Package ‘LiblineaR.ACF’

January 4, 2016

Title Linear Classification with Online Adaptation of Coordinate
Frequencies

Version 1.94-2

Author Aydin Demircioglu <aydin.demircioglu@ini.rub.de>;
Tobias Glasmachers <tobias.glasmachers@ini.rub.de>;
Urun Dogan <urundogan@gmail . com>

Maintainer Aydin Demircioglu <aydin.demircioglu@ini.rub.de>

Description Solving the linear SVM problem with coordinate descent
is very efficient and is implemented in one of the most often used packages,
'LIBLINEAR' (available at http://www.csie.ntu.edu.tw/~cjlin/liblinear).
It has been shown that the uniform selection of coordinates can be
accelerated by using an online adaptation of coordinate frequencies (ACF).
This package implements ACF and is based on 'LIBLINEAR' as well as
the 'LiblineaR' package (<https://cran.r-project.org/package=LiblineaR>).
It currently supports L2-regularized L1-loss as well as L2-loss linear SVM.
Similar to "LIBLINEAR' multi-class classification (one-vs-the rest, and
Crammer & Singer method) and cross validation for model selection is
supported. The training of the models based on ACF is much faster than
standard 'LIBLINEAR' on many problems.

Copyright The LIBLINEAR Project; Thibault Helleputte
<thibault.helleputte @dnalytics.com>; Pierre Gramme
<pierre.gramme @dnalytics.com>

License GPL-2

Date 2016-01-04
LazyLoad yes

Suggests SparseM, testthat

URL http://github.com/aydindemircioglu/liblineaR.ACF/
NeedsCompilation yes

Repository CRAN

RoxygenNote 5.0.1

Date/Publication 2016-01-04 12:39:03

http://github.com/aydindemircioglu/liblineaR.ACF/

2 LiblineaR.ACF

R topics documented:

LiblineaR.ACF e 2

predict.LiblineaR.ACF 6

Index 8
LiblineaR.ACF Linear predictive models estimation with Online Adaptation of Coor-

dinate Frequencies based on the LIBLINEAR C/C++ Library.

Description

LiblineaR.ACF is a modification of the LiblineaR package that uses the idea of adaptive coordi-
nate frequencies (ACF) method. Solving the linear SVM problem with coordinate descent is very
efficient and is implemented in one of the most often used packages, LIBLINEAR (available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear). It has been shown that the uniform selection of coordi-
nates can be accelerated by using an online adaptation of coordinate frequencies (ACF). This pack-
age implements ACF and is based on LIBLINEAR as well as the LiblineaR package (https://cran.r-
project.org/package=LiblineaR). It currently supports L2-regularized L1-loss as well as L2-loss
linear SVM. Similar to LIBLINEAR multi-class classification (one-vs-the rest, and Crammer &
Singer method) and cross validation for model selection is supported. The training of the models
based on ACF is much faster than standard LIBLINEAR on many problems.

Usage

LiblineaR.ACF(data, target, type = 0@, cost = 1, epsilon = 0.01,
bias = TRUE, wi = NULL, cross = @, change_rate = 0.2,

pref_min = 0.05, pref_max = 20, max_iter = 1000, verbose = FALSE, ...)
Arguments
data a nxp data matrix. Each row stands for an example (sample, point) and each col-

umn stands for a dimension (feature, variable). A sparse matrix (from SparseM
package) will also work.

target a response vector for prediction tasks with one value for each of the n rows of
data. For classification, the values correspond to class labels and can be a 1xn
matrix, a simple vector or a factor.

type LiblineaR can produce several types of (generalized) linear models, by com-
bining several types of loss functions and regularization schemes. The regular-
ization is L2, and the losses can be the regular L2-loss or L1-loss. The default
value for type is 1. Valid options are:

for multi-class classification * 1-—L2-regularized L2-loss support vector clas-
sification (dual)
e 3 —L2-regularized L1-loss support vector classification (dual)
* 4 — support vector classification by Crammer and Singer

LiblineaR.ACF

cost

epsilon

bias

wi

Cross

change_rate
pref_min
pref_max

max_iter

verbose

Details

cost of constraints violation (default: 1). Rules the trade-off between regulariza-
tion and correct classification on data. It can be seen as the inverse of a regular-
ization constant. See information on the ’C’ constant in details below. A usually
good baseline heuristics to tune this constant is provided by the heuristicC
function in the LiblineaR package.

set tolerance of termination criterion for optimization. If NULL, the LIBLINEAR
defaults are used, which are:

if typeis 1,3 or 4 epsilon=0.1

The meaning of epsilon is as follows: Dual maximal violation < epsilon
(default 0.1)

if bias is TRUE (default), instances of data becomes [data; 1].

a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All compo-
nents have to be named according to the corresponding class label.

if an integer value k>0 is specified, a k-fold cross validation on data is per-
formed to assess the quality of the model via a measure of the accuracy. Note
that this metric might not be appropriate if classes are largely unbalanced. De-
fault is 0.

learning rate of the preference adaptation, default is 0.2
lower bound on the preference adaptation, default is 1/20
upper bound on the preference adaptation, default is 20

the maximum number of iterations, default (from original LIBLINEAR code) is
1000.

if TRUE, information are printed. Default is FALSE.

for backwards compatibility, parameter labels may be provided instead of
target. A warning will then be issued, or an error if both are present. Other
extra parameters are ignored.

For details for the implementation of LIBLINEAR, see the README file of the original c/c++
LIBLINEAR library at http://www.csie.ntu.edu.tw/~cjlin/liblinear. The ACF code can
be found at http://www.ini.rub.de/PEOPLE/glasmtbl/code/acf-cd.

Value

If cross>0, the average accuracy (classification) computed over cross runs of cross-validation is

returned.

Otherwise, an object of class "LiblineaR" containing the fitted model is returned, including:

TypeDetail
Type

A string decsribing the type of model fitted, as determined by type.

An integer corresponding to type.

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.ini.rub.de/PEOPLE/glasmtbl/code/acf-cd

4 LiblineaR.ACF

W A matrix with the model weights. If bias is TRUE, W contains p+1 columns, the
last being the bias term. The columns are named according to the names of data,
if provided, or "Wx" where "x" ranges from 1 to the number of dimensions. The
bias term is named "Bias".If the number of classes is 2, the matrix only has one
row. If the number of classes is k>2 (classification), it has k rows. Each row
i corresponds then to a linear model discriminating between class i and all the
other classes. If there are more than 2 classes, rows are named according to the
class i which is opposed to the other classes.

Bias TRUE or FALSE, according to the value of bias
ClassNames A vector containing the class names.
Note
Classification models usually perform better if each dimension of the data is first centered and
scaled.
Author(s)

Aydin Demircioglu <aydin.demircioglu@ini.rub.de> Based on LiblineaR package by Thibault
Helleputte <thibault.helleputte@dnalytics.com> and

Pierre Gramme <pierre.gramme@dnalytics.com>.

Based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin Based on C/C++-code by Tobias
Glasmachers and Urun Dogan

References

¢ For more information on LIBLINEAR itself, refer to:
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification,
Journal of Machine Learning Research 9(2008), 1871-1874.
http://www.csie.ntu.edu.tw/~cjlin/liblinear

See Also

predict.LiblineaR.ACF, heuristicC

Examples

data(iris)
attach(iris)

x=iris[,1:4]
y=factor(iris[,5])
train=sample(1:dim(iris)[1],100)

xTrain=x[train,]
xTest=x[-train,]
yTrain=y[train]
yTest=y[-train]

http://www.csie.ntu.edu.tw/~cjlin/liblinear

LiblineaR.ACF 5

Center and scale data
s=scale(xTrain, center=TRUE, scale=TRUE)

Find the best model with the best cost parameter via 3-fold cross-validations
tryTypes=c(1,3,4)

tryCosts=c(1000,1,0.001)

bestCost=NA

bestAcc=0

bestType=NA

for(ty in tryTypes){

for(co in tryCosts){
acc=LiblineaR.ACF(data=s, target=yTrain, type=ty, cost=co,
bias=TRUE, cross=3,verbose=FALSE)
cat("Results for C=",co,"” : ", acc,
if(acc>bestAcc){

bestCost=co

bestAcc=acc

bestType=ty

3

3

}

n

accuracy.\n",sep="")

cat("Best model type is:",6bestType,”\n")
cat("Best cost is:"”,bestCost,"\n")
cat("Best accuracy is:",bestAcc,"”"\n")

Re-train best model with best cost value.
m=LiblineaR.ACF(data=s, target=yTrain, type=bestType, cost=bestCost,bias=TRUE, verbose=FALSE)

Scale the test data
s2=scale(xTest,attr(s, "scaled:center”),attr(s, "scaled:scale"”))

Make prediction

pr=FALSE

if(bestType==0 || bestType==7) pr=TRUE
p=predict(m,s2,proba=pr,decisionValues=TRUE)

Display confusion matrix
res=table(p$predictions,yTest)

print(res)

Compute Balanced Classification Rate
BCR=mean(c(res[1,1]/sum(res[,11),res[2,2]1/sum(res[,2]),res[3,3]1/sum(res[,31)))
print(BCR)

#' HHHHEEE A A

Example of the use of a sparse matrix:

if(require(SparseM)){

6 predict.LiblineaR.ACF

Sparsifying the iris dataset:
iS=apply(iris[,1:4],2,function(a){ala<quantile(a,probs=c(@.25))1=0;return(a)})
irisSparse<-as.matrix.csr(iS)

Applying a similar methodology as above:
xTrain=irisSparse[train,]
xTest=irisSparse[-train,]

Re-train best model with best cost value.
m=LiblineaR.ACF(data=xTrain, target=yTrain, type=bestType, cost=bestCost,bias=TRUE,verbose=FALSE)

Make prediction
p=predict(m,xTest,proba=pr,decisionValues=TRUE)

Display confusion matrix
res=table(p$predictions,yTest)
print(res)

}

predict.LiblineaR.ACF Predictions with LiblineaR.ACF model

Description

The function applies a classification model produced by the LiblineaR.ACF function to every row
of a data matrix and returns the model predictions.

Usage
S3 method for class 'LiblineaR.ACF'
predict(object, newx, decisionValues = FALSE, ...)
Arguments
object Object of class "LiblineaR.ACF", created by LiblineaR.ACF.
newx An n x p matrix containing the new input data. A vector will be transformed to

anx | matrix. A sparse matrix (from SparseM package) will also work.

decisionValues Logical indicating whether model decision values should be computed and re-
turned. Default is FALSE.

Currently not used

predict.LiblineaR.ACF 7

Value
By default, the returned value is a list with a single entry:
predictions A vector of predicted labels.
If decisionValues is set to TRUE, an additional entry is returned:
decisionValues Ann xk matrix (k number of classes) of the model decision values. The columns
of this matrix are named after class labels.
Note

If the data on which the model has been fitted have been centered and/or scaled, it is very important
to apply the same process on the newx data as well, with the scale and center values of the training
data.

Author(s)

Thibault Helleputte <thibault.helleputte@dnalytics.com>and Pierre Gramme <pierre.gramme@dnalytics.com>.
Modified by Aydin Demircioglu.
Based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin

References

¢ For more information on LIBLINEAR itself, refer to:
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification,
Journal of Machine Learning Research 9(2008), 1871-1874.
http://www.csie.ntu.edu.tw/~cjlin/liblinear

See Also
LiblineaR.ACF

http://www.csie.ntu.edu.tw/~cjlin/liblinear

Index

*Topic classes
LiblineaR.ACF, 2
predict.LiblineaR.ACF, 6

+Topic classification
LiblineaR.ACF, 2

*Topic classif
predict.LiblineaR.ACF, 6

*Topic models
LiblineaR.ACF, 2
predict.LiblineaR.ACF, 6

xTopic multivariate
LiblineaR.ACF, 2
predict.LiblineaR.ACF, 6

+Topic optimize
LiblineaR.ACF, 2
predict.LiblineaR.ACF, 6

heuristicC, 4
LiblineaR.ACF, 2, 7

predict.LiblineaR.ACF, 4, 6

	LiblineaR.ACF
	predict.LiblineaR.ACF
	Index

