gaussian or Nonparanormal graphical

Description

models from multiple related datasets using the SIMULE algorithm. Please run demo(simule) to
learn the basic functions provided by this package. For further details, please read the original
paper: Beilun Wang, Ritambhara Singh, Yanjun Qi (2017) doi: 10.1007/s10994017563571.

Usage

simule(X, lambda, epsilon = 1, covType = "cov", intertwined = FALSE,
parallel = FALSE)

Arguments

X A List of input matrices. They can be data matrices or covariance/correlation
matrices. If every matrix in the X is a symmetric matrix, the matrices are as-
sumed to be covariance/correlation matrices.

lambda A positive number. The hyperparameter controls the sparsity level of the matri-
ces. The λn in the following section: Details.

epsilon A positive number. The hyperparameter controls the differences between the
shared pattern among graphs and the individual part of each graph. The ε in the
following section: Details. If epsilon becomes larger, the generated graphs will
be more similar to each other. The default value is 1, which means that we set
the same weights to the shared pattern among graphs and the individual part of
each graph.

covType A parameter to decide which Graphical model we choose to estimate from the
input data.
If covType = "cov", it means that we estimate multiple sparse Gaussian Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing covariance
matrices) the sample covariance matrices as input to the simule algorithm.
If covType = "kendall", it means that we estimate multiple nonparanormal Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing correlation
matrices) the kendall’s tau correlation matrices as input to the simule algorithm.

intertwined indicate whether to use intertwined covariance matrix

parallel A boolean. This parameter decides if the package will use the multithreading
architecture or not.

1http://doi.org/10.1007/s10994-017-5635-7

58 simule

Details

The SIMULE algorithm is a constrained l1 minimization method that can detect both the shared and
the task-specific parts of multiple graphs explicitly from data (through jointly estimating multiple
sparse Gaussian graphical models or Nonparanormal graphical models). It solves the following
equation:

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K)
I , Ω̂S = min

Ω
(i)

I
,ΩS

∑
i

||Ω(i)
I ||1 + εK||ΩS ||1

Subject to :

||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K

Please also see the equation (7) in our paper. The λn is the hyperparameter controlling the sparsity
level of the matrices and it is the lambda in our function. The ε is the hyperparameter controlling
the differences between the shared pattern among graphs and the individual part of each graph. It is
the epsilon parameter in our function and the default value is 1. For further details, please see our
paper: http://link.springer.com/article/10.1007/s10994-017-5635-7.

if labels are provided in the datalist as column names, result will contain labels (to be plotted)

Value

$graphs A list of the estimated inverse covariance/correlation matrices.

$share The shared graph among multiple tasks.

Author(s)

Beilun Wang

References

Beilun Wang, Ritambhara Singh, Yanjun Qi (2017). A constrained L1 minimization approach for
estimating multiple Sparse Gaussian or Nonparanormal Graphical Models. http://link.springer.com/article/10.1007/s10994-
017-5635-7

Examples

library(JointNets)
data(exampleData)
result = simule(X = exampleData , lambda = 0.1, epsilon = 0.45, covType = "cov", FALSE)
plot(result)

train_valid_test_split 59

train_valid_test_split
split a datalist to train,validation and test

Description

split a datalist to train,validation and test

Usage

train_valid_test_split(datalist, ratio, seed)

Arguments

datalist a datalist

ratio ratio of the split (train, validation and test), eg, c(0.8,0.1,0.1)

seed seed number

Value

a list of train,validation and test datalist

Examples

library(JointNets)
data("nip_37_data")

wsimule A constrained and weighted l1 minimization approach for estimating
multiple Sparse Gaussian or Nonparanormal Graphical Models

Description

Estimate multiple, related sparse Gaussian or Nonparanormal graphical models from multiple re-
lated datasets using the SIMULE algorithm. Please run demo(wsimule) to learn the basic functions
provided by this package. For further details, please read the original paper: Beilun Wang, Ritamb-
hara Singh, Yanjun Qi (2017) doi10.1007/s10994-017-5635-7.

Usage

wsimule(X, lambda, epsilon = 1, W, covType = "cov",
intertwined = FALSE, parallel = FALSE)

60 wsimule

Arguments

X A List of input matrices. They can be data matrices or covariance/correlation
matrices. If every matrix in the X is a symmetric matrix, the matrices are
assumed to be covariance/correlation matrices. More details at https://
github.com/QData/SIMULE

lambda A positive number. The hyperparameter controls the sparsity level of the matri-
ces. The λn in the following section: Details.

epsilon A positive number. The hyperparameter controls the differences between the
shared pattern among graphs and the individual part of each graph. The ε in the
following section: Details. If epsilon becomes larger, the generated graphs will
be more similar to each other. The default value is 1, which means that we set
the same weights to the shared pattern among graphs and the individual part of
each graph.

W A weight matrix. This matrix uses the prior knowledge of the graphs. For
example, if we use wsimule to infer multiple human brain connectome graphs,
the W can be the anatomical distance matrix of human brain. The default value
is a matrix, whose entries all equals to 1. This means that we do not have any
prior knowledge.

covType A parameter to decide which Graphical model we choose to estimate from the
input data.
If covType = "cov", it means that we estimate multiple sparse Gaussian Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing covariance
matrices) the sample covariance matrices as input to the simule algorithm.
If covType = "kendall", it means that we estimate multiple nonparanormal Graph-
ical models. This option assumes that we calculate (when input X represents
data directly) or use (when X elements are symmetric representing correlation
matrices) the kendall’s tau correlation matrices as input to the simule algorithm.

intertwined indicate whether to use intertwined covariance matrix

parallel A boolean. This parameter decides if the package will use the multithreading
architecture or not.

Details

The SIMULE algorithm is a constrained l1 minimization method that can detect both the shared and
the task-specific parts of multiple graphs explicitly from data (through jointly estimating multiple
sparse Gaussian graphical models or Nonparanormal graphical models). It solves the following
equation:

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K)
I , Ω̂S = min

Ω
(i)

I
,ΩS

∑
i

||W · Ω(i)
I ||1 + εK||W · ΩS ||1

Subject to :
||Σ(i)(Ω

(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K

Please also see the equation (7) in our paper. The λn is the hyperparameter controlling the sparsity
level of the matrices and it is the lambda in our function. The ε is the hyperparameter controlling

wsimule 61

the differences between the shared pattern among graphs and the individual part of each graph. It is
the epsilon parameter in our function and the default value is 1. For further details, please see our
paper: http://link.springer.com/article/10.1007/s10994-017-5635-7.

if labels are provided in the datalist as column names, result will contain labels (to be plotted)

Value

$graphs A list of the estimated inverse covariance/correlation matrices.

$share The share graph among multiple tasks.

Author(s)

Beilun Wang

References

Beilun Wang, Ritambhara Singh, Yanjun Qi (2017). A constrained L1 minimization approach for
estimating multiple Sparse Gaussian or Nonparanormal Graphical Models. http://link.springer.com/article/10.1007/s10994-
017-5635-7

Examples

library(JointNets)
data(exampleData)
result = wsimule(X = exampleData , lambda = 0.1, epsilon = 0.45,
W = matrix(1,20,20), covType = "cov", FALSE)
plot(result)

