Package 'LHD'

July 31, 2021
Type PackageTitle Latin Hypercube Designs (LHDs)
Version 1.3.3
Description Contains different algorithms and construction methods for optimal Latin hypercube de-signs (LHDs) with flexible sizes. Our package is comprehensive since it is capable of generat-ing maximin distance LHDs, maximum projection LHDs, and orthogonal and nearly orthogo-nal LHDs. Detailed comparisons and summary of all the algorithms and construction meth-ods in this package can be found at Hongzhi Wang, Qian Xiao and Abhyuday Man-dal (2021) arXiv:2010.09154. This package is particularly useful in the area of De-sign and Analysis of Experiments (DAE). More specifically, design of computer experiments.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1
Suggests testthat, knitr, rmarkdown, devtools
Imports stats, numbers, utils
VignetteBuilder knitr
NeedsCompilation no
Author Hongzhi Wang [aut, cre],Qian Xiao [aut],Abhyuday Mandal [aut]
Maintainer Hongzhi Wang hw34508@uga.edu
Repository CRAN
Date/Publication 2021-07-31 18:20:02 UTC
R topics documented:
AvgAbsCor 2
dij 3
exchange 4
FastMmLHD 5
GA 6
GLP 7
LaPSO 8
MaxAbsCor 10
MaxProCriterion 11
OA2LHD 11
OASA 12
OLHD.B2001 14
OLHD.C2007 15
OLHD.L2009 15
OLHD.S2010 16
OLHD.Y1998 17
phi_p 18
rLHD 19
SA 20
SA2008 21
SLHD 23
WT 25
Index 27
AvgAbsCor Calculate the Average Absolute Correlation

Description

AvgAbsCor returns the average absolute correlation of a matrix

Usage

AvgAbsCor (X)

Arguments

$X \quad$ A matrix object. In general, X stands for the design matrix.

Value

If all inputs are logical, then the output will be a positive number indicating the average absolute correlation of input matrix. average absolute correlation = \backslash frac $\left\{2 \backslash\right.$ sum_ $\{i=1\}^{\wedge}\{k-1\}$ \backslash sum_\{j=i+1 $\left.\}^{\wedge}\{k\}\left|q_{-}\{i j\}\right|\right\}\{k(k-1)\}$

References

Georgiou, S. D. (2009) Orthogonal Latin hypercube designs from generalized orthogonal designs. Journal of Statistical Planning and Inference, 139, 1530-1540.

Examples

```
#create a toy LHD with 5 rows and 3 columns
toy=rLHD(n=5,k=3);toy
#Calculate the average absolute correlation of toy
AvgAbsCor(X=toy)
```

```
dij
Calculate the Inter-site Distance
```


Description

dij returns the inter-site distance of two design points of an LHD

Usage

$\operatorname{dij}(X, i, j, q=1)$

Arguments

$X \quad$ A matrix object. In general, X stands for the design matrix.
i A positive integer, which stands for the i^{\wedge} th row of X.
$j \quad$ A positive integer, which stands for the j^{\wedge} th row of X. Both i and j should be in $[1, \operatorname{nrow}(\mathrm{X})]$ and they should not be equal to each other.
$\mathrm{q} \quad$ The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If q is $2, \operatorname{dij}$ is the Euclidean distance.

Value

If all inputs are logical, then the output will be a positive number indicating the distance. dij= \left } \backslash \{ \sum_\{k=1\}^\{m\} \vert x_\{ik\}-x_\{jk\}\vert ^q \backslash right \backslash \} ^ { \wedge } \{ 1 / q \}

Examples

\#create a toy LHD with 5 rows and 3 columns
toy $=r \operatorname{LHD}(\mathrm{n}=5, \mathrm{k}=3)$; toy
\#Calculate the inter-site distance of the 2nd and the 4th row of toy (with default q) dij(X=toy, $\mathrm{i}=2, \mathrm{j}=4$)
\#Calculate the inter-site distance of the 2 nd and the 4 th row of toy (with $q=2$) $\operatorname{dij}(X=$ toy $, i=2, j=4, q=2$)

Description

exchange returns a new matrix by switching two randomly selected elements from a user-defined matrix

Usage

exchange(X, j, type = "col")

Arguments

$X \quad$ A matrix object. In general, X stands for a design matrix.
$j \quad$ A positive integer, which stands for the j^{\wedge} th column (or row) of X, and it should be within $[1, \operatorname{ncol}(X)]$ (or $[1, \operatorname{nrow}(X)])$.
type An exchange type. If type is "col" (the default setting), two random elements will be exchanged within column j. If type is "row", two random elements will be exchanged within row j.

Value

If all inputs are logical, then the output will be a new design matrix after the exchange.

Examples

```
#create a toy LHD with 5 rows and 3 columns
toy=rLHD(n=5,k=3); toy
#Choose the first column of toy and exchange two randomly selected elements.
try.col=exchange(X=toy,j=1, type="col")
toy;try.col
#Choose the first row of toy and exchange two randomly selected elements.
try.row=exchange(X=toy, j=1, type="row")
toy;try.row
```


Description

FastMmLHD returns a n by k maximin distance LHD matrix generated by the construction method of Wang, L., Xiao, Q., and Xu, H. (2018)

Usage

```
FastMmLHD(n, k, method = "manhattan", t1 = 10)
```


Arguments

$\mathrm{n} \quad$ A positive integer, which stands for the number of rows (or run size).
$k \quad$ A positive integer, which stands for the number of columns (or factor size).
method A distance measure method. The default setting is "manhattan", and it could be one of the following: "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
t1
A tunning parameter, which determines how many repeats will be implemented to search for the optimal design. The default is set to be 10 .

Value

If all inputs are logical, then the output will be a n by k maximin distance LHD under under the maximin L_1 distance criterion..

References

Wang, L., Xiao, Q., and Xu, H. (2018) Optimal maximin \$L_1\$-distance Latin hypercube designs based on good lattice point designs. The Annals of Statistics, 46(6B), 3741-3766.

Examples

```
#n by n design when 2n+1 is prime
try=FastMmLHD (8,8)
try
phi_p(try) #calculate the phi_p of "try".
#n by n design when n+1 is prime
try2=FastMmLHD (12,12)
try2
phi_p(try2) #calculate the phi_p of "try2".
#n by n-1 design when }\textrm{n}\mathrm{ is prime
try3=FastMmLHD (7,6)
try3
phi_p(try3) #calculate the phi_p of "try3".
```

```
#General cases
try4=FastMmLHD(24,8)
try4
phi_p(try4) #calculate the phi_p of "try4".
```


GA

Description

GA returns a n by k LHD matrix generated by genetic algorithm (GA)

Usage

GA(
n,
k,
$\mathrm{m}=10$,
$\mathrm{N}=10$,
pmut $=1 /(k-1)$,
OC = "phi_p",
p = 15,
q = 1,
maxtime $=5$
)

Arguments

n
k
m
$\mathrm{N} \quad$ A positive integer, which stands for the number of iterations. The default is set
pmut A probability, which stands for the probability of mutation. The default is set to

OC An optimality criterion. The default setting is "phi_p", and it could be one of the following: "phi_p", "AvgAbsCor", "MaxAbsCor", "MaxProCriterion".
p
q
A positive integer, which stands for the number of rows (or run size).
A positive integer, which stands for the number of columns (or factor size).
A positive even integer, which stands for the population size and it must be an even number. The default is set to be 10. A large value of m will result a high CPU time, and it is recommended to be no greater than 100. to be 10. A large value of N will result a high CPU time, and it is recommended to be no greater than 500. be $1 /(\mathrm{k}-1)$.
p A positive integer, which is the parameter in the phi_p formula, and p is prefered to be large. The default is set to be 15 .

The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If q is $2, \mathrm{dij}$ is the Euclidean distance.
maxtime A positive number, which indicates the expected maximum CPU time given by user, and it is measured by minutes. For example, maxtime $=3.5$ indicates the CPU time will be no greater than three and half minutes. The default is set to be 5.

Value

If all inputs are logical, then the output will be a n by k LHD.

References

Liefvendahl, M., and Stocki, R. (2006) A study on algorithms for optimization of Latin hypercubes. Journal of Statistical Planning and Inference, 136, 3231-3247.

Examples

```
#generate a 5 by 3 maximin distance LHD with the default setting
try=GA(n=5,k=3)
try
phi_p(try) #calculate the phi_p of "try".
#Another example
#generate a 8 by 4 nearly orthogonal LHD
try2=GA(n=8,k=4,0C="AvgAbsCor")
try2
AvgAbsCor(try2) #calculate the average absolute correlation.
```


Description

GLP returns a n by k design matrix generated by good lattice point (GLP)

Usage

GLP(n, k, h = sample(seq(from = 1, to = (n - 1)), k))

Arguments

$\mathrm{n} \quad$ A positive integer, which stands for the number of rows (or run size).
$k \quad$ A positive integer, which stands for the number of columns (or factor size). k must be smaller than n. In GLP designs, $k>=$ the total number of positive integers that are smaller than and coprime to n.
h
A vector whose length is k, with its elements that are smaller than and coprime to n. The default is set to be a random sample of k elements between 1 and $n-1$.

Value

If all inputs are logical, then the output will be a n by k GLP design matrix.

References

Korobov, A.N. (1959) The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR, 124, 1207-1210.

Examples

```
#generate a 5 by 3 GLP design with the default setting
try=GLP(n=5,k=3)
try
#Another example
#generate a 8 by 4 GLP design with given h vector
try2=GLP(n=8,k=4,h=c(1, 3,5,7))
try2
```

LaPSO
Particle Swarm Optimization for LHD

Description

LaPSO returns a n by k LHD matrix generated by particle swarm optimization algorithm (PSO)

Usage

LaPSO(
n,
k,
m = 10,
$N=10$,
SameNumP = 0,
SameNumG $=n / 4$,
p0 $=1 /(k-1)$,
OC = "phi_p",
$p=15$,
$q=1$,
maxtime $=5$
)

Arguments

n
k

A positive integer, which stands for the number of rows (or run size).
A positive integer, which stands for the number of columns (or factor size).
m

N
p0 A probability of exchanging two randomly selected elements in current column of current particle LHD. The default is set to be $1 /(\mathrm{k}-1)$.
OC An optimality criterion. The default setting is "phi_p", and it could be one of the following: "phi_p", "AvgAbsCor", "MaxAbsCor", "MaxProCriterion".
$\mathrm{p} \quad$ A positive integer, which is the parameter in the phi_p formula, and p is prefered to be large. The default is set to be 15 .
$\mathrm{q} \quad$ The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If q is 2 , dij is the Euclidean distance.
maxtime A positive number, which indicates the expected maximum CPU time given by user, and it is measured by minutes. For example, maxtime $=3.5$ indicates the CPU time will be no greater than three and half minutes. The default is set to be 5.

Value

If all inputs are logical, then the output will be a n by k LHD. Here are some general suggestions about the parameters:

- SameNumP is approximately $\mathrm{n} / 2$ when SameNumG is 0 .
- SameNumG is approximately $\mathrm{n} / 4$ when SameNumP is 0 .
- $\mathrm{p} 0 *(\mathrm{k}-1)=1$ to 2 is often sufficient. So $\mathrm{p} 0=1 /(\mathrm{k}-1)$ to $2 /(\mathrm{k}-1)$.

References

Chen, R.-B., Hsieh, D.-N., Hung, Y., and Wang, W. (2013) Optimizing Latin hypercube designs by particle swarm. Stat. Comput., 23, 663-676.

Examples

```
#generate a 5 by 3 maximin distance LHD with the default setting
try=LaPSO(n=5,k=3)
try
phi_p(try) #calculate the phi_p of "try".
```

\#Another example
\#generate a 8 by 4 nearly orthogonal LHD
try2=LaPSO(n=8, k=4,0C="AvgAbsCor")
try2
AvgAbsCor(try2) \#calculate the average absolute correlation.

MaxAbsCor Calculate the Maximum Absolute Correlation

Description

MaxAbsCor returns the maximum absolute correlation of a matrix

Usage

MaxAbsCor (X)

Arguments

$X \quad$ A matrix object. In general, X stands for the design matrix.

Value

If all inputs are logical, then the output will be a positive number indicating maximum absolute correlation. maximum absolute correlation = max_\{ij\}|q_\{ij\}|

References

Georgiou, S. D. (2009) Orthogonal Latin hypercube designs from generalized orthogonal designs. Journal of Statistical Planning and Inference, 139, 1530-1540.

Examples

```
#create a toy LHD with 5 rows and 3 columns
toy=rLHD(n=5,k=3); toy
#Calculate the maximum absolute correlation of toy
MaxAbsCor(X=toy)
```


Description

MaxProCriterion returns the maximum projection criterion of an LHD

Usage

MaxProCriterion(X)

Arguments

$X \quad$ A matrix object. In general, X stands for the design matrix.

Value

If all inputs are logical, then the output will be a positive number indicating maximum projection criterion. maximum projection criterion = \Bigg\{ \frac\{1\}\{\{n \choose 2$\}\} \backslash$ sum_\{i=1\}^\{n-1\} \sum_\{j=i+1\}^\{n\} \frac\{1\}\{\Pi_\{l=1\}^\{k\}(x_\{il\}-x_\{jl\})^2\} \Bigg\}^\{1/k\}

References

Joseph, V. R., Gul, E., and Ba, S. (2015) Maximum projection designs for computer experiments. Biometrika, 102, 371-380.

Examples

\#create a toy LHD with 5 rows and 3 columns
toy=rLHD ($\mathrm{n}=5, \mathrm{k}=3$) ; toy
\#Calculate the maximum projection criterion of toy MaxProCriterion(X=toy)

Description

OA2LHD transfers an OA into an LHD with corresponding size

Usage

OA2LHD (OA)

Arguments

OA An orthogonal array matrix.

Value

If the input is logical, then the output will be an LHD whose sizes are the same as input OA. The assumption is that the elements of OAs must be positive.

References

Tang, B. (1993) Orthogonal-array-based latin hypercubes. Journal of the Americal Statistical Association, 88, 1392-1397.

Examples

\#create an $\mathrm{OA}(9,2,3,2)$
OA=matrix(c(rep(1:3,each=3),rep(1:3,times=3)),ncol=2, nrow=9, byrow = FALSE);OA
\#Transfer the "OA" above into a LHD according to Tang (1993)
tryOA=OA2LHD (OA)
OA; tryOA

Description

OASA returns an LHD matrix generated by orthogonal-array-based simulated annealing algorithm (OASA)

Usage

OASA(
OA,
$N=10$,
$\mathrm{T} 0=10$,
rate $=0.1$,
Tmin = 1,
Imax $=5$,
OC = "phi_p",
$p=15$,
$q=1$,
maxtime $=5$
)

Arguments

OA An orthogonal array matrix.
N
A positive integer, which stands for the number of iterations. The default is set to be 10. A large value of N will result a high CPU time, and it is recommended to be no greater than 500 .
T0 A positive number, which stands for the user-defined initial temperature. The default is set to be 10 .
rate A positive percentage, which stands for temperature decrease rate, and it should be in $(0,1)$. For example, rate $=0.25$ means the temperature decreases by 25% each time. The default is set to be 10%.

Tmin A positive number, which stands for the minimium temperature allowed. When current temperature becomes smaller or equal to Tmin, the stopping criterion for current loop is met. The default is set to be 1 .
Imax A positive integer, which stands for the maximum perturbations the algorithm will try without improvements before temperature is reduced. The default is set to be 5 . For the computation complexity consideration, Imax is recommended to be smaller or equal to 5 .
OC An optimality criterion. The default setting is "phi_p", and it could be one of the following: "phi_p", "AvgAbsCor", "MaxAbsCor", "MaxProCriterion".
$\mathrm{p} \quad$ A positive integer, which is the parameter in the phi_p formula, and p is prefered to be large. The default is set to be 15 .
$\mathrm{q} \quad$ The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If q is $2, \mathrm{dij}$ is the Euclidean distance.
maxtime A positive number, which indicates the expected maximum CPU time given by user, and it is measured by minutes. For example, maxtime $=3.5$ indicates the CPU time will be no greater than three and half minutes. The default is set to be 5.

Value

If all inputs are logical, then the output will be an LHD whose sizes are the same as input OA. The assumption is that the elements of OAs must be positive.

References

Leary, S., Bhaskar, A., and Keane, A. (2003) Optimal orthogonal-array-based latin hypercubes. Journal of Applied Statistics, 30, 585-598.

Examples

\#create an $\mathrm{OA}(9,2,3,2)$
$\mathrm{OA}=$ matrix $(\mathrm{c}(\operatorname{rep}(1: 3$, each=3), rep(1:3, times=3)), ncol=2, nrow=9, byrow $=$ FALSE $)$
\#Use above "OA" as the input $O A$ to generate a 9 by 2 maximin distance LHD
\#with the default setting
try $=0 A S A(0 A=O A)$

```
try
phi_p(try) #calculate the phi_p of "try".
#Another example
#generate a 9 by 2 nearly orthogonal LHD
try2=OASA(OA=0A,0C="MaxAbsCor")
try2
MaxAbsCor(try2) #calculate the maximum absolute correlation.
```


Description

OLHD.B2001 returns a n by k orthogonal Latin hypercube design generated by the construction method of Butler (2001)

Usage

OLHD.B2001(n, k)

Arguments

$\mathrm{n} \quad$ An odd prime number that is greater than or equal to 3 .
$\mathrm{k} \quad$ A positive integer that is smaller than or equal to $\mathrm{n}-1$.

Value

If all inputs are logical, then the output will be a n by k orthogonal LHD.

References

Butler, N.A. (2001) Optimal and orthogonal Latin hypercube designs for computer experiments.
Biometrika, 88(3), 847-857.

Examples

\#create an orthogonal LHD with $\mathrm{n}=11$ and $\mathrm{k}=5$ OLHD.B2001 ($\mathrm{n}=11$, $\mathrm{k}=5$)
\#create an orthogonal LHD with $\mathrm{n}=7$ and $\mathrm{k}=6$ OLHD.B2001 ($\mathrm{n}=7, \mathrm{k}=6$)

Description

OLHD.C2007 returns a $2^{\wedge} m+1$ by $m+\{m-1$ \choose 2$\}$ orthogonal Latin hypercube design generated by the construction method of Cioppa and Lucas (2007)

Usage

OLHD.C2007 (m)

Arguments

$m \quad$ A positive integer, and it must be greater than or equal to 2.

Value

If all inputs are logical, then the output will be an orthogonal LHD with the following run size: $n=2^{\wedge} m+1$ and the following factor size: $k=m+\{m-1$ choose 2$\}$.

References

Cioppa, T.M., and Lucas, T.W. (2007) Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics, 49(1), 45-55.

Examples

```
#create an orthogonal LHD with m=4. So n=2^m+1=17 and k=4+3=7
OLHD.C2007(m=4)
#create an orthogonal LHD with m=5. So n=2^m+1=33 and k=5+6=11
OLHD.C2007(m=5)
```


Description

OLHD.L2009 returns a $n^{\wedge} 2$ by $2 f p$ orthogonal Latin hypercube design generated by the construction method of Lin et al. (2009)

Usage

OLHD.L2009 (OLHD, OA)

Arguments

OLHD An orthogonal Latin hypercube design with run size n and factor size p, and it will be coupled with the input orthogonal array.
OA An orthogonal array, with $n^{\wedge} 2$ rows, $2 f$ columns, n symbols, strength two and index unity is available, which can be denoted as $0 A\left(n^{\wedge} 2,2 f, n, 2\right)$.

Value

If all inputs are logical, e,g. a n by p orthogonal Latin hypercube design and an $O A\left(n^{\wedge} 2,2 f, n, 2\right)$ orthogonal array, then the output will be an orthogonal Latin hypercube design with the following run size: $\mathrm{n}^{\wedge} 2$ and the following factor size: 2 fp .

References

Lin, C.D., Mukerjee, R., and Tang, B. (2009) Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika, 96(1), 243-247.

Examples

\#create a 5 by 2 OLHD
OLHD=OLHD.C2007 (m=2)
\#create an $\mathrm{OA}(25,6,5,2)$
$0 A=$ matrix $(c(2,2,2,2,2,1,2,1,5,4,3,5,3,2,1,5,4,5,1,5,4,3,2,5$, $4,1,3,5,2,3,1,2,3,4,5,2,1,3,5,2,4,3,1,1,1,1,1,1,4,3,2,1,5,5$, $5,5,5,5,5,1,4,4,4,4,4,1,3,1,4,2,5,4,3,3,3,3,3,1,3,5,2,4,1,3$, $3,4,5,1,2,2,5,4,3,2,1,5,2,3,4,5,1,2,2,5,3,1,4,4,1,4,2,5,3,4$, $4,2,5,3,1,4,2,4,1,3,5,3,5,3,1,4,2,4,5,2,4,1,3,3,5,1,2,3,4,2$, $4,5,1,2,3,2)$, ncol=6, nrow=25, byrow=TRUE)
\#Construct a 25 by 12 OLHD
OLHD.L2009 (OLHD, OA)

Description

OLHD. S 2010 returns a $r 2^{\wedge}\{C+1\}+1$ or $r 2^{\wedge}\{C+1\}$ by $2^{\wedge} C$ orthogonal Latin hypercube design generated by the construction method of Sun et al. (2010)

Usage

OLHD.S2010(C, r, type = "odd")

Arguments

$C \quad$ A positive integer.
r
A positive integer.
type Design run size type, and it could be either odd or even. If type is odd (the default setting), OLHD. S2010 returns an OLHD with run size $r 2^{\wedge}\{C+1\}+1$. If type is even, OLHD. S2010 returns an OLHD with run size $r 2^{\wedge}\{C+1\}$.

Value

If all inputs are logical, then the output will be an orthogonal LHD with the following run size: $n=r 2^{\wedge}\{C+1\}+1$ or $n=r 2^{\wedge}\{C+1\}$ and the following factor size: $k=2^{\wedge} C$.

References

Sun, F., Liu, M.Q., and Lin, D.K. (2010) Construction of orthogonal Latin hypercube designs with flexible run sizes. Journal of Statistical Planning and Inference, 140(11), 3236-3242.

Examples

```
#create an orthogonal LHD with C=3, r=3, type="odd".
#So n=3*2^4+1=49 and k=2^3=8
OLHD.S2010(C=3,r=3, type="odd")
#create an orthogonal LHD with C=3, r=3, type="even".
#So n=3*2^4=48 and k=2^3=8
OLHD.S2010(C=3,r=3,type="even")
```


OLHD. Y1998 Orthogonal Latin Hypercube Design

Description

OLHD. Y1998 returns a $2^{\wedge} m+1$ by $2 m-2$ orthogonal Latin hypercube design generated by the construction method of Ye (1998)

Usage

OLHD. Y1998(m)

Arguments

$m \quad$ A positive integer, and it must be greater than or equal to 2.

Value

If all inputs are logical, then the output will be an orthogonal LHD with the following run size: $n=2^{\wedge} m+1$ and the following factor size: $k=2 m-2$.

References

Ye, K.Q. (1998) Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association, 93(444), 1430-1439.

Examples

\#create an orthogonal LHD with $m=3$. So $n=2^{\wedge} m+1=9$ and $k=2 * m-2=4$ OLHD. Y1998 (m=3)
\#create an orthogonal LHD with $m=4$. So $n=2^{\wedge} m+1=17$ and $k=2 * m-2=6$ OLHD. Y1998 (m=4)

```
    phi_p Calculate the phi_p Criterion
```


Description

phi_p returns the phi_p criterion of an LHD

Usage

$$
\text { phi_p(X, p }=15, q=1)
$$

Arguments

$X \quad$ A matrix object. In general, X stands for the design matrix.
$\mathrm{p} \quad$ A positive integer, which is the parameter in the phi_p formula, and p is prefered to be large. The default is set to be 15 .
$\mathrm{q} \quad$ The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If q is $2, \mathrm{dij}$ is the Euclidean distance.

Value

If all inputs are logical, then the output will be a positive number indicating phi_p. \phi_p= (\backslash sum_ $\{i=1\}^{\wedge}\{n-1\} \backslash$ sum_ $\left.^{\prime}\{j=i+1\}^{\wedge}\{n\} \operatorname{dij}^{\wedge}\{-p\}\right)^{\wedge}\{1 / p\}$, where $\operatorname{dij}^{\prime}=\backslash$ left $\backslash\left\{\right.$ sum_ $\{k=1\}^{\wedge}\{m\}$ \vert x _\{ik\}-x_\{jk\}\vert ^q \right } \backslash \} ^ { \wedge } \{ 1 / q \}

References

Jin, R., Chen, W., and Sudjianto, A. (2005) An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134, 268-287.

Examples

```
#create a toy LHD with 5 rows and 3 columns
toy=rLHD(n=5,k=3);toy
#Calculate the phi_p criterion of toy with default setting
phi_p(X=toy)
#Calculate the phi_p criterion of toy with p=50 and q=2
phi_p(X=toy,p=50,q=2)
```


Description

rLHD returns a random n by k Latin hypercube design matrix

Usage

$\operatorname{rLHD}(\mathrm{n}, \mathrm{k})$

Arguments

n
A positive integer, which stands for the number of rows (or run size).
$\mathrm{k} \quad$ A positive integer, which stands for the number of columns (or factor size).

Value

If all inputs are positive integer, then the output will be a n by k design matrix.

Examples

```
#create a toy LHD with 5 rows and 3 columns
toy=rLHD(n=5,k=3);toy
#another example with 9 rows and 2 columns
rLHD(9,2)
```


Description

SA returns a n by k LHD matrix generated by simulated annealing algorithm (SA)

```
Usage
    SA(
        n,
        k,
        N = 10,
        T0 = 10,
        rate = 0.1,
        Tmin = 1,
        Imax = 5,
        OC = "phi_p",
        p = 15,
        q = 1,
        maxtime = 5
    )
```


Arguments

n
$k \quad$ A positive integer, which stands for the number of columns (or factor size).
N

T0
rate

Tmin

Imax A positive integer, which stands for the maximum perturbations the algorithm will try without improvements before temperature is reduced. The default is set to be 5 . For the computation complexity consideration, Imax is recommended to be smaller or equal to 5 .
OC An optimality criterion. The default setting is "phi_p", and it could be one of the following: "phi_p", "AvgAbsCor", "MaxAbsCor", "MaxProCriterion".
$\mathrm{p} \quad$ A positive integer, which is the parameter in the phi_p formula, and p is prefered to be large. The default is set to be 15 .
q
The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , $d i j$ is the Manhattan (rectangular) distance. If q is $2, \operatorname{dij}$ is the Euclidean distance.
maxtime A positive number, which indicates the expected maximum CPU time given by user, and it is measured by minutes. For example, maxtime $=3.5$ indicates the CPU time will be no greater than three and half minutes. The default is set to be 5.

Value

If all inputs are logical, then the output will be a n by k LHD.

References

Morris, M.D., and Mitchell, T.J. (1995) Exploratory designs for computer experiments. Journal of Statistical Planning and Inference, 43, 381-402.

Examples

```
#generate a 5 by 3 maximin distance LHD with the default setting
try=SA(n=5,k=3)
try
phi_p(try) #calculate the phi_p of "try".
#Another example
#generate a 8 by 4 nearly orthogonal LHD
try2=SA(n=8,k=4,0C="AvgAbsCor")
try2
AvgAbsCor(try2) #calculate the average absolute correlation.
```

Simulated Annealing for LHD with Multi-objective Optimization Approach

Description

SA2008 returns a n by k LHD matrix generated by simulated annealing algorithm with multiobjective optimization approach

Usage

SA2008(
n ,
k,
$\mathrm{N}=10$,
$\mathrm{T} 0=10$,

```
    rate = 0.1,
    Tmin = 1,
    Imax = 5,
    OC = "phi_p",
    p = 15,
    q = 1,
    maxtime = 5
)
```


Arguments

n
k
$\mathrm{N} \quad$ A positive integer, which stands for the number of iterations. The default is set to be 10. A large value of N will result a high CPU time, and it is recommended to be no greater than 500 .
T0 A positive number, which stands for the user-defined initial temperature. The default is set to be 10 .
rate A positive percentage, which stands for temperature decrease rate, and it should
A positive integer, which stands for the number of rows (or run size).
be in $(0,1)$. For example, rate $=0.25$ means the temperature decreases by 25% each time. The default is set to be 10%.

Tmin A positive number, which stands for the minimium temperature allowed. When current temperature becomes smaller or equal to Tmin, the stopping criterion for current loop is met. The default is set to be 1 .
Imax A positive integer, which stands for the maximum perturbations the algorithm will try without improvements before temperature is reduced. The default is set to be 5 . For the computation complexity consideration, Imax is recommended to be smaller or equal to 5 .

OC An optimality criterion. The default setting is "phi_p", and it could be one of the following: "phi_p", "AvgAbsCor", "MaxAbsCor", "MaxProCriterion".
$p \quad$ A positive integer, which is the parameter in the phi_p formula, and p is prefered to be large. The default is set to be 15 .
q
maxtime
The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If q is $2, \operatorname{dij}$ is the Euclidean distance.

A positive number, which indicates the expected maximum CPU time given by user, and it is measured by minutes. For example, maxtime $=3.5$ indicates the CPU time will be no greater than three and half minutes. The default is set to be 5.

Value

If all inputs are logical, then the output will be a n by k LHD. This modified simulated annealing algorithm reduces columnwise correlations and maximizes minimum distance between design points simultaneously, with a cost of more computational complexity.

References

Joseph, V.R., and Hung, Y. (2008) Orthogonal-maximin Latin hypercube designs. Statistica Sinica, 18, 171-186.

Examples

```
#generate a 5 by 3 maximin distance LHD with the default setting
try=SA2008(n=5,k=3)
try
phi_p(try) #calculate the phi_p of "try".
#Another example
#generate a 8 by 4 nearly orthogonal LHD
try2=SA2008(n=8,k=4,0C="AvgAbsCor")
try2
AvgAbsCor(try2) #calculate the average absolute correlation.
```

```
SLHD

\section*{Description}

SLHD returns a \(n\) by \(k\) LHD matrix generated by improved two-stage algorithm

\section*{Usage}
```

SLHD(
n,
k,
t = 1,
N = 10,
T0 = 10,
rate = 0.1,
Tmin = 1,
Imax = 3,
OC = "phi_p",
p = 15,
q = 1,
stage2 = FALSE,
maxtime = 5
)

```

\section*{Arguments}
n
k

A positive integer, which stands for the number of rows (or run size).
A positive integer, which stands for the number of columns (or factor size).
t

N

Tmin A positive number, which stands for the minimium temperature allowed. When current temperature becomes smaller or equal to Tmin, the stopping criterion for current loop is met. The default is set to be 1 .
Imax A positive integer, which stands for the maximum perturbations the algorithm will try without improvements before temperature is reduced. The default is set to be 5 . For the computation complexity consideration, Imax is recommended to be smaller or equal to 5 .

OC An optimality criterion. The default setting is "phi_p", and it could be one of the following: "phi_p", "AvgAbsCor", "MaxAbsCor", "MaxProCriterion".
p
\(\mathrm{q} \quad\) The default is set to be 1 , and it could be either 1 or 2 . If q is 1 , dij is the Manhattan (rectangular) distance. If \(q\) is \(2, \mathrm{dij}\) is the Euclidean distance.
stage2 A logic input argument, and it could be either FALSE or TRUE. If stage2 is FALSE (the default setting), SLHD will only implement the first stage of the algorithm. If stage 2 is TRUE, SLHD will implement the whole algorithm.
maxtime A positive number, which indicates the expected maximum CPU time given by user, and it is measured by minutes. For example, maxtime \(=3.5\) indicates the CPU time will be no greater than three and half minutes. The default is set to be 5.

\section*{Value}

If all inputs are logical, then the output will be a \(n\) by \(k\) LHD. As mentioned from the original paper, the first stage plays a much more important role since it optimizes the slice level. More resources should be given to the first stage if computational budgets are limited. Let \(\mathrm{m}=\mathrm{n} / \mathrm{t}\), where m is the number of rows for each slice, if \((\mathrm{m})^{\wedge} \mathrm{k} » \mathrm{n}\), the second stage becomes optional. That is the reason why we add a stage 2 parameter to let users decide if the second stage is needed.

\section*{References}

Ba, S., Myers, W.R., and Brenneman, W.A. (2015) Optimal Sliced Latin Hypercube Designs. Technometrics, 57, 479-487.

\section*{Examples}
```

\#generate a 5 by 3 maximin distance LHD with the default setting
try=SLHD(n=5,k=3)
try
phi_p(try) \#calculate the phi_p of "try".
\#generate a 5 by 3 maximin distance LHD with stage II
\#let stage2=TRUE and other input are the same as above
try2=SLHD(n=5,k=3, stage2=TRUE)
try2
phi_p(try2) \#calculate the phi_p of "try2".
\#Another example
\#generate a 8 by 4 nearly orthogonal LHD
try3=SLHD(n=8,k=4,0C="AvgAbsCor", stage2=TRUE)
try3
AvgAbsCor(try3) \#calculate the average absolute correlation.

```
WT Williams Transformation

\section*{Description}

WT returns a matrix after implementing the Williams transformation

\section*{Usage}

WT \((X\), baseline \(=1)\)

\section*{Arguments}
\(X \quad\) A matrix object. In general, \(X\) stands for the design matrix, e.g. an LHD or a GLP design.
baseline A integer, which defines the minimum value for each column of the matrix. The default is set to be 1 .

\section*{Value}

If all inputs are logical, then the output will be a matrix whose sizes are the same as input matrix.

\section*{References}

Williams, E. J. (1949) Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Chemistry, 2, 149-168.

\section*{Examples}
\#create a toy LHD with 5 rows and 3 columns
toy \(=r \operatorname{LHD}(\mathrm{n}=5, \mathrm{k}=3)\); toy
toy2=toy-1; toy2 \#make elements of "toy" become 0,1,2, 3, 4
\#Implementing Williams transformation on both toy and toy2:
\#The result shows that "WT" function is able to detect the
\#elements of input matrix and make adjustments.
WT (toy)
WT (toy2)
\#Change the baseline
WT (toy, baseline=5)
WT (toy, baseline=10)

\section*{Index}

AvgAbsCor, 2
dij, 3
exchange, 4
FastMmLHD, 5
GA, 6
GLP, 7
LaPSO, 8
MaxAbsCor, 10
MaxProCriterion, 11
OA2LHD, 11
OASA, 12
OLHD.B2001, 14
OLHD.C2007, 15
OLHD.L2009, 15
OLHD. S2010, 16
OLHD.Y1998, 17
phi_p, 18
rLHD, 19
SA, 20
SA2008, 21
SLHD, 23
WT, 25```

