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Abstract

The LocalControl R package implements novel approaches to address biases and con-
founding when comparing treatments or exposures in observational studies of outcomes.
While designed and appropriate for use in comparative safety and effectiveness research
involving medicine and the life sciences, the package can be used in other situations in-
volving outcomes with multiple confounders. LocalControl is an open-source tool for
researchers whose aim is to generate high quality evidence using observational data. The
package implements a family of methods for non-parametric bias correction when compar-
ing treatments in observational studies, including survival analysis settings, where com-
peting risks and/or censoring may be present. The approach extends to bias-corrected
personalized predictions of treatment outcome differences, and analysis of heterogeneity
of treatment effect-sizes across patient subgroups.
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1. Introduction
Envision a day when high-quality comparative safety and effectiveness research is performed,
scrutinized, and updated within a culture of reproducibility, then deployed at point-of-care to
improve patient outcomes. While the gold standard of evidence is considered to be random-
ized controlled trials, such trials have limitations. Randomized controlled trials can approach
many questions, using randomization and subject selection criteria to reduce the likelihood of
confounders affecting study results, but such studies are expensive, limited in generalizability
by their exclusions, and provide little information about long-term outcomes due to short
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duration. The advent of large observational data sets has created new opportunities to gener-
ate comparative safety and effectiveness evidence that would not be feasible with randomized
trials. While biases and confounders can create major challenges in making robust treatment
comparisons with observational data, we suggest ways to mitigate these issues.
The traditional approach to addressing biases in observational studies is to model confounder
effects as covariates in linear models. While widely accepted and useful, regression methods
have difficulty modeling nonlinearity, have convergence problems when analyzing correlated
covariates, and are problematic when multiple mechanisms drive the outcome. Propensity
scoring approaches have gained wide use in correcting treatment biases (Rosenbaum and
Rubin 1983, 1985). On average, they outperform alternative methods, including regression
in large scale patient records analyses (Stang et al. 2010; Ryan, Madigan, Stang, Overhage,
Racoosin, and Hartzema 2012). A weakness of propensity scoring is that there is no assurance
of patient similarity on confounders. Patients being compared simply have similar probability
of treatment (Iacus, King, and Porro 2012). Thus, if an elderly female has the same propensity
for treatment as a young male, they might be grouped for comparison, even though this makes
very little biological sense.
Often it is more appropriate in observational studies to employ survival analysis to model time-
to-events of interest (Kaplan and Meier 1958). While visually intuitive, Kaplan-Meier curves
do not address biases. Methods that do, include linear survival models like Cox regression
(Cox 1972), and competing risks regression (Gray 1988; Fine and Gray 1999). In recent years,
propensity scoring has also been extended to a survival framework and evaluated (Gayat,
Resche-Rigon, Mary, and Porcher 2012; Austin 2014; Austin and Schuster 2016). However,
parametric methods such as Cox and competing risk regression suffer from the limitations of
linear models, as well as making the assumption of proportional hazards; propensity scoring
has the same weakness in survival settings as those described earlier.
The local control method (Obenchain 2012, 2010; Obenchain and Young 2013; Lopiano, Oben-
chain, and Young 2014) provides a powerful and conceptually intuitive approach to adjustment
for biases and confounders in large-scale observational data. Local control can overcome the
limitations above. It enables the non-parametric estimation of overall treatment effects and
provides a framework for investigating heterogeneity of treatment effects across subpopula-
tions. Local control has been successfully used to compare treatments for major depressive
disorder (Obenchain and Young 2013; Faries, Chen, Lipkovich, Zagar, Liu, and Obenchain
2013), and to evaluate the effect of air quality on mortality (Young, Obenchain, and Lam-
bert 2015, 2016). However, until this publication, local control methodology did not support
survival analysis.
This article introduces the R (R Core Team 2020) package LocalControl (Lauve, Nelson,
Young, Obenchain, and Lambert 2020) which implements novel approaches to address biases
and confounding when comparing treatments or exposures in observational studies. The
key idea behind local control is to form many homogeneous clusters of observations within
which one can compare alternate treatments, statistically correcting for measured biases and
confounders, analogous to a randomized block design within randomized controlled trials
(Student 1911; Fisher 1992; Addelman 1969). The LocalControl package implements:

• LocalControlClassic(): The local control approach was originally introduced by
Robert Obenchain. LocalControlClassic() compares treatment outcomes in obser-
vational data, employing hierarchical clustering on confounders to reveal and correct
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for treatment selection bias. Local treatment effect-size estimates from individual clus-
ters are bias-corrected estimates of the difference in expected outcomes between two
treatments. This function provides no support for survival analysis.

• LocalControl(): New forms of local control adjustment for observational studies, in-
cluding those modeled through survival analyses, are introduced here. Rather than
using hierarchical clustering without replacement, these new adjustments match obser-
vations with all neighboring points that fall within a radius of similarity in covariate
space. Selecting neighbors with replacement means that some observations may reside
within multiple clusters. With LocalControl(), each observation becomes the centroid
of its own neighborhood of similar observations, maximizing informative samples. The
outcomeType parameter allows us to extend this methodology to enable bias-corrected
comparison of treatments in survival/time-to-event settings, including support for com-
peting risks analysis.

Local control enables the comparison of outcomes for two different treatments. The variants
of local control included with this package can analyze both real-valued outcomes, as well as
time-to-event data. The survival-based local control can create bias-corrected Kaplan-Meier
curves, as well as competing risk estimates of cumulative incidence, along with corresponding
estimates of the confidence intervals. In the remainder of this paper, the methodology behind
the functions listed above is described, along with one or more examples for each. The classic
local control, developed by Obenchain is described in Section 2. In Section 3 extensions are
introduced which are necessary to make the transition from the classic implementation, to the
nearest-neighbor variant. Section 4 describes how local control is adapted to support survival-
based treatment comparisons. Section 5 contains a detailed case study using local control to
examine the effects of smoking on the competing risks of death and hypertension in patients
from the Framingham Heart Study. Section 6 discusses bias-corrected subgroup analysis to
address questions of heterogeneity of treatment effect. The data required to perform all of the
following examples, and case study, are included with the LocalControl package. The package,
along with further documentation and instruction, can be found on the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=LocalControl.

2. Classic local control

2.1. Methodology

Local control analysis concepts were originally introduced to the R community in 2005, as a
suite of functions in the package, “Unsupervised and Supervised Propensity Scoring in R”,
or USPS (Obenchain 2012). Local control is an unsupervised non-parametric approach to
adjust for bias in confounder space when comparing a pair of alternative treatments (Oben-
chain 2010; Obenchain and Young 2013). Local control focuses on making “fair” compar-
isons (Lopiano et al. 2014) using experimental units with confounding characteristics that
are as well-matched as possible. Furthermore, local control does not restrict the attention
to only treatment “main-effect” comparisons; distributions of local effect-sizes are estimated
and displayed. Rather than estimating treatment main-effects, local control estimates local
effect-sizes within subgroups (clusters) of relatively well-matched observations.

https://CRAN.R-project.org/package=LocalControl
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Outcome Treatment X1 X2 . . . Xk

9.6 A red 0 . . . 98.6
3.4 B green 1 . . . 99.2
...

...
...

... . . . ...
2.8 A blue 0 . . . 86.4

Table 1: Non-survival data format. A data frame where one column contains a numerical
observed outcome. The treatment column contains a discrete variable with two unique values.
At least one of the remaining columns contains pre-treatment covariates used for grouping
similar observations.

Local control uses clustering of observations in much the same way that design-of-experiments
uses blocking (Box, Hunter, and Hunter 2005). Clustering hierarchies are built using con-
founders believed to be sources of treatment selection bias. LocalControlClassic() allows
users to select between different algorithms for clustering observations. Choice of clustering
algorithm can affect both runtime and the properties of the resulting clusters. After form-
ing a similarity hierarchy, the clustering tree is cut, dividing observations into small or large
subgroups, depending on the location of the cut. After cutting the tree, each of the resulting
clusters is tested for informativeness. Informative clusters contain at least one member of
both treatment groups. The local treatment difference (LTD) is the difference in average
outcome between the two treatment groups within a cluster.
One of the major exploratory features of local control is its interest in controlling the level
of similarity within clusters. This is done within LocalControlClassic() by adjusting the
height at which the hierarchical clustering trees are cut. Cutting towards the top of a tree
results in a small number of large clusters, each containing a relatively broad distribution of
confounder values. Cutting towards the bottom of the tree results in more clusters that are
smaller in the sense of containing only patients with more similar confounder values. As the
number of clusters increases and the size of clusters is reduced, the probability that a cluster
will not contain observations from both treatment groups, and hence be uninformative, also
increases. This represents a variance-bias trade-off where variability definitely increases as
bias is possibly reduced. In the remainder of Section 2, LocalControlClassic() is applied
to the cardiology data set analyzed in Kereiakes et al. (2000).

2.2. Non-survival data format

Each of the local control functions described in this paper requires that users provide valid
R data frames in order to execute. The data frames must exist in the user’s global R envi-
ronment, prior to calling any of the local control functions. While the input requirements
vary slightly between survival and non-survival analyses, both forms require data frames
where the rows contain individual records, while the columns correspond to various pa-
tient attributes. The two non-survival analysis functions, LocalControlClassic(), and
LocalControl(outcomeType = "default"), require that the input data frame has column
vectors corresponding to the following variables:

• Treatment: Factor column with two unique values indicating the treatment for each
observation.
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• Outcome: Discrete or continuous outcome variable which will be compared between
treatment groups.

• Covariates: The baseline (pre-treatment) X-confounder variables used to determine
patient similarity.

The local control functions require the outcome variable column name, outcomeColName, the
treatment variable column name, treatmentColName, and a vector of one or more covariate
column names, clusterVars. The values of the covariates may be logical, categorical, or
continuous. Each of the covariate columns must have a standard deviation greater than zero
and cannot contain missing values. When missing values exist in a data frame, the base R
function, complete.cases, can be used to remove incomplete records entirely. If removal
is not an option, imputation of missing values would be required. An example data set is
displayed in Table 1.
The LocalControl package includes two data sets which adhere to the format described in
Table 1, cardSim and lindner. These data sets are used to demonstrate the capabilites of
LocalControl, starting with an analysis of lindner using LocalControlClassic().

2.3. Example: LocalControlClassic()

The following example uses data from a study conducted at the Ohio Heart Health Center
in 1997, known as the Lindner study (Kereiakes et al. 2000). The study examines post-
procedure effects of the treatment, Abciximab, a glycoprotein IIb/IIIa receptor antagonist,
plus usual care compared with outcomes from patients who received usual care alone. The
data contain two possible outcome measures: a binary estimate of life years preserved, and
the total cardiac-related cost incurred in the twelve months following treatment.

Data: lindner

Variables in the lindner data:

• lifepres: Life years preserved post treatment: 0 (died within 1 year) vs. 11.6 (survived
at least 1 year).

• cardbill: Cardiac related billing within 12 months.

• abcix: Did the patient receive Abciximab augmentation of usual care? 1 = yes, 0 =
no.

• stent: Was a stent deployed? 1 = yes, 0 = no.

• height: Patient height in centimeters.

• female: Patient sex: 1 = female, 0 = male.

• diabetic: Was the patient diabetic? 1 = yes, 0 = no.

• acutemi: Had the patient suffered an acute myocardial infarction within the last seven
days? 1 = yes, 0 = no.

• ejecfrac: Left ventricular ejection fraction.
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• ves1proc: Number of vessels involved in the first percutaneous coronary intervention
procedure. 1 = yes, 0 = no.

Walkthrough

From within R, LocalControl can be installed and loaded with the following commands:

R> install.packages("LocalControl")
R> library("LocalControl")
R> data("lindner", package = "LocalControl")

When calling LocalControl functions, users must specify relevant columns in the given data
frame. The treatmentColName, and outcomeColName parameters each take a single string
which is the name of their respective column in the data frame. The clusterVars parameter
takes a vector of strings where each element corresponds to the name of a column containing
a clustering variable. Note that clustering high-dimensional data is problematic because in
high dimensions, every point is likely different from every other point, due to the curse of
high dimensions. Selection of a relatively low dimensional space is important. Researchers
should explore the possibility of using only a subset of the available X-covariates in clustering.
This can have a substantial effect when a large variety of partially redundant covariates are
available. In Section 6, a method is described for identifying critical clustering variables. The
clusterCounts parameter takes a list of integers representing the desired numbers of clusters
to form. For each unique element in this list, a different set of clusters is generated, analyzed,
and returned.
In the example considered here, a vector of variable names is passed via the clusterVars
parameter which comprises seven of the lindner covariates that may drive treatment bias.
Eleven different cluster sizes are specified in a second vector, ranging from 1 to 50.

R> all7Vars <- c("stent", "height", "female", "diabetic",
+ "acutemi", "ejecfrac", "ves1proc")
R> numClusters <- c(1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)

For some parameters, LocalControlClassic() only accepts columns with a specific data
type. For example, the column containing the outcome variable must be a numeric type. The
treatment column can be of any type, however, it must have exactly two levels (“treated” and
“control”) when converted to a factor.

R> linResults <- LocalControlClassic(data = lindner, clusterVars = all7Vars,
+ treatmentColName = "abcix", outcomeColName = "cardbill",
+ clusterCounts = numClusters)

Calling LocalControlClassic() returns an R environment containing one object for each
value in the list passed as an argument to clusterCounts with prefix UPSnnltd and the cluster
count value, as well as a summary of the entire analysis. In this example, the linResults
object is an environment containing eleven UPSnnltd* objects. Each UPSnnltd* object is a list
containing 34 unique elements, each of which are described on the LocalControlClassic()
help page. After calling LocalControlClassic(), a useful first impression of the output can
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Figure 1: LocalControlClassic() analysis describing the distribution of LTD estimates for
the Lindner data set. As the number of clusters is increased, within-cluster patient similarity
increases, and the estimated treatment outcomes trend towards the results found in the
Kereiakes et al. study. The green line shows the percentage of the patients that fall within
informative clusters, which decreases as much smaller clusters are created. Along the spectrum
of cluster counts from 15 to 50, the average treatment difference across all clusters is lower
than the $1512 uncorrected estimate.

be created by plotting statistics describing the distribution of local outcome differences as
a function of the number of clusters and fraction of informative patients (Figure 1). This
plot is created by passing the returned environment to the LocalControlClassic() plotting
function:

R> UPSLTDdist(linResults, ylim = c(-2500, 5000))

In the original analysis of Kereiakes et al., the uncorrected $1,512 treatment difference between
the patients with and without Abciximab is reduced to $950 after accounting for biases. In
Figure 1, the estimated local treatment difference main-effect drops beneath the global average
as the number of clusters exceeds 10. Classic local control provides a host of other features
which are not mentioned in this article. Further information about the USPS package and
Obenchain’s classic method can be found in the R help pages, or the package documentation
(Obenchain 2012).
Figure 2 provides an additional diagnostic for confirming that adjustment for treatment selec-
tion bias has occurred. The observed distribution of LTDs is compared with an artificial null
distribution based upon the assumption that the available X-confounders are ignorable. In
this case, the observed clusters were formed randomly. Thus, when there is strong evidence
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Figure 2: Observed (red) vs. artificial (green) LTD empirical cumulative distribution functions
generated using 30 clusters.

that the observed and null distributions are different, adjustment for treatment selection bias
has been confirmed. The ecdf() function from stats (R Core Team 2020) is used to generate
the curves for both distributions. A Kolmogorov-Smirnoff test comparing the two distribu-
tions results in a D statistic = 0.42208, with an approximate p < 2.2×10−16. Because the test
expects a continuous distribution, but the artificial and observed distributions contain many
exact ties in LTD estimates, resampling without replacement is again employed to generate
an empirical p value. To accomplish this, null D statistics are calculated which compare the
artificial distribution to another 10,000 random permutations of cluster assignments. Of the
10,000 null D statistics computed, only 21 exceed 0.42208 (p value = 0.0021). The signifi-
cant difference between the observed and artificial distributions indicates that X-confounders
are not ignorable and that LTDs with reduced bias are adjusting for local imbalances. In
Section 6 this data set will be revisited in the context of subgroup analysis, where a patient
subgroup accounts for a large portion of bias in the global estimate of treatment difference.

3. Nearest-neighbors local control

3.1. Methodology

Nearest-neighbors clustering

Independently two methods have been developed that share some similarities in addressing
how to match patients with covariates in observational studies to correct for biases and con-
founders: (1) coarsened exact matching, developed by Iacus, King, and Porro (2011); Iacus
et al. (2012), and (2) the approach developed by members of our team, namely, local control
(Obenchain 2012, 2010; Obenchain and Young 2013; Lopiano et al. 2014; Faries et al. 2013;
Young et al. 2015). Iacus et al. made a key observation: if one has perfectly comparable



Journal of Statistical Software 9

patients with respect to the variables that matter for a given question, then one can make
a model-free treatment comparison. But as the patients compared become more dissimilar,
the (often unarticulated) assumptions behind the implied model that assigns a relative im-
portance to different variables become ever more influential on the estimation process. For
instance, is the difference between being male or female as important as a difference of 50
years in age, or a difference in genotype, when grouping patients for comparison? A phar-
macogenomic genotype might have a huge bearing on a drug comparison question, but little
impact on a surgical comparative effectiveness question. Selecting the correct variables for
measurement and decisions about the relative importance of different dimensions creates a
need for subject matter experts and leads to uncertainty when trying to defend assumptions
that may not be knowable. An innovation of Iacus et al. was to explicitly divide the analysis
between perfect or near-perfect matches where no assumptions are required, and imperfect
matches where one makes assumptions that the patients are “close enough” for the question
at hand.
Rather than assessing patient similarity as perfect vs. imperfect matches, local control matches
along a continuum. Patients are clustered for similarity on variables that are thought to be
sources of bias and confounding. An easily interpretable graph can be created to illustrate how
the estimated difference in outcome between two treatments change, on average, across all
clusters, as a function of using smaller and more homogenous clusters (Figures 5, 6, and 10).
This is analogous to combining a host of smaller studies that are each homogeneous within
themselves, but represent the spectrum of variability of people across diverse subpopulations.
As the clusters get smaller, some of them can become noninformative, whereby all cluster
members contain only one treatment, and there is no basis for comparison. This is actually a
feature of the method: for example, if treatment A is given to people of all ages, and treatment
B is only given to adults, there is no basis for comparing the drugs for pediatric use. The power
of these methods becomes apparent as the sample size increases. For example, treatment A
might be commonly used, whereas treatment B is rarely performed on people with the same
characteristics. However, when larger sample sizes become available for analysis, it is possible
to find close matches for the two treatment groups, with dependence on model assumptions
diminishing.
An open issue with classic local control is how the choice of clustering methodology affects
treatment comparisons. Because optimal clustering is non-deterministic polynomial-time hard
(Dasgupta 2008), numerous “greedy” algorithms exist to create clusters according to different
criteria. Even with optimal clustering, a patient that may be quite close to another one, and
useful for treatment comparison, could end up in a different cluster. Outlier patients that
may still have a few near neighbors with both treatments are frequently separated when one
clusters without replacement, preventing their inclusion in comparing treatment outcomes.
To address this limitation of hierarchical clustering, the nearest-neighbors to a given patient
are used to estimate treatment differences, instead of clustering without replacement, where
patients reside in only a single cluster. Each patient has a unique set of near-neighbors, and
the approach becomes more akin to a non-parametric density estimate using similar patients
within a covariate hypersphere of a given radius. The local treatment difference is taken as
the average of the treatment differences from the neighborhood around each point.
While LocalControlClassic() uses the number of clusters as a varying parameter to vi-
sualize treatment differences as a function of patient similarity, this function uses a varying
radius. The maximum radius enclosing all patients corresponds to the biased estimate which
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compares the outcome of all patients with treatment A versus all patients with treatment B.
It is useful to plot both the treatment difference and the fraction of the patients who have an
informative neighborhood as a function of decreasing radius, delineating a zone bounded by
the smallest radius that includes 100% of the data, along with the radius that retains 80% of
the data. While these boundaries fit the behavior in our example, it is not always the case
that these are critical points in a data set.
One of the largest differences to consider with the new local control functions is that the
observations are now sampled with replacement. As a result, the outcome of an individual
observation can potentially contribute to the local treatment difference in multiple clusters.
With the new method of clustering, each observation becomes the centroid of a cluster,
meaning that the number of clusters created is always N . The number of neighbors in
clusters, along with the “level” of patient similarity, becomes a function of the clustering
radius, r. This is to say, for all N patients, a cluster Ci centered around patient i, has
ki nearest-neighbors where ki is the number of patients that are within r units of X-space
distance to patient i.
By default, local control generates a set of radii whose lengths range inclusively from 0, to
the largest distance between any two points in the provided data. The maximum distance
is calculated using an open-source implementation (https://github.com/hbf/miniball) of
the fast smallest-enclosing-ball algorithm (Fischer, Gärtner, and Kutz 2003). It is important
to consider the significance of the minimal and maximal enclosing radius. At the maximal
radius which encloses all samples, every cluster is identical. This means that the within-
cluster treatment difference, as well as the average across all clusters, will always be equal to
the uncorrected global treatment difference. Conversely, when the radius has length 0, the
clusters are formed using only patients whose covariates match perfectly. This opens several
avenues, such as the coarsening of variables (Iacus et al. 2011, 2012), which can be used in
conjunction with local control to embed model assumptions about ranges of variables within
which treatment outcomes are not expected to vary.

Nearest-neighbors confidence estimates
Nearest-neighbors local control uses bootstrapping to generate confidence estimates for treat-
ment comparisons. The LocalControlNearestNeighborsConfidence() function repeatedly
resamples rows of the provided data frame with replacement to generate an empirical distri-
bution of the treatment difference. The 95% quantile is drawn from the distribution of results
to produce confidence intervals for the LTD at each radius. The number of bootstrapping
iterations can be set using the nBootstrap parameter.

3.2. Simulated example

Data: Case-control simulation
This data demonstrates the effects of local control on correcting a treatment dosage bias.
In this simulation, a cohort of N patients is generated with weights drawn from a normal
distribution. The population is divided into two treatment groups, treatment 1 (T1) and
treatment 0 (T0), and a bias is introduced where treatment 1 is dosed with a higher vari-
ance, σ2, than treatment 0. The outcome variable, adverse drug reaction (ADR), for both
treatments is assigned using the same function: ADR = |target dose − actual dose|mg. In

https://github.com/hbf/miniball
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Figure 3: Adverse drug reaction as a function of weight and dosage. The ideal treatment for
the simulated data should lie on the diagonal where weight (kg) = dosage (mg). The blue
treatment has a higher variance than the red treatment. The pale points indicate patients
with a greater adverse reaction to the treatment, while the dark points represent those with
smaller reactions.

T1+T0 T0 T1 p value
N (patients) 10000 5000 5000
weight (kg) µ 74.76 74.72 74.8 0.804

σ 14.97 14.99 14.94 0.800
dosage
(mg)

µ 74.77 74.7 74.84 0.701

σ 18.69 15.82 21.18 <2.20E-16
ADR (mg) µ 8.03 4.01 12.06 <2.20E-16

σ 7.86 2.99 9.07 <2.20E-16

Table 2: Case-control simulation cohort summary. A t-test shows that there is no statistically
significant difference in weight or dosage between the two treatment groups. However, with
an F -test, there is a highly significant difference in dosage variance between treatments.

this simulation, the optimal dosage is equal to one mg per kg of the patient’s weight. Using
an absolute value function to generate the outcome makes the data difficult to fit linearly.
Glancing at this data without correction makes it appear as though the adverse drug reaction
is greater among those who received the first treatment. Table 2 shows the distribution of
observations in this data set, Figure 3 graphs the ADR, weight, and dosage, and Figure 4
displays a histogram of the ADR colored by treatment group before and after correction.
The simulated data can be created using the R code below:

R> set.seed(253748)
R> N <- 10000
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Figure 4: (Left) Histogram of adverse drug reaction outcome in the simulated data. The
simulated data has the two drugs affect patients equally, however, it appears that the patients
in the ‘Treatment 0’ group have a much better average outcome due to the lower variance in
dosing. (Right) Corrected histogram of adverse drug reaction outcome in the simulated data.
In this histogram, the estimated outcomes of T0 and T1 are not appreciably different after
accounting for the bias of T1 having a higher variance in dosages. That is, when patients
are clustered to have similar weight and dosage, the treatment difference approaches the true
value of zero on average across all clusters.

R> weight <- c(rnorm(N / 2, 75, 15), rnorm(N / 2, 75, 15))
R> dosage <- weight + c(rnorm(N / 2, 0, 15), rnorm(N / 2, 0, 5))
R> trmt <- c(rep(1, N / 2), rep(0, N / 2))
R> ADR <- abs(weight - dosage)
R> noise1 <- rnorm(n = N, 0, 1)
R> noise2 <- rnorm(n = N, 0, 1)
R> xSim <- data.frame(weight, trmt, dosage, ADR, noise1, noise2)

Due to the differences in the two clustering schemes, the parameters for calling the nearest-
neighbors function differ slightly from the classic method. This function does not require
users to supply the clusterCounts parameter. Instead, it automatically generates a set
of radii to fit the covariates if one is not provided. Additionally, there are three optional
parameters which control the generation of cluster radii. radStepType determines if the rate
of decay between radii will be uniform or exponential. radDecayRate determines the stepsize
between radii. If radStepType is uniform, radDecayRate is subtracted from the the prior
radius each iteration, starting from the maximum radius. If radStepType is exponential, then
radDecayRate is multiplied by the prior radius at each iteration, starting from the maximum
radius. Last, users can specify the size of the second smallest radius (before zero) as a fraction
of the maximum radius with radMinFract.
By default, the radii generated by LocalControl() decay exponentially by 80% each iteration,
with a minimum of 1% the length of the maximum. As with the classic method, the column
containing the outcome variable must be of numeric type. The treatment column can be
of any type, however, if the treatment variable contains more than two values, users must
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weight dosage noise1 noise2 difs
−1 −1 −1 −1 0.00
1 −1 −1 −1 −0.01
−1 1 −1 −1 0.78
1 1 −1 −1 3.83
−1 −1 1 −1 −0.01
1 −1 1 −1 −0.01
−1 1 1 −1 0.81
1 1 1 −1 3.72
−1 −1 −1 1 0.01
1 −1 −1 1 −0.01
−1 1 −1 1 0.82
1 1 −1 1 3.74
−1 −1 1 1 0.02
1 −1 1 1 0.01
−1 1 1 1 0.95
1 1 1 1 3.72

Table 3: Regression input for full factorial analysis. The difs column shows the average
difference in the corrected LTD from the global treatment difference for each of the 16 com-
binations. A value of −1 for a clustering variable means that it is excluded, while a value of
1 represents including it in the model.

provide the treatmentCode parameter to specify the “primary” treatment group, T1. All
remaining values are considered the alternate group, T0. The following code chunk performs
the LocalControl() analysis on the simulated data, saving the resulting object to a variable
in the global environment:

R> xSults <- LocalControl(data = xSim, treatmentColName = "trmt",
+ treatmentCode = 1, outcomeColName = "ADR",
+ clusterVars = c("weight", "dosage"), radMinFract = .01,
+ radDecayRate = 0.95, numThreads = 4)

When working with a large set of data, or a large number of covariates, it may be beneficial
to increase the number of threads used in the local control calculations. This can be done
by assigning the numThreads parameter a value greater than one. A performance increase is
only possible if the running computer is capable of multicore processing.
After calling the function, a histogram is produced using the corrected outcome data produced
from local control (right histogram in Figure 4). In the corrected histogram, the two treatment
outcomes are nearly identical.

3.3. Choice of clustering variables (feature selection)

One of the open areas for research in local control is how to choose the relevant covariates
for bias correction. One approach that is viable for a modest number of covariates is a full
factorial regression analysis of how significant each covariate is in modeling the treatment
difference. The full factorial approach is illustrated, but note that for more variables, a
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fractional factorial approach could be employed for greater efficiency (Box et al. 2005). A
full factorial design of experiments approach first runs all 2k combinations of including or
excluding each of the k covariates in the local control model. One can then model with linear
regression the outcomes as a function of the binary variables (main effects and interactions)
that designate which cluster variables were employed in the local control runs. To account for
the change in dimensionality during the factorial analysis, the radius length is scaled according
to the number of variables in use. Two dummy “noise” variables are included to show the
effects of using uncorrelated variables with LocalControl(). These outcomes are compared
by calculating the average difference from the global estimate for each of the curves.
Table 3 shows the 16 combinations of cluster variables, along with the treatment difference
between the uncorrected and corrected estimates with various variables excluded (−1) or
included (1) in the correction. The first row has all variables excluded, and thus has no
correction. Positive values in the difs column indicate that the combination of variables used
in bias correction leads to a decrease over the global biased estimate, and negative values
show the opposite. In this case, inclusion of weight and dosage leads to a decrease in the
estimate, indicating that the global estimate without covariate correction is high relative to
the ground truth of zero embedded in the simulation.
This analysis begins with a call to LocalControl():

R> noisyVars <- c("weight", "dosage", "noise1", "noise2")
R> noisySults <- LocalControl(xSim, treatmentColName = "trmt",
+ outcomeColName = "ADR", clusterVars = noisyVars,
+ radMinFract = .01, radDecayRate = 0.95)
R> fixedRads <- summary(noisySults)$radius

The radius lengths are saved to be scaled and reused in the coming step. A matrix is created
to store all of the different combinations of clustering variables, followed by a call to local
control with each combination.

R> varCombinations <- expand.grid(0:1, 0:1, 0:1, 0:1)
R> ltext <- apply(X = varCombinations, MARGIN = 1,
+ FUN = function(x) paste0(x, collapse = ""))
R> ltdVecs <- list()
R> ltdVecs[[1]] <- rep(summary(noisySults)$ltd[1],
+ nrow(summary(noisySults)))
R> for (i in 2:16) {
+ varSS <- noisyVars[which(varCombinations[i, ] == 1)]
+ scaleFactor <- sqrt(length(varSS)) / sqrt(length(noisyVars))
+ scaleRads <- fixedRads * scaleFactor
+ sults <- LocalControl(xSim, treatmentColName = "trmt",
+ outcomeColName = "ADR", clusterVars = varSS,
+ radiusLevels = scaleRads)
+ ltdVecs[[i]] <- summary(sults)$ltd
+ }
R> ltdFrame <- data.frame(ltdVecs)
R> names(ltdFrame) <- ltext
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Figure 5: Full factorial local control on the simulated data. This presents a graphical repre-
sentation of the different covariate configurations. Each of the curves on the plot corresponds
to one of the rows in Table 3. When both weight and dosage are included in the model
(purple), the corrected treatment difference converges to the correct answer of zero. When
only one of weight or dosage is used in the model (red or blue), or neither (green), then the
biases remain, and the treatment difference estimate is non-zero. Because this simulated data
contains no perfect matches, the corresponding section is excluded from this plot.

The avgDif function compares the LTD vectors to the global average. Using the results
from the previous steps, the average difference is calculated for each combination to produce
Table 3.

R> avgDif <- function(uncorrected, corrected) {
+ return(sum(uncorrected - corrected, na.rm = TRUE) /
+ length(which(!is.na(corrected))))
+ }
R> difs <- numeric()
R> difs[1] <- 0
R> for (i in 2:ncol(ltdFrame)) {
+ difs[i] <- avgDif(ltdFrame[1:92, 1], ltdFrame[1:92, i])
+ }
R> outmat <- data.frame(expand.grid(c(-1, 1), c(-1, 1), c(-1, 1), c(-1, 1)))
R> names(outmat) <- noisyVars
R> outmat$difs <- difs

Table 3 shows that regardless of inclusion of the noise terms, if both weight and dosage are
included in local control bias correction, that the treatment difference estimate converges to
the true difference, namely zero. Conversely, if either weight or dosage are not included in
the model, a biased incorrect estimate remains. Figure 5 presents this data graphically.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.15 0.01 97.36 9.22E-19

dosage 1.15 0.01 97.24 9.36E-19
weight 0.72 0.01 61.37 2.32E-16

dosage:weight 0.73 0.01 61.82 2.13E-16

Table 4: Regression output from the full factorial analysis. A regression is performed to
explore the effects of having each variable combination in the model. While weight and
dosage are significant, the noise variables are not. This indicates that they should be dropped
from the model.

Using the values from Table 3, a stepwise full factorial linear model is built to evaluate the
significance of each variable with respect to the treatment difference. Table 4 shows that the
noise terms are not significant using stepwise regression, either alone or in combination in
affecting the treatment estimate, and thus should be removed as covariates from the local
control model. Table 4 can be created as follows:

R> model <- difs ~ (weight + dosage + noise1 + noise2)^4
R> fit <- glm(difs ~ 1, data = outmat, family = gaussian)
R> fit.AIC <- step(fit, model, direction = "both", k = 2, trace = 0)
R> regTable <- summary(fit.AIC)$coef

While the full factorial can be performed for quick results in this small example, the number
of runs doubles with the inclusion of each additional covariate. One approach to reducing
the dimensionality of local control analysis, while accounting for many sources of bias, is to
employ a propensity score as one of the clustering variables to collapse information from many
covariates related to treatment bias.

3.4. Lindner analysis with LocalControl()

In Section 2, LocalControlClassic() was used to analyze the data from the Lindner Ab-
ciximab study. Here an analogous analysis is performed using LocalControl() to provide
a comparison of the methods and results. The LocalControl() function is called using the
Lindner data frame from Section 2. Average within-cluster treatment difference is plotted as
a function of observation similarity within clusters (radius length). Confidence intervals are
generated using the LocalControlNearestNeighborsConfidence() function. In Figure 6,
observe that the LocalControl() results show a reduction in treatment cost as the level of
correction increases, similar to the original study.
This analysis can be reproduced in R with the following commands:

R> linRes <- LocalControl(data = lindner, clusterVars = all7Vars,
+ treatmentColName= "abcix", outcomeColName = "cardbill",
+ treatmentCode = 1)
R> linCI <- LocalControlNearestNeighborsConfidence(data = lindner,
+ clusterVars = all7Vars, treatmentColName = "abcix",
+ outcomeColName = "cardbill", treatmentCode = 1, nBootstrap = 100)
R> plot(linRes, nnConfidence = linCI,
+ main = "LocalControl confidence intervals")
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Figure 6: LocalControl() confidence estimates from 100 resamples. Confidence intervals are
generated by repeatedly resamplingN patients with replacement from the original population.
LocalControl() is run once for each of the resampled populations, storing the results from
each run as elements of a list. After 100 automated calls to LocalControl(), the 95%
confidence intervals are drawn from the resampled results.

4. Survival local control

4.1. Methodology

The LocalControl() function is an extension of the nearest-neighbor local control introduced
in Section 3. The major variation here is that this adaptation supports survival analysis. In
the previous versions of local control, the outcome differences within clusters were examined
as a function of the cluster radius. With temporal data, a non-parametric counting method is
adopted to compare bias-corrected survival curves. Note that using Kaplan-Meier estimates
with a single outcome with potentially censored observations is a special case of the more
general competing risks problem where there are one or more competing risks (outcomes).
Thus a single function is provided for both Kaplan-Meier estimates and the more general case
of multiple competing risks.
Kaplan-Meier survival curves provide an intuitive visualization of time-to-event data. Unfor-
tunately, due to the nature of the counting process, the curves generated with Kaplan-Meier
do nothing to correct for covariates in a model, and are thus normally suitable only for ran-
domized studies. With nearest-neighbors clustering, the Kaplan-Meier counting process is
adapted to compute survival curves within clusters that are aggregated to produce globally
corrected survival curves. These covariate-adjusted survival curves can be easily interpreted,
tested, and compared with one another. As a non-parametric method, local control does not
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rely on the proportional hazards assumption or the assumption of linear effects of covariates
as is the case for Cox regression. Recall that the Kaplan-Meier estimate for survival at time t,
S(t), is equal to the product of the number of observations remaining after the events of time
t, divided by the number surviving before those events for all times leading up to t (Kaplan
and Meier 1958), or:

S(t) =
∏
tj≤t

atriskj − failuresj

atriskj
.

Bias-corrected survival curves are generated by aggregating survival outcomes from within
each cluster. The contribution from each cluster is scaled to ensure that the total number
of observations considered at risk never exceeds the original number of observations in the
study. Each informative cluster, regardless of the number of nearest-neighbors, contributes
equally to the curves generated at a given radius. For example, if cluster j (observation j and
its nearest-neighbors) has five observations, while cluster k has twenty, both would increment
the total at risk for each treatment by one. Similarly, in the case where the radius reaches all
N − 1 observations, the total at risk would be N .
The concept of “fractional observations” is introduced, whereby within clusters, the contri-
butions to the number at risk, and the event (failure and censor) bins are scaled with respect
to the number of neighbors on a given treatment. As an example, consider a cluster j, which
contains three T1 and two T0 observations. Cluster j is informative, so it increases the num-
ber at risk by one for both treatment groups. Because the total number of events must be
equal to the number at risk, the contributions to the event bins within a cluster must sum
to one for both treatment groups. In cluster j, the outcomes must be scaled such that each
observation contributes only 1

numT1j
= 1

3 or 1
numT0j

= 1
2 to the event bin at their respective

time. After considering each cluster, for both treatment groups, the total at risk and the sum
of all fractional outcomes is equal to the number of informative clusters. After aggregating
the surviving fractions across all informative clusters, the Kaplan-Meier counting process is
applied to generate survival curves for each radius of correction. With the global radius, this
process generates the same Kaplan-Meier curves that can be created from the data naively.
This process iterates over decreasing radius lengths to produce curves across many different
levels of similarity.
For a given competing risk, the estimator is the cumulative sum over each time interval of
the probability neither event occurs before time t (the Kaplan-Meier estimate where both
competing risks are combined as an event, and the censored observations are treated as
censored) multiplied by the fraction experiencing a given event type out of those still at risk
at that time.
Because competing risks is also a counting process, the extension of local control Kaplan-
Meier to support competing risks is straightforward. Using the same method of creating
fractional observations, a cumulative incidence function (CIF) is created for each type of risk
using the following formula:

CIFrisk(t) =
∑
tj≤t

eventsrisk,j

atriskj
S(tj−1).

Combining the bias correction of local control with a competing risks framework enables
computation of bias-corrected cumulative incidence curves while accounting for all possible
outcomes. Section 4.2 provides an example using survival based local control to correct bias
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Treatment Outcome Time x1 x2 . . . xk

A death 3 red 0 . . . 98.6
B censored 9 green 1 . . . 99.2
...

...
...

...
... . . . ...

A cancer 4 blue 0 . . . 101.1

Table 5: Data frame for survival-based local control. Contains all of the columns which are
necessary to run LocalControl(). The first three from the left, treatment, outcome, and
time must be included for all survival analyses. The remaining x columns correspond to the
covariates used for clustering observations.

in a simulated set of data. Section 5 presents an in-depth competing risks case study using
the publicly available Framingham Heart Study data.

Competing risks confidence intervals

The LocalControlCompetingRisksConfidence() function produces pointwise standard er-
ror estimates for the LocalControl() cumulative incidence functions. This is done using
an implementation of Choudhury’s approach (Choudhury 2002) that supports local control’s
fractional observations. Users can pass the object returned from the competing risks function
to LocalControlCompetingRisksConfidence(), which produces confidence intervals corre-
sponding to each of the calculated CIFs. The function currently supports the creation of
90%, 95%, 98%, and 99% confidence intervals. Additionally, this function allows users to
choose between the linear, log(-log), and arcsine confidence interval transformations which
are detailed in Choudhury’s work.

Competing risks hypothesis testing

In addition to the confidence intervals described above, LocalControl() also supports hy-
pothesis testing using the Pepe and Mori method (Pepe and Mori 1993). This test compares
two CIFs using the area between the curves, weighting the differences to account for time
passed and the number of observations remaining. The function gives higher weights to dif-
ferences which occur earlier in time, where more patients remain at risk. The code used to
perform the hypothesis testing is derived from the compCIF() function provided in Pintilie
(2006). As with Choudhury’s, this modified function also works with fractional observations.
At each radius, the test is performed on the CIFs from the first risk for the two treatment
groups. Each test returns a χ2 and p value which can be retrieved by calling summary() on
the object returned from LocalControl().

Survival data format

For survival analysis performed using LocalControl(outcomeType = "survival"), the out-
come variable must be categorical, where the values correspond to types of risk, or right-
censoring (specified with cenCode). Additionally, the data frame must contain a variable
representing the time that the outcome occurred. Table 5 displays an example of a valid
survival data frame.
There are two major parameter differences for LocalControl() when working with survival
outcomes.
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A + B A B p value
N (patients) 10000 4708 5292
age (years) 41.48 38.36 44.26 2.11E-108
BMI ( kg

m2 ) 25.98 25.58 26.34 3.84E-21

Table 6: Survival simulation cohort summary. A hypothetical hypertension Treatment A
(blue) is prescribed more frequently to younger, healthier patients with a low body mass
index (BMI), Treatment B (red) is prescribed to older patients with a higher body mass
index. Significant treatment biases exist for age and BMI.

• Time to outcome: Rather than severity or magnitude of an outcome, this function takes
as input the time to an event. This means that an additional column must be specified,
containing the amount of time it took to reach the observed outcome. This function
supports time in both integer and floating point formats.

• Categorical outcomes: This function is used with survival or competing risks data. The
column of outcomes provided should correspond to the category of outcome, rather than
a measure of effect. With right-censored survival data not involving competing risks,
the outcome column is generally binary or logical with a value of 1 for patients who
experienced the outcome, and 0 for those who were right-censored. For competing risks
data, multiple factors can be included, with one of them representing right-censoring.

4.2. Example

Data: Survival simulation
This simulated data demonstrates the effects of local control on correcting bias within survival
data. In this simulation, a treatment bias is introduced which skews the global treatment
difference. Treatments A and B are two pharmaceutically equivalent treatments. The true
effects of these drugs are masked by assigning treatment A to younger, lower BMI patients, and
treatment B to those who are older and have a higher BMI. That is, the two treatments affect
all patients equally, but one drug is given to the healthier patients, making the alternative
superficially appear to have inferior outcomes due to the detrimental effects of age and obesity.
Table 6 describes the two treatment groups.
The following code can be used to generate this data in an R session:

R> weibullSim <- function(N, lambda, rho, betaage, betabmi) {
+ bmi <- rnorm(N, mean = 26, sd = 4)
+ age <- runif(N) * 47 + 18
+ pbmi <- (bmi - min(bmi)) / (max(bmi) - min(bmi)) * 0.8 + 0.1
+ page <- (age - min(age)) / (max(age) - min(age)) * 0.8 + 0.1
+ drug <- 1 - rbinom(N, 1, (pbmi + page) / 2)
+ et <- exp(bmi * betabmi + age * betaage)
+ Tlat <- (-log(runif(n = N)) / (lambda * et))^(1 / rho)
+ C <- runif(N) * 30
+ time <- pmin(Tlat, C)
+ status <- as.numeric(Tlat <= C)
+ data.frame(id = 1:N, drug, age, bmi, time, status)
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Figure 7: Treatment bias correction using local control on the survival simulation. Because
of the treatment assignment bias, patients on A appear to have better outcomes than those
on B (dotted lines on Kaplan-Meier plot). However, the local control corrected curves (solid
lines) show the true treatment effect, that the two treatments are identical, when patients are
clustered for similarity of age and BMI. The upper right subfigure shows a scatterplot of age
and BMI in the survival simulation. The shading of points indicates the time to failure, with
light shading corresponding to a short survival time, while darker points represent a longer
survival time. The color of the points represents the treatment group of an observation. Blue
and red points indicate whether a patient received treatment A or B, respectively.

+ }
R> survSimData <- weibullSim(10000, 1e-10, 2.6, log(1.2), log(1.45))

The LocalControl package also includes a saved copy of this simulation, cardSim, which
can be loaded using data("cardSim", package = "LocalControl"). After generating or
loading the data, the covariates are specified and LocalControl() is invoked.

R> results <- LocalControl(data = cardSim, outcomeType = "survival",
+ treatmentColName = "drug", timeColName = "time",
+ outcomeColName = "status", clusterVars = c("age", "bmi"))

The object returned from LocalControl() is an R list containing vectors, data frames, and
nested lists. The results$KM element contains the Kaplan-Meier survival curves for both
treatment groups at each radius. The results$CIF entry contains a list of lists for each
different risk in the model. These sublists each contain a pair of data frames (T1 and T0) with
CIFs for each radius. If there is only one possible type of failure (not including censoring) in the
data provided, then both treatment groups will have one cumulative incidence curve generated
per radius which are equivalent to 1 minus the Kaplan-Meier estimate. Figure 7 illustrates
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the correction that occurs when calling LocalControl(outcomeType = "survival") on the
biased simulated data discussed previously in Section 4.2. The dotted lines show the survival
curves generated from the raw data. Without correction, it appears that the blue (treatment
A) and red (treatment B) patients have nearly identical outcomes. The solid lines on the plot
represent the curves generated across local control clusters at a much smaller radius (7.61 vs.
0.82 radius units). In Section 5, local control survival analysis is applied to real data from
the Framingham Heart Study.

5. Case study: Framingham heart patients
The effects of smoking on the time to the competing risk of either reaching death, or being
diagnosed with hypertension are analyzed using local control. Those who leave the study prior
to reaching either of these outcomes, or reach the study conclusion without either outcome
occurring, are considered to be right-censored observations. The available covariates are
tested for a significant impact on the outcome and examine the results produced along with
their interpretation.

Data: framingham

The Framingham study data tracks the cardiac health of more than 4000 patients over the
course of twenty-four years (Dawber, Meadors, and Moore Jr 1951). A subset of the data is
provided that has been approved for training and testing purposes. More information about
the Framingham Heart Study can be found at https://www.framinghamheartstudy.org/.
While the original data includes several additional variables, only the following are used in
this analysis:

• female: Sex of the patient. 1 = female, 0 = male.

• totchol: Total cholesterol of patient at study entry in milligrams per deciliter (mg
dL ).

• age: Age in years of the patient at study entry.

• bmi: Patient body mass index in kilograms per square meter ( kg
m2 ).

• BPVar: Average units of systolic and diastolic blood pressure above normal in millimeters
of mercury (mm Hg): ((SystolicBP−120)/2) + (DiasystolicBP−80).

• heartrte: Patient heartrate in beats per minute (bpm) taken at study entry.

• glucose: Patient blood glucose level in milligrams per deciliter (mg
dL ).

• cursmoke: Whether or not the patient was a smoker at the time of study entry.

• outcome: Did the patient die, experience hypertension, or leave the study without
experiencing either event.

• time_outcome: The time at which the patient experienced outcome.

• cigpday: Number of cigarettes smoked per day at time of study entry.

https://www.framinghamheartstudy.org/
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All patients Smokers Non-smokers p value
N (patients) 2316 1238 1078

female 0.56 0.48 0.65 3.34E-16
totchol (mg

dL ) 230.34 229.18 231.67 1.55E-01
age (years) 47.43 46.12 48.94 8.15E-17

BMI ( kg
m2 ) 24.78 24.28 25.35 2.61E-14

BPVar (mm Hg) −3.45 −4.49 −2.26 2.28E-06
heartrte (bpm) 74.17 74.94 73.28 3.93E-04

glucose (mg
dL ) 78.54 78.11 79.03 6.92E-02

Table 7: Framingham Heart Study cohort biases. Patients with preexisting cardiovascular
conditions are dropped from the study. Fisher’s exact test is used for the comparison of the
female binary covariate. For the remaining continuous covariates, a t-test is used to compare
the two groups. Smoking “treatment” bias significantly affects sex, age, BMI, blood pressure,
and heart rate.

Due to the high correlation between diastolic and systolic blood pressure, the two variables are
combined by centering them at the threshold of ideal/pre-high blood pressure, then scaling
comparably and summing them to create BPvar. Patients with preexisting conditions are
also removed to form a more comparable population (Table 7). The competing risks of
hypertension and death are analyzed.

R> data("framingham", package = "LocalControl")
R> framVars <- c("female", "totchol", "age", "bmi", "BPVar", "heartrte",
+ "glucose")
R> FHSResults <- LocalControl(data = framingham, outcomeType = "survival",
+ treatmentColName = "cursmoke", treatmentCode = 1,
+ timeColName = "time_outcome", outcomeColName = "outcome",
+ clusterVars = framVars)
R> summary(FHSResults)

The summary frame contains the percentage of informative information across all levels of
radius correction (Table 8). Figure 8 shows the cumulative incidence curves for both risks
and treatment groups first without any correction, then with the correction observed at the
11th radius, corresponding with 78.3% of the data being informative.
The uncorrected plot of Figure 8 shows that after a long exposure, the cumulative incidence
of death in the smoking treatment group is higher than that of the non-smokers. What is
surprising is that it appears as though smoking protects individuals from hypertension. After
correcting with local control, the hypertension curve for non-smokers shifts down towards
the smoking group, and is no longer significantly different. Note that the death CIFs remain
almost identical in both of these plots. Does smoking protect from hypertension? An early
article claimed that cigarette smoking inhibits blood pressure (Seltzer 1974), but a more
recent review suggests the evidence is inconclusive (Virdis, Giannarelli, Neves, Taddei, and
Ghiadoni 2010). Even if smoking reduced hypertension, the competing risk of death is still
higher for smokers.
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Figure 8: Competing risks of hypertension and death among smokers and non-smokers in
the Framingham Heart Study. The top plot shows the cumulative incidence without any
correction for covariates. This biased estimate suggests that non-smokers have a higher risk
for hypertension and lower risk of death. The bottom plot displays the results from local
control after correcting for sex, cholesterol, age, BMI, heart rate, blood pressure, and blood
glucose level. The competing risks local control bias-corrected curves show us that, among
comparable patients, there is almost no difference in the rate of hypertension over time, but
that the greater risk of death remains for smokers. The shaded areas represent the 95%
confidence interval estimates.



Journal of Statistical Software 25

Radius Pct informative Pct radius χ2 p value
1 11.41 1.00 1.00 20.45 6.13E-06
2 9.13 1.00 0.80 20.45 6.13E-06
3 7.30 1.00 0.64 20.38 6.36E-06
4 5.84 1.00 0.51 19.73 8.90E-06
5 4.67 1.00 0.41 19.38 1.07E-05
6 3.74 1.00 0.33 15.78 7.12E-05
7 2.99 1.00 0.26 5.99 1.44E-02
8 2.39 0.99 0.21 3.08 7.93E-02
9 1.91 0.97 0.17 1.19 2.75E-01

10 1.53 0.92 0.13 1.44 2.31E-01
11 1.23 0.78 0.11 2.25 1.33E-01

Table 8: Framingham local control summary. Each row corresponds to one radius of correc-
tion. The values in the first column are the radius lengths in normalized units. The second
column contains the fraction of observations who are informative at the given radius. The
pct radius column is the size of the radius as a fraction of the maximum distance between
any two observations. The last two columns contain the results from the hypothesis tests
comparing the hypertension CIFs for the two treatment groups (as described in Section 4.1).

6. Patient level prediction/heterogeneity of treatment effect

Heretofore, covariates have been used to group patients for comparison to estimate a bias-
corrected global treatment difference between a pair of treatments within a population. Such
evidence is useful in making generalizations that one treatment may be safer or more effective
than another on average. However, this does not answer the question of what is the expected
outcome from a given treatment for a particular patient. Patient level prediction recognizes
that there may be heterogeneity of treatment effect, namely that patients can have very differ-
ent outcomes depending on patient characteristics. Traditional approaches will use regression
models or machine learning on patient covariates to predict patient outcomes. While these
approaches can provide patient level predictions, the interpretation of such models could be
distorted by the biasing variables. Instead, after bias correction, regression or machine learn-
ing can be applied to model bias-corrected treatment differences, giving insight into what
variables modify the difference in outcome from one treatment to another, unpolluted by
variables that govern choice of treatment.
In Section 2, an analysis of the Lindner data was presented using LocalControlClassic().
In Section 3, LocalControl() was used to provide a comparison of the results from the two
methods. The Lindner data is now analyzed for the third time, for the investigation of pa-
tient subgroups. This analysis continues from Section 3.4, having just called LocalControl()
on the Lindner data, and plotting the results (Figure 6). Recursive partitioning is used to
explore patient subgroups with statistically significant differences in bias-corrected treatment
difference as a function of patient covariates, including the clustering variables (Obenchain
and Young 2013; Faries et al. 2013; Young et al. 2015, 2016). Statistical significance was ad-
justed to account for multiple comparisons. A clustering radius must be selected to begin the
analysis. The problem of radius selection is similar to that of selecting bin sizes when using
propensity scoring. It is difficult to say which radius is “correct”, and the results may vary
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Figure 9: Recursive partitioning tree. Using the results from the analysis in Section 3.4 as
input to recursive partitioning, variables are identified which produce significant treatment
differences. The color of the nodes is used to differentiate between the entire population (pur-
ple), subgroups containing only women (pink), and those with only male patients (blue). The
dots bordering the leaves represent a second partitioning of men and women. Solid dots rep-
resent patients with a stent, while hollow dots represent those without. The LocalControl()
outcomes for each of these subgroups are displayed in Figure 10.
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Figure 10: Local control subgroup analysis. After identifying significant subgroups with
recursive partitioning, the subgroup treatment differences are graphed as a function of radius.
Observe that the men without stents have a much lower billing cost on Abciximab vs. control
than each of the other subgroups.
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significantly from one to the next. It is thus important to examine the behavior of the esti-
mates across a range of radii, as well as compare those results to perfectly matched patients,
if they exist. When a radius must be selected, it is useful to plot the fraction of patients who
are considered informative at a given radius. In this example, a radius is chosen where 95%
of the data is informative, and where the estimates are also plateauing (Figure 6). Each pa-
tient is assigned the average treatment difference produced within their cluster at the selected
radius. With local treatment difference as the dependent variable, and patient covariates as
the independent variables, recursive partitioning is used to classify patient subgroups. In
Figure 9, recursive partitioning identifies four mutually exclusive subgroups: men and women
with and without stents. Patients are then divided into these identified subgroups to examine
the average local treatment differences per subgroup (Figure 10). The data suggests over a
wide range of radii of bias correction, that men without stents result in lower cost of care on
Abciximab, but that all other subgroups have a lower or neutral cost of treatment on usual
care alone.
In large data sets it can be true that an “average/overall” effect is meaningless. The answer is
that “it depends”. For example, a drug might work for women, but not for men. When there
is treatment response heterogeneity, a recommendation of one-size-fits-all is problematic and
even a bias-corrected overall effect is misleading. Local control enables the analysis of both the
bias-corrected average effect, as well as creates insight into subgroup outcome heterogeneity.

7. Conclusion

The R LocalControl package has been presented with examples of bias-corrected estimation
of treatment outcome differences for observational studies, including time-to-event data with
competing risks. Patient level prediction and heterogeneity of treatment effect analysis is
currently not implemented for survival analysis. It remains as future work to adapt this
approach to survival-based outcomes, for example by extensions to survival-based recursive
partitioning trees (Bou-Hamad, Larocque, and Ben-Ameur 2011).

Computational details

The results in this paper were obtained using R 3.6.0 with the LocalControl 1.1.2.1 package. R
itself and the following packages which have been used throughout the paper are available from
the Comprehensive R Archive Network (CRAN, https://CRAN.R-project.org/): xtable
(Dahl 2019) TeachingDemos (Snow 2020) gplots (Warnes et al. 2020) dendextend (Galili
2015) data.table (Dowle and Srinivasan 2020) colorspace (Zeileis et al. 2020) RColorBrewer
(Neuwirth 2014) gridExtra (Auguie 2017) ggplot2 (Wickham 2009) rpart (Therneau and
Atkinson 2019) rpart.plot (Milborrow 2020).
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