Package 'LexFindR'

October 29, 2021

Title Find Related Items and Lexical Dimensions in a Lexicon
Version 1.0.2
Date 2021-10-23
Description Implements code to identify lexical competitors in a given list of words. We include many of the standard competitor types used in spoken word recognition research, such as functions to find cohorts, neighbors, and rhymes, amongst many others. The package includes documentation for using a variety of lexicon files, including those with form codes made up of multiple letters (i.e., phoneme codes) and also basic orthographies. Importantly, the code makes use of multiple CPU cores and vectorization when possible, making it extremely fast and able to handle large lexicons. Additionally, the package contains documentation for users to easily write new functions, allowing researchers to examine other relationships within a lexicon.
Preprint: https://psyarxiv.com/8dyru/. Open ac-
cess: <https://link.springer.com/epdf/10.3758/s13428-021-01667-6?sharing_
token=9Wl09soCc9y0uSuwWSUYfJAH0g46feNdnc402WrhzyrdKcK8uzZx_
hDEtgbYzn3gvxdG5Cuj0j0cC4lVMFBqYCGTQmE2b1N2Gwo74LJ8ro1pEOAYDRFy6Lhf1nc719vD-zU7GDvK0QxDAwPbrisvPBe
3D>.
Citation: Li, Z., Crinnion, A.M. \& Magnuson, J.S. (2021).
doi:10.3758/s13428-021-01667-6.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests tidyverse, knitr, rmarkdown, testthat, future.apply, tictoc
VignetteBuilder knitr
Depends R (>= 3.5.0)
URL https://github.com/maglab-uconn/LexFindR
BugReports https://github.com/maglab-uconn/LexFindR/issues
NeedsCompilation no
Author ZhaoBin Li [aut, cre], Anne Marie Crinnion [aut], James S. Magnuson [aut, cph]
Maintainer ZhaoBin Li bzilplj@gmail.com
Repository CRAN
Date/Publication 2021-10-29 06:30:08 UTC

R topics documented:

get_cohorts 2
get_cohortsP 3
get_embeds_in_target 4
get_embeds_in_targetP 5
get_fw 6
get_fwcp 6
get_homoforms 7
get_neighbors 8
get_neighborsP 9
get_nohorts 10
get_rhymes 11
get_target_embeds_in 12
get_target_embeds_inP 12
get_uniqpt 13
lemmalex 14
slex 15
Index 16
get_cohorts Get cohort competitors

Description

Cohorts overlap in onset phoneme(s).

```
Usage
    get_cohorts(
        target,
        lexicon,
        sep = " ",
        form = FALSE,
        count = FALSE,
        overlap = 2
    )
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
sep	Separator in target and lexicon
form	Whether to return words in lexicon
count	Whether to return count of words overlap
(get_cohorts only) Integer specifying the number of onset phonemes to overlap for matching with the target word	

Value

the indexes of the competitors in the lexical database

Examples

get_cohorts("AA R K", c("AA R K", "AA R T", "B AA B"))
get_cohortsP Get CohortsPrime

Description

Cohorts that are not neighbors

Usage

```
    get_cohortsP(
        target,
        lexicon,
        neighbors = "das",
        sep = " ",
        form = FALSE,
        count = FALSE
    )
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
neighbors	(get_neighbors only) Character vector specifying the type of neighbor to return, Return the delete, add, substitute neighbors of the target when 'd', 'a', and/or 's' is in neighbors respectively
sep	Separator in target and lexicon form count
	Whether to return words in lexicon

Value

the indexes of the competitors in the lexical database

Examples

```
get_cohortsP("AA R K", c("AA R K", "AA R", "B AA B"), neighbors = "das")
```

```
get_embeds_in_target Get embedding competitors
```


Description

Embedding competitors are items embedded in target

Usage

get_embeds_in_target(target, lexicon, sep = " ", form = FALSE, count = FALSE)

Arguments

target Character string containing a target word
lexicon Character vector containing the lexical database
sep \quad Separator in target and lexicon
form Whether to return words in lexicon
count Whether to return count of words

Value

the indexes of the competitors in the lexical database

Examples

get_embeds_in_target("AA R K", c("AA R K", "AA R", "B AA B"))

```
get_embeds_in_targetP Get embeds-in-target PRIME
```


Description

Items embedded in the target which are not cohorts or neighbors

```
Usage
get_embeds_in_targetP(
    target,
    lexicon,
    neighbors = "das",
    sep = " ",
    form = FALSE,
    count = FALSE
)
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
neighbors	(get_neighbors only) Character vector specifying the type of neighbor to return. Return the delete, add, substitute neighbors of the target when 'd', 'a', and/or 's' is in neighbors respectively
sep	Separator in target and lexicon
form	Whether to return words in lexicon
count	Whether to return count of words

Value

the indexes of the competitors in the lexical database

Examples

```
get_embeds_in_targetP("B AA R K IY", c("AA R K", "AA R", "AA R K IY", "B AA R"))
```


Description

Get the \log Frequency Weight (FW) of a competitor set

```
Usage
get_fw(competitors_freq, pad = 0)
```


Arguments

competitors_freq
Numeric vector containing the frequencies of competitors (including itself)
pad Value to add to frequencies before taking log; if your minimum frequency is 0 , consider adding a value between 1 and 2 ; if your minimum frequency is between 0 and 1 , consider adding 1

Value

FW

Examples

```
get_fw(c(10, 50), pad = 1)
```

```
get_fwcp
```

Get the log Frequency Weighted Competitor Probability (FWCP)

Description

Get the log Frequency Weighted Competitor Probability (FWCP)

Usage

get_fwcp(target_freq, competitors_freq, pad = 0, add_target = FALSE)

Arguments

```
target_freq Frequency of target word
competitors_freq
                                    Numeric vector containing the frequencies of competitors (including itself)
pad Value to add to frequencies before taking log; if your minimum frequency is 0,
                                consider adding a value between 1 and 2; if your minimum frequency is between
                                0 and 1, consider adding 1
add_target Boolean; set to TRUE if you want the target frequency added to the denominator;
    only do this if the target is not already included in the competitor set (e.g., if the
    target is in the lexicon, it will be captured as its own neighbor, its own cohort,
    etc.)
```

Value
\log FWCP

Examples

```
get_fwcp(100, c(10, 50), pad = 1)
```

```
get_homoforms Get homophones
```


Description

Homophones are items which sound similar to the target

Usage

get_homoforms(target, lexicon, sep = " ", form = FALSE, count = FALSE)

Arguments

target Character string containing a target word
lexicon Character vector containing the lexical database
sep Separator in target and lexicon
form Whether to return words in lexicon
count Whether to return count of words

Value
the indexes of the competitors in the lexical database

Examples

```
get_homoforms("AA R K", c("AA R K", "AA R", "B AA B"))
```

```
get_neighbors Get phonological neighbors
```


Description

Phonological neighbors are items which can be converted to the target by one add, delete and substitute operation

Usage

get_neighbors(target,
lexicon,
neighbors = "das",
sep = " ",
form = FALSE,
count = FALSE
)

Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
neighbors	(get_neighbors only) Character vector specifying the type of neighbor to return. Return the delete, add, substitute neighbors of the target when 'd', 'a', and/or 's' is in neighbors respectively
sep	Separator in target and lexicon form
count	Whether to return words in lexicon

Value

the indexes of the competitors in the lexical database

Examples

```
get_neighbors("AA R K", c("AA R K", "AA R", "B AA B"), "d")
get_neighbors("AA R K", c("AA R K", "AA R", "B AA B"), "da")
get_neighbors("AA R K", c("AA R K", "AA R", "B AA B"), "das")
```

```
get_neighborsP Get NeighborssPrime
```


Description

Neighbors which are not cohorts or rhymes

Usage

```
get_neighborsP(
    target,
    lexicon,
    neighbors = "das",
    sep = " ",
    form = FALSE,
    count = FALSE
)
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
neighbors	(get_neighbors only) Character vector specifying the type of neighbor to return, Return the delete, add, substitute neighbors of the target when 'd', 'a', and/or 's' is in neighbors respectively
sep	Separator in target and lexicon form
count	Whether to return words in lexicon

Value

the indexes of the competitors in the lexical database

Examples

```
get_neighborsP("AA R K", c("AA R K", "AA R", "B AA B"), neighbors = "das")
```

get_nohorts Get nohorts

Description

Items which are both cohorts and neighbors

Usage

```
get_nohorts(
    target,
    lexicon,
    neighbors = "das",
    sep = " ",
    form = FALSE,
    count = FALSE
)
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
neighbors	(get_neighbors only) Character vector specifying the type of neighbor to return, Return the delete, add, substitute neighbors of the target when 'd', 'a', and/or 's' is in neighbors respectively
sep	Separator in target and lexicon
form	Whether to return words in lexicon
count	Whether to return count of words

Value

the indexes of the competitors in the lexical database

Examples

get_nohorts("AA R K", c("AA R K", "AA R", "B AA B"), neighbors = "das")

```
get_rhymes Get rhyme competitors
```


Description

Rhymes overlap in all except onset phoneme(s)

Usage

```
    get_rhymes(
        target,
        lexicon,
        sep = " ",
        form = FALSE,
        count = FALSE,
        mismatch = 1
    )
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
sep	Separator in target and lexicon
form	Whether to return words in lexicon
count	Whether to return count of words
mismatch	(get_rhymes only) Integer specifying the number of onset phonemes to mis- match for matching with the target word

Value

the indexes of the competitors in the lexical database

Examples

```
get_rhymes("AA R K", c("AA R K", "B AA R K", "B AA B"))
```

```
get_target_embeds_in Get embedded competitors
```


Description

Embedded competitors are items which the target embedded in.

Usage

get_target_embeds_in(target, lexicon, sep = " ", form = FALSE, count = FALSE)

Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
sep	Separator in target and lexicon
form	Whether to return words in lexicon
count	Whether to return count of words

Value

the indexes of the competitors in the lexical database

Examples

get_target_embeds_in("AA R K", c("AA R K", "B AA R K", "B AA B"))

```
get_target_embeds_inP Get target-embeds-in PRIME
```


Description

Items the target embeds into which are not cohorts or neighbors

```
Usage
    get_target_embeds_inP(
        target,
        lexicon,
        neighbors = "das",
        sep = " ",
        form = FALSE,
        count = FALSE
    )
```


Arguments

target	Character string containing a target word
lexicon	Character vector containing the lexical database
neighbors	(get_neighbors only) Character vector specifying the type of neighbor to return. Return the delete, add, substitute neighbors of the target when 'd', 'a', and/or 's' is in neighbors respectively
sep	Separator in target and lexicon
form	Whether to return words in lexicon
count	Whether to return count of words

Value

the indexes of the competitors in the lexical database

Examples

```
get_target_embeds_inP("B AA R K", c("AA R K", "AA R", "B AA R K IY", "B AA R"))
```

```
    get_uniqpt Get phonological uniqueness point
```


Description

Phonological uniqueness point is the index at which the target becomes unique in the lexicon

Usage

get_uniqpt(target, lexicon, sep = " ")

Arguments

target Character string containing a target word
lexicon Character vector containing the lexical database
sep Separator in target and lexicon

Value

Target is not unique: length +1 , else index where target becomes unique in lexicon

Examples

```
get_uniqpt("AA R K", c("AA R", "B AA B", "B AA R K"))
```

lemmalex Lemmalex dictionary

Description

Lemmalex is primarily based on the SUBTLEXus subtitle corpus (based on American subtitles with 51 million items in total) reduced to lemma using a copyrighted database (Francis and Kučera, 1982). The pronunciation is given by CMU Pronouncing Dictionary

Usage

lemmalex

Format

An object of class tbl_df (inherits from tbl, data. frame) with 17750 rows and 3 columns.

Details

Reference: Brysbaert, M., \& New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior research methods, 41(4), 977-990.

Kučera, H., \& Francis, W. N. (1967). Computational analysis of present-day American English. Brown university press.

CMU Pronouncing Dictionary: http://www.speech.cs.cmu.edu/cgi-bin/cmudict
@ format A table with 20,293 rows and 3 variables:

Item SUBTLEXus dictionary reduced to lemmas
Frequency Number of times the item appeared in the SUBTLEXus corpus
Pronunciation ARPAbet transcription according to CMU ...

Source

https://www.ugent.be/pp/experimentele-psychologie/en/research/documents/subtlexus

slex

slex ARPAbet

Description

TRACE slex lexicon translated by Nenadić and Tucker into ARPAbet pronunciation

Usage

slex

Format

An object of class data. table (inherits from data. frame) with 212 rows and 3 columns.

Details

TRACE slex lexicon with Frequencies: McClelland, J. L., \& Elman, J. L. (1986). The TRACE model of speech perception. Cognitive psychology, 18(1), 1-86.
APRAbet transcription: Nenadić, F., \& Tucker, B. V. (2020). Computational modelling of an auditory lexical decision experiment using jTRACE and TISK. Language, Cognition and Neuroscience, 1-29.
@format A table with 212 rows and 2 variables:
Item TRACE slex transcription
Pronunciation ARPAbet transcription ...

Source

https://era.library.ualberta.ca/items/61319cc6-436a-428c-b960-545bdc9bd5d3

Index

```
* datasets
    lemmalex, 14
    slex,15
get_cohorts, 2
get_cohortsP, 3
get_embeds_in_target,4
get_embeds_in_targetP,5
get_fw,6
get_fwcp,6
get_homoforms,7
get_neighbors,8
get_neighborsP,9
get_nohorts,10
get_rhymes, 11
get_target_embeds_in, 12
get_target_embeds_inP, 12
get_uniqpt, 13
```

lemmalex, 14
slex, 15

