Package 'MGDrivE'

October 5, 2020

Type Package

Title Mosquito Gene Drive Explorer

Version 1.6.0

Maintainer Héctor Manuel Sánchez Castellanos <sanchez.hmsc@berkeley.edu>

URL https://marshalllab.github.io/MGDrivE/,

https://www.marshalllab.com/

BugReports https://github.com/MarshallLab/MGDrivE/issues

Description Provides a model designed to be a reliable testbed where various gene drive interventions for mosquito-borne diseases control. It is being developed to accommodate the use of various mosquito-specific gene drive systems within a population dynamics framework that allows migration of individuals between patches in landscape. Previous work developing the population dynamics can be found in Deredec et al. (2001) <doi:10.1073/pnas.1110717108> and Hancock & Godfray (2007) <doi:10.1186/1475-2875-6-98>,

and extensions to accommodate CRISPR homing dynamics in Marshall et al. (2017) <doi:10.1038/s41598-017-02744-7>.

License GPL-3

Encoding UTF-8

Imports R6, Rcpp, Rdpack (>= 0.7), grDevices, graphics, stats, utils

RdMacros Rdpack

LinkingTo Rcpp

Depends R (>= 2.10)

ByteCompile true

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Héctor Manuel Sánchez Castellanos [aut, cre]
Jared Bennett [aut],
Sean Wu [aut],
John M. Marshall [aut]

Repository CRAN

Date/Publication 2020-10-05 20:40:02 UTC

R topics documented:

aggregateFemales
$aggregateOutput \dots \dots$
basicBatchMigration
basicRepeatedReleases
$calc A quatic Stage Survival Probability \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$calc Average Generation Time \\ \ \dots \\ \ 9$
calcCos
$calc Density Dependent Death Rate \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$calcExpKernel \dots \dots$
calc Gamma Kernel
calcHaversine
$calcHurdleExpKernel \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
calcLarvalDist
calcLarvalPopEquilibrium
$calc Larval Stage Mortality Rate \\ \ldots \\ \ldots \\ 15$
$calc Lognormal Kernel \ldots \ldots 15$
calcOmega
$calc Population Growth Rate \ \dots \ $
calcQuantiles
calcVinEll
$calcVinSph \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$calc Zero Inflation \ \ldots \ $
cube2csv
cubeClvR
$cubeClvR2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
cubeECHACR
cubeECHACRX
cubeHoming1RA
cubeHomingDrive
cubeKillerRescue
cubeMEDEA
cubeMendelian
cubeModifiers
cubeOneLocusTA
cubeReciprocalTranslocations
cubeRIDL
cubeSplitDrive
cubeTGD

cubeTGDX
cubeTwoLocusTA
cubeWolbachia
eraseDirectory
generateReleaseVector
get_alpha_Network
get_beta_Network
get_conF_Network
get_conM_Network
get_drivecubeindex_Network
get_eta_Network
get_femalePop_Patch
get_genotypesID_Network
get_genotypesN_Network
get_malePop_Patch
get_muAd_Network
get_muAq_Network
get_nPatch_Network
get_omega_Network
get_patchReleases_Network
get phi Network
<i>U</i> =1 =
0 = =
get_tau_Network
get_timeAq_Network
get_tNow_Network
get_xiF_Network
get_xiM_Network
ggColUtility
kernels
MGDrivE
MGDrivE-Cube
MGDrivE-Model
moveMatAll2
moveMatCascade3
moveMatDiag
moveMatDiagOneCity
moveMatDie
moveMatIndependent3
moveMatMixedSpil
moveMatTaleOfTwoCities
moveMatTriDiagonal
moveMatTriple
multRun_Network
Network
normalise
oneDay_adultDeath_deterministic_Patch
oneDay_adultDeath_stochastic_Patch
oneDay_eggDM_deterministic_Patch

4 aggregateFemales

	oneDay_eggDM_stochastic_Patch	71
	oneDay_eggReleases_Patch	71
	oneDay_initOutput_Patch	72
	oneDay_larvaDM_deterministic_Patch	72
	oneDay_larvaDM_stochastic_Patch	73
	oneDay_mating_deterministic_Patch	73
	oneDay_mating_stochastic_Patch	74
	oneDay_migrationIn_Patch	74
	oneDay_Migration_Deterministic_Network	75
	oneDay_Migration_Stochastic_Network	75
	oneDay_Network	76
	oneDay_oviposit_deterministic_Patch	76
	oneDay_oviposit_stochastic_Patch	76
	oneDay_PopDynamics_Patch	77
	oneDay_pupaDM_deterministic_Patch	77
	oneDay_pupaDM_stochastic_Patch	78
	oneDay_pupation_deterministic_Patch	78
	oneDay_pupation_stochastic_Patch	7 9
	oneDay_releases_Patch	7 9
	oneDay_writeOutput_Patch	7 9
	oneRun_Network	80
	parameterizeMGDrivE	80
	Patch	81
	plotMGDrivEMult	83
	plotMGDrivESingle	84
	1	85
:	rDirichlet	86
	-	86
1	reset_Patch	87
1		87
	1	88
		89
	_	90
	set_population_deterministic_Patch	90
		91
	splitOutput	92
		02
Index		93
aggreg	gateFemales Aggregate Female Output by Genotype	

Description

Aggregate over male mate genotype to convert female matrix output into vector output.

aggregateOutput 5

Usage

```
aggregateFemales(
  readDir,
  writeDir = NULL,
  genotypes,
  remFile = TRUE,
  verbose = TRUE
)
```

Arguments

readDir Directory to read input from

writeDir Directory to write output to. Default is readDir

genotypes Character vector of possible genotypes; found in driveCube\$genotypesID

remFile Boolean flag to remove original (unaggregated) file

verbose Chatty? Default is TRUE

Examples

aggregateOutput

Aggregate Output Over Landscape

Description

This function aggregates the output of a run over the entire output, i.e., all of the patches. It writes the output one level above the folder pointed to by readDir, if writeDir is NULL. Output consists of 2 csv files, one for males and one for females, "...M_LandscapeAgg_Run...csv".

6 basicBatchMigration

Usage

```
aggregateOutput(readDir, writeDir=NULL)
```

Arguments

readDir Directory where output was written to
writeDir Directory to write output to. Default is one level above readDir

Examples

```
## Not run:
# This assumes user has run MGDrivE and output is in fPath.
# See vignette for examples on how to run MGDrivE
# read/write dirs
fPath <- "folder/containing/output"</pre>
oPath <- "folder/to/write/stuff"
# first, split output by patch and aggregate females by mate genotype
# remember, cube is for example and changes with simulation
# landscape aggregation will work if females are not aggregated, but it's slower
cube <- cubeMendelian()</pre>
splitOutput(readDir = fPath, writeDir = NULL, remFile = TRUE)
aggregateFemales(readDir= fPath, writeDi = NULL, genotypes = cube$genotypesID,
                 remFile = TRUE)
# aggregate mosquitoes over entire landscape
# no return value
aggregateOutput(readDir = fPath, writeDir = NULL)
## End(Not run)
```

basicBatchMigration Make List of Batch Migration Parameters

Description

Sets up a list containing the probability of a batch migration, the fractional amount of males/females that migrate, and the weighted probabilities for where to migrate. The default weights for migration are equal for all patches. These can be changed after running the function. This is only used in oneDay_Migration_Stochastic_Network.

basicRepeatedReleases 7

Usage

```
basicBatchMigration(
  batchProbs = 1e-05,
  sexProbs = c(0.01, 0.01),
  numPatches = 1
)
```

Arguments

batchProbs Probability of a batch migration, either 1 number or a vector of length equal to

the number of patches

sexProbs Population fraction of males and females that migrate. Either a vector c(M,F) or

matrix of 2 columns

numPatches Number of patches in the simulation

Examples

```
# to setup for 3 patches
batchMigration = basicBatchMigration(batchProbs = 1e-5, sexProbs = c(0.1, 0.01), numPatches = 3)
```

basicRepeatedReleases Make List of Modified Mosquito Releases

Description

Sets up a release schedule for a single patch, returns a list to be used in oneDay_releases_Patch or oneDay_eggReleases_Patch. This function is no longer intended to be used alone, please use the standard interface, generateReleaseVector.

Usage

basicRepeatedReleases(releaseStart, releaseEnd, releaseInterval, releaseMatrix)

Arguments

```
releaseStart Day releases start releaseEnd Day releases end
```

releaseInterval

Interval between releases

releaseMatrix Numeric matrix specifying the genotype and release amount

Examples

```
## Not run:
# Setup for 3 patches but only release in the first with a defined release
# schedule, for the cube cubeHomingDrive:

patchReleases = replicate(n = 3, expr = {
    list(maleReleases = NULL, femaleReleases = NULL, eggReleases = NULL, matedFemaleReleases = NULL)
}, simplify = FALSE)

patchReleases[[1]]$femaleReleases = MGDrivE::basicRepeatedReleases(releaseStart = 5, releaseInterval = 5, releaseMatrix = matrix(c(5,100),1,2))

patchReleases[[1]]$maleReleases = MGDrivE::basicRepeatedReleases(releaseStart = 50, releaseInterval = 1, releaseInterval = 1, releaseMatrix = matrix(c(5,100),1,2))

## End(Not run)
```

 ${\tt calcAquaticStageSurvivalProbability}$

Calculate Aquatic Stage Survival Probability

Description

Calculate θ_{st} , density-independent survival probability, given by:

$$\theta_{st} = (1 - \mu_{st})^{T_{st}}$$

Usage

calcAquaticStageSurvivalProbability(mortalityRate, stageDuration)

Arguments

mortalityRate Daily mortality probability, μ_{st} stageDuration Duration of aquatic stage, T^{st}

 ${\tt calcAverageGenerationTime}$

Calculate Average Generation Time

Description

Calculate g, average generation time, given by:

$$g = T_e + T_l + T_p + \frac{1}{\mu_{ad}}$$

Usage

calcAverageGenerationTime(stagesDuration, adultMortality)

Arguments

```
stagesDuration Vector of lengths of aquatic stages, T_e, T_l, T_p adultMortality Adult mortality rate, \mu_{ad}
```

calcCos

Calculate Geodesic Distance - Cosine Method

Description

This function calculates geodesic distance using the cosine method.

Usage

```
calcCos(latLongs, r = 6378137)
```

Arguments

latLongs Two column matrix of latitudes/longitudes
r Earth radius, Default is WGS-84 radius

10 calcExpKernel

calcDensityDependentDeathRate

Calculate Density-dependent Larval Mortality

Description

Calculate α , the strength of density-dependent mortality during the larval stage, given by:

$$\alpha = \left(\frac{1/2 * \beta * \theta_e * Ad_{eq}}{R_m - 1}\right) * \left(\frac{1 - (\theta_l / R_m)}{1 - (\theta_l / R_m)^{1/T_l}}\right)$$

Usage

```
calcDensityDependentDeathRate(
  fertility,
  thetaAq,
  tAq,
  adultPopSizeEquilibrium,
  populationGrowthRate
)
```

Arguments

fertility Number of eggs per oviposition for wild-type females, β

thetaAq Vector of density-independent survival probabilities of aquatic stages, θ_e , θ_l

tAq Vector of lengths of aquatic stages, T_e, T_l, T_p

 $adult {\tt PopSizeEquilibrium}$

Adult population size at equilibrium, Ad_{eq}

populationGrowthRate

Population growth in absence of density-dependent mortality R_m

calcExpKernel

Calculate Exponential Stochastic Matrix

Description

Given a distance matrix from calcVinEll, calculate a stochastic matrix where one step movement probabilities follow an exponential density.

Usage

```
calcExpKernel(distMat, rate)
```

calcGammaKernel 11

Arguments

distMat Distance matrix from calcVinEll

rate Rate parameter of Exponential distribution

Details

The distribution and density functions for the exponential kernel are given below:

$$F(x) = 1 - e^{-\lambda x}$$

$$f(x) = \lambda e^{-\lambda x}$$

where λ is the rate parameter of the exponential distribution.

Examples

calcGammaKernel

Calculate Gamma Stochastic Matrix

Description

Given a distance matrix from calcVinEll, calculate a stochastic matrix where one step movement probabilities follow a gamma density.

Usage

```
calcGammaKernel(distMat, shape, rate)
```

Arguments

distMat Distance matrix from calcVinEll

shape Shape parameter of GammaDist distribution rate Rate parameter of GammaDist distribution

12 calcHaversine

Details

The distribution and density functions for the gamma kernel are given below:

$$F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$$

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

where $\Gamma(\alpha)$ is the Gamma function, $\gamma(\alpha, \beta x)$ is the lower incomplete gamma function, and α, β are the shape and rate parameters, respectively.

Examples

calcHaversine

Calculate Geodesic Distance - Haversine Method

Description

This function calculates geodesic distance using the Haversine method.

Usage

```
calcHaversine(latLongs, r = 6378137)
```

Arguments

1atLongs Two column matrix of latitudes/longitudes r Earth radius. Default is WGS-84 radius

calcHurdleExpKernel 13

calcHurdleExpKernel

Calculate Zero-inflated Exponential Stochastic Matrix

Description

Given a distance matrix from calcVinEll, calculate a stochastic matrix where one step movement probabilities follow an zero-inflated exponential density with a point mass at zero. The point mass at zero represents the first stage of a two-stage process, where mosquitoes decide to stay at their current node or leave anywhere. This parameter can be calculated from lifetime probabilities to stay at the current node with the helper function calcZeroInflation.

Usage

```
calcHurdleExpKernel(distMat, rate, p0)
```

Arguments

distMat Distance matrix from calcVinEll

rate Rate parameter of Exponential distribution

p0 Point mass at zero

Details

If a mosquito leaves its current node, with probability $1 - p_0$, it then chooses a destination node according to a standard exponential density with rate parameter rate.

The distribution and density functions for the zero inflated exponential kernel are given below:

$$F(x) = p_0 \theta(x) + (1 - p_0)(1 - e^{-\lambda x})$$
$$f(x) = p_0 \delta(x) + (1 - p_0)\lambda e^{-\lambda x}$$

where λ is the rate parameter of the exponential distribution, $\theta(x)$ is the Heaviside step function and $\delta(x)$ is the Dirac delta function.

calcLarvalDist

Calculate Distribution of Larval Population

Description

This hidden function calculates the distribution of larvae through time by treating the larval-stage as a discrete-time Markov chain, and solving for the stationary distribution. As the only aquatic population known for initializing MGDrivE is the equilibrium larval population, this acts as an anchor from which to calculate the egg and pupae distributions from (see set_initialPopulation_Patch).

Usage

```
calcLarvalDist(mu, t)
```

Arguments

mu Double, death rate t Integer, stage time

calcLarvalPopEquilibrium

Calculate Equilibrium Larval Population

Description

Equilibrium larval population size to sustain adult population.

Usage

```
calcLarvalPopEquilibrium(alpha, Rm)
```

Arguments

alpha See calcDensityDependentDeathRate

Rm See calcPopulationGrowthRate

 ${\tt calcLarvalStageMortalityRate}$

Calculate Larval Stage Mortality Rate

Description

Calculate μ_l , the larval mortality, given by

$$\mu_{l} = 1 - \left(\frac{R_{m} * \mu_{ad}}{1/2 * \beta * (1 - \mu_{m})}\right)^{\frac{1}{T_{e} + T_{l} + T_{p}}}$$

Usage

```
calcLarvalStageMortalityRate(
  generationPopGrowthRate,
  adultMortality,
  fertility,
  aquaticStagesDuration
)
```

Arguments

 ${\tt generationPopGrowthRate}$

See calcPopulationGrowthRate

adultMortality Adult mortality rate, μ_{ad}

fertility Number of eggs per oviposition for wild-type females, β aquaticStagesDuration

Vector of lengths of aquatic stages, T_e, T_l, T_p

calcLognormalKernel

Calculate Lognormal Stochastic Matrix

Description

Given a distance matrix from calcVinEll, calculate a stochastic matrix where one step movement probabilities follow a lognormal density.

Usage

```
calcLognormalKernel(distMat, meanlog, sdlog)
```

Arguments

distMat Distance matrix from calcVinEll
meanlog Log mean of Lognormal distribution

sdlog Log standard deviation of Lognormal distribution

16 calcOmega

Details

The distribution and density functions for the lognormal kernel are given below:

$$F(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2}\sigma}\right]$$
$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

where μ is the mean on the log scale, and σ is the standard deviation on the log scale.

Examples

calcOmega

Solve for Omega (additional genotype-specific mortality)

Description

Solves for root of equation of geometrically-distributed lifespan for value of omega.

Usage

```
calcOmega(mu, lifespanReduction)
```

Arguments

mu Daily mortality probability (discrete-time hazard, called muAd in code) lifespanReduction

Target reduced lifespan, between 0 and 1 (target average lifespan will be $\frac{1}{\mu_{Ad}} \times lifespanReduction$)

```
# reduce lifespan by 10%
# Example mu is an average for Aedes
newOmega <- calcOmega(mu = 0.11, lifespanReduction = 0.90)</pre>
```

calcPopulationGrowthRate

Calculate Generational Population Growth Rate

Description

Calculate R_m , population growth in absence of density-dependent mortality, given by:

$$(r_m)^g$$

Usage

calcPopulationGrowthRate(dailyPopGrowthRate, averageGenerationTime)

Arguments

dailyPopGrowthRate

Daily population growth rate, r_m

 $average {\tt Generation Time}$

See calcAverageGenerationTime

calcQuantiles

Summary Statistics for Stochastic MGDrivE

Description

This function reads in all repetitions for each patch and calculates either the mean, quantiles, or both. User chooses the quantiles, up to 4 decimal places, and enters them as a vector. Quantiles are calculated empirically. (order does not matter)

Usage

```
calcQuantiles(readDir, writeDir, mean = TRUE, quantiles = NULL, verbose = TRUE)
```

Arguments

readDir Directory to find repetition folders in

writeDir Directory to write output

mean Boolean, calculate mean or not. Default is TRUE quantiles Vector of quantiles to calculate. Default is NULL

verbose Chatty? Default is TRUE

18 calcQuantiles

Details

Given the readDir, this function assumes the follow file structure:

```
    readDir
    repetition 1
    * patch 1
    * patch 2
    * patch 3
    repetition 2
    * patch 1
    * patch 2
```

- * patch 2
- repetition 3
- repetition 4
- ...

Output files are *.csv contain the mean or quantile in the file name, i.e. M/FMean(patchNum).csv and M/FQuantile(quantNum)_(patchNum).csv.

Value

Writes output to files in writeDir

calc VinEll 19

calcVinEll

Calculate Geodesic Distance - Vincenty Ellipsoid Method

Description

This function calculates geodesic distance using the original Vincenty Ellipsoid method.

Usage

```
calcVinEll(
  latLongs,
  a = 6378137,
  b = 6356752.3142,
  f = 1/298.257223563,
  eps = 1e-12,
  iter = 100
)
```

Arguments

latLongs	Two column matrix of latitudes/longitudes
a	Equatorial radius of the earth, default is WGS-84 radius
b	Polar radius of the earth, default is WGS-84 radius
f	Flattening or inverse eccentricity, default eccentricity is WGS-84
eps	Convergence criteria
iter	Maximum number of iterations to attempt convergence

20 calcZeroInflation

calcVinSph

Calculate Geodesic Distance - Vincenty Sphere Method

Description

This function calculates geodesic distance using the Vincenty sphere method.

Usage

```
calcVinSph(latLongs, r = 6378137)
```

Arguments

1atLongs Two column matrix of latitudes/longitudes
r Earth radius. Default is WGS-84 radius

Examples

calcZeroInflation

Calculates the zero-inflation part of a hurdle exponential kernel.

Description

Given the probability of an adult mosquito to stay in the same patch throughout its whole lifespan, and its mortality, it calculates the height of the pulse-density part of the hurdle kernel.

Usage

```
calcZeroInflation(stayThroughLifespanProbability, adultMortality)
```

Arguments

```
stayThroughLifespanProbability
Probability of a mosquito to spend its whole lifespan in the same node
adultMortality Adult mortality rate
```

cube2csv 21

Examples

cube2csv

Export a Cube to .csv

Description

Export a cube as multiple .csv files (one for each genotype; slices of z-axis). This function will create the directory if it doesn't exist. Files are stored as slice_(z-slice)_(genotype).csv

Usage

```
cube2csv(cube, directory, digits = 3)
```

Arguments

cube A cube object (see MGDrivE-Cube for options)

directory Directory to write .csv files to

digits Number of significant digits to retain in .csv output

```
## Not run:
# output directory
oPath <- "path/to/write/output"

# setup inheritance cube for export, using Mendelian as the example cube <- cubeMendelian()

# write out cube2csv(cube = cube, directory = oPath, digits = 3)
## End(Not run)</pre>
```

22 cubeClvR

cubeC1vR

Inheritance Cube: ClvR (Cleave and Rescue)

Description

Based on the Cleave-and-Rescue system of Oberhofer, this is a 2-locus Cas9-based toxin-antidote system. The first locus carries the Cas9, gRNAs, and a recoded copy of an essential gene. The second locus is the targeted essential gene. This gene can be completely haplosufficient (hSuf = 1) or completely haploinsufficient (hSuf = 0). It is assumed that having 2 copies of the gene (be it wild-type at the second locus or recoded at the first) confers complete viability.

Usage

```
cubeClvR(
  cF = 1,
  crF = 0,
  ccF = cF,
  ccrF = crF,
  cM = 1,
  crM = 0,
  ccM = cM,
  ccrM = crM,
  dW = 0,
  drW = 0,
  ddW = dW,
  ddrW = drW,
  hSuf = 1,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

cF	Female cutting rate, one ClvR allele
crF	Female functional resistance rate, one ClvR allele
ccF	Female cutting rate, two ClvR alleles
ccrF	Female functional resistance rate, two ClvR alleles
cM	Male cutting rate, one ClvR allele
crM	Male functional resistance rate, one ClvR allele
ccM	Male cutting rate, two ClvR alleles
ccrM	Male functional resistance rate, two ClvR alleles

cubeClvR2 23

dW	Female deposition cutting rate
drW	Female deposition functional resistance rate
ddW	Female deposition (HH) cutting rate
ddrW	Female deposition (HH) functional resistance rate
hSuf	Haplosufficiency level, default is completely sufficient
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeClvR2	Inheritance Cube: 2-Locus ClvR (Cleave and Rescue)

Description

Based on the Cleave-and-Rescue system of Oberhofer, this is a 3-locus Cas9-based toxin-antidote system. The first locus carries the Cas9, the second locus carries the gRNAs, and a recoded copy of an essential gene. The third locus is the targeted essential gene. This gene can be completely haplosufficient (hSuf = 1) or completely haploinsufficient (hSuf = 0). It is assumed that having 2 copies of the gene (be it wild-type at the second locus or recoded at the first) confers complete viability. Additionally, loci 1 and 2 can be linked, given crM and crF, imitating the original 2-locus ClvR system. For this construct, the first locus will have 2 alleles, the second will have 2 alleles, and the third will have 3 alleles:

- Locus 1
 - W: Wild-type
 - C: Cas9
- Locus 2
 - W: Wild-type
 - G: gRNAs and recoded essential gene
- Locus 3
 - W: Wild-type
 - R: Functional resistant
 - B: Non-functional resistant

24 cubeClvR2

Usage

```
cubeClvR2(
 cF = 1,
 crF = 0,
 ccF = cF,
 ccrF = crF,
 cM = 1,
 crM = 0,
 ccM = cM,
 ccrM = crM,
 dW = 0,
 drW = 0,
 ddW = dW,
 ddrW = drW,
 hSuf = 1,
 crossF = 0.5,
  crossM = 0.5,
 eta = NULL,
 phi = NULL,
 omega = NULL,
 xiF = NULL,
 xiM = NULL,
 s = NULL
)
```

Arguments

cF	Female cutting rate, one ClvR allele
crF	Female functional resistance rate, one ClvR allele
ccF	Female cutting rate, two ClvR alleles
ccrF	Female functional resistance rate, two ClvR alleles
сМ	Male cutting rate, one ClvR allele
crM	Male functional resistance rate, one ClvR allele
ссМ	Male cutting rate, two ClvR alleles
ccrM	Male functional resistance rate, two ClvR alleles
dW	Female deposition cutting rate
drW	Female deposition functional resistance rate
ddW	Female deposition (HH) cutting rate
ddrW	Female deposition (HH) functional resistance rate
hSuf	Haplosufficiency level, default is completely sufficient
crossF	Crossover rate in females, 0 is completely linked, 0.5 is unlinked, 1.0 is complete divergence
crossM	Crossover rate in males, 0 is completely linked, 0.5 is unlinked, 1.0 is complete divergence

cubeECHACR 25

eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Details

Female deposition is implemented incorrectly. Right now, it is performed on male alleles prior to zygote formation - it should happen post-zygote formation. Since this construct doesn't have HDR, this should be fine.

Additionally, it is assumed that deposition requires loaded Cas9-RNP complexes from the mother, having Cas9 and no maternal gRNA, even in the presence of paternal gRNA, will not result in maternal deposition mediated cleavage.

Copy-number dependent rates are based on Cas9, not gRNA. The assumption is that RNA is easier to produce, and therefore won't limit cleavage by Cas9.

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeECHACR	Inheritance Cube: ECHACR

Description

This function creates an ECHACR construct, it has 5 alleles at the first locus and 4 alleles at the second.

- W: Wild-type
- H: Homing allele
- E: Eraser allele
- R: No-cost resistance allele
- B: Detrimental resistance allele
- cHW: Rate of homing from H, W -> H transition
- cEH: Rate of homing from E, H -> E transition
- cEW: Rate of homing from E, W -> E transition

26 cubeECHACR

Usage

```
cubeECHACR(
  cHW = 1,
  cEW = 1,
  cEH = 1,
  chHW = 0,
  crHW = 0,
  ceEW = 0,
  crEW = 0,
  ceEH = 0,
  crEH = 0,
  d1 = 0,
  d2 = 0,
  d3 = 0,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

cHW	Cutting efficiency of drive allele at locus 1
cEW	Cutting efficiency of ECHACR element into W
сЕН	Cutting efficiency of ECHACR element into H
chHW	Homing efficiency of drive allele at locus 1
crHW	Resistance allele efficiency of drive allele at locus 1
ceEW	Homing efficiency of ECHACR element into W
crEW	Resistance allele efficiency of ECHACR element into W
ceEH	Homing efficiency of ECHACR element into H
crEH	Resistance allele efficiency of ECHACR element into H
d1	Background mutation rate from W into R allele
d2	Background mutation rate from H into R allele
d3	Background mutation rate from E into R allele
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

cubeECHACRX 27

Details

This inheritance pattern corresponds to the Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives publication.

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeECHACRX

Inheritance Cube: ECHACRX

Description

This function creates an X-linked ECHACR construct, it has 5 alleles at the first locus and 4 alleles at the second.

- W: Wild-type
- H: Homing allele
- E: Eraser allele
- R: No-cost resistance allele
- B: Detrimental resistance allele
- cHW: Rate of homing from H, W -> H transition
- cEH: Rate of homing from E, H -> E transition
- cEW2: Rate of homing from E, W -> E transition

Usage

```
cubeECHACRX(
  cHW = 1,
  cEHW = 1,
  cEW1 = 1,
  cEW2 = 1,
  cEH = 1,
  chHW = 0,
  crHW = 0,
  chEHW = 0,
  crEHW = 0,
  ceEW1 = 0,
  crEW1 = 0,
  ceEW2 = 0,
  crEW2 = 0,
  ceEH = 0,
  crEH = 0,
  d1 = 0,
```

28 cubeECHACRX

```
d2 = 0,
d3 = 0,
dHW = 0,
dEH = 0,
dEW = 0,
drEH = 0,
drEW = 0,
crossF = 0,
eta = NULL,
phi = NULL,
xiF = NULL,
xiM = NULL,
s = NULL
```

Arguments

_	
cHW	Cutting efficiency of drive allele at locus 1
cEHW	Cutting efficiency of drive allele, in the presence of ECHACR element, at locus 1
cEW1	Cutting efficiency of ECHACR element into W at locus 1
cEW2	Cutting efficiency of ECHACR element into W at locus 2
cEH	Cutting efficiency of ECHACR element into H
chHW	Homing efficiency of drive allele at locus 1
crHW	Resistance allele efficiency of drive allele at locus 1
chEHW	Homing efficiency of drive allele, in the presence of ECHACR element, at locus 1
crEHW	Resistance allele efficiency of drive allele, in the presence of ECHACR element, at locus 1
ceEW1	Homing efficiency of ECHACR element into W at locus 1
crEW1	Resistance allele efficiency of ECHACR element into W at locus 1
ceEW2	Homing efficiency of ECHACR element into W at locus 2
crEW2	Resistance allele efficiency of ECHACR element into W at locus 2
ceEH	Homing efficiency of ECHACR element into H
crEH	Resistance allele efficiency of ECHACR element into H
d1	Background mutation rate from W into R allele
d2	Background mutation rate from H into R allele
d3	Background mutation rate from E into R allele
dHW	Female H deposition rate against W
dEH	Female E deposition rate against H
dEW	Female E deposition rate against W

cubeHoming1RA 29

drHW	Female resistance generation rate, from H allele
drEH	Female resistance generation rate, from E allele
drEW	Female resistance generation rate, from E allele
crossF	Female crossover rate. 0 is fully linked, 0.5 is unlinked, 1 is negatively linked
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Details

This inheritance pattern corresponds to the Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives publication.

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeHoming1RA Inheritance Cube: Homing Drive with 1 Resistance Allele

Description

This function creates an inheritance cube to model a homing gene drive (such as a CRISPR-Cas9 system) that creates 1 type of resistance allele. It assumes no sex-specific inheritance patterns and the construct is on an autosome.

Usage

```
cubeHoming1RA(
    c = 1,
    ch = 0,
    eta = NULL,
    phi = NULL,
    omega = NULL,
    xiF = NULL,
    xiM = NULL,
    s = NULL
)
```

30 cubeHomingDrive

Arguments

С	Cutting rate
ch	Successful homing rate rate
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeHomingDrive	Inheritance Cube: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) with 2 Resistance Alleles and maternal deposi-
	tion

Description

This is a sex-specific version of the original cube cubeHoming1RA. It assumes that the construct is on an autosome and there can be different male/female homing rates. It also has maternal deposition, i.e., when the male provides a W allele to a female with a H allele, some portion are cut during oogenesis. If the maternal deposition parameters are zero (d* parameters), this is a normal CRISPR drive.

Usage

```
cubeHomingDrive(
  cM = 1,
  cF = 1,
  dF = 0,
  chM = 0,
  crM = 0,
  chF = 0,
  crF = 0,
  dhF = 0,
  drF = 0,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
 xiM = NULL,
  s = NULL
)
```

cubeKillerRescue 31

Arguments

сМ	Male homing rate
cF	Female homing rate
dF	Female deposition homing rate
chM	Male correct homing rate
crM	Male resistance generating rate
chF	Female correct homing rate
crF	Female resistance generating rate
dhF	Female correct deposition rate
drF	Female resistance deposition rate
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
s	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeKillerRescue	Inheritance Cube:	Killer-Rescue System
------------------	-------------------	----------------------

Description

This function creates an inheritance cube to model a Killer-Rescue system. Killer-Rescue is a 2-locus system: one locus has a toxin and the other locus contains the antidote. The loci are assumed independent and are non-homing.

This drive has 3 alleles at locus 1 and 2 alleles and locus 2:

- Locus 1
 - T: Wild-type allele
 - K: "Killer" toxin allele
 - R: Broken toxin allele
- Locus 2
 - W: Wild-type allele
 - A: Antidote allele

32 cubeMEDEA

Usage

```
cubeKillerRescue(
  eR = 0,
  Keff = 1,
  Aeff = 1,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

eR	Conversion of K allele to R allele, a basal mutation rate
Keff	Toxin efficacy
Aeff	Antidote efficacy
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeMEDEA	Inheritance Cube:	MEDEA (Maternal	Effect	Dominant	Embryonic
	Arrest)				

Description

This function creates an inheritance cube to model a MEDEA drive system. This system was first discovered in flour beetles. It biases inheritance by expressing a maternal toxin such that offspring die unless they express a zygotic antidote.

This drive has 3 alleles at 1 locus:

- W: Wild-type allele
- M: MEDEA allele
- R: Resistance allele

cubeMendelian 33

Usage

```
cubeMEDEA(
  rM = 0,
  rW = 0,
  Teff = 1,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

rM	Breakdown of MEDEA allele, no homing/toxin/antidote, M -> R conversion
rW	De novo resistance generation, W -> R conversion
Teff	Efficacy of the toxin
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeMendelian Inheritance Cube: Mendelian	cubeMendelian Inheritance Cube: Mendelian

Description

This function creates a Mendelian Inheritance Cube. It only handles simple, alphabetic genotypes. The default is 3 alleles at 1 locus, this can be extended to however many alleles one is interested in, but only at 1 locus.

34 cubeModifiers

Usage

```
cubeMendelian(
  gtype = c("AA", "Aa", "aa"),
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

gtype	Vector of genotypes, with the wild-type in the first position
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
s	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeModifiers

Generate and Modify Default Genotype-specific Parameters

Description

This is an internal function for cubes.

Usage

```
cubeModifiers(
  gtype,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
```

cubeOneLocusTA 35

Arguments

gtype	character vector of genotypes
eta	genotype-specific mating fitness, handles assortative mating as well
phi	genotype-specific sex ratio at emergence
omega	genotype-specific multiplicative modifier of adult mortality
xiF	genotype-specific female pupatory success
xiM	genotype-specific male pupatory success
S	genotype-specific fractional reduction(increase) in fertility

cubeOneLocusTA

Inheritance Cube: 1 Locus Maternal-Toxin/Zygotic-Antidote System

Description

This function creates a 1 locus maternal-toxin/zygotic-antidote system. This is similar to the construct called UDmel. There is no resistance generation in this model. This drive has 3 alleles at 1 locus:

- A: Maternal-toxin 1, zygotic-antidote 2
- B: Maternal-toxin 2, zygotic-antidote 1
- W: Wild-type allele

Usage

```
cubeOneLocusTA(
   TAEfficacy = 1,
   TBEfficacy = 1,
   eta = NULL,
   phi = NULL,
   omega = NULL,
   xiF = NULL,
   xiM = NULL,
   s = NULL
)
```

Arguments

TAEfficacy	Maternal toxin A efficacy
TBEfficacy	Maternal toxin B efficacy
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
s	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

```
cubeReciprocalTranslocations
```

Inheritance Cube: Reciprocal Translocation

Description

This function creates an inheritance cube to model a reciprocal translocation. This technology was the original form of underdominant system. It involves 2 chromosomes, each with two alleles. This drive has 4 alleles at 2 loci:

- a: Wild-type at locus A
- A: Translocation at locus A
- b: Wile-type at locus B
- B: Translocation at locus B

Usage

```
cubeReciprocalTranslocations(
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeRIDL 37

cubeRIDL Inheritance Cube: RIDL (Release of Insects with Dominant Lethality)

Description

This function creates a RIDL system. RIDL (Release of Insects with Dominant Lethality), is a form of SIT. Created by Oxitec, this is based on a positive feedback loop using the toxic tTAV gene, controlled under lab conditions by the TetO promoter. This has 2 alleles at 1 locus

- W: Wild-type allele
- R: OX513 RIDL allele

Usage

```
cubeRIDL(
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
s	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

38 cubeSplitDrive

cubeSplitDrive

Inheritance Cube: Split CRISPR drive with 2 Resistance Alleles and male/female specific homing

Description

This is a sex-specific version of a split CRISPR drive. At one locus is the Cas9, inherited in a Mendelian fashion. At a second, unlinked, locus are the gRNAs. When the two loci occur together, the gRNAs drive, with potential damaged alleles, but the Cas9 remains Mendelian. It is assumed that this is an autosomal drive. This drive corresponds to the confinable gene drive system developed by the Akbari lab.

Usage

```
cubeSplitDrive(
  cM = 1,
  chM = 0,
  crM = 0,
  ccM = cM,
  cchM = chM,
  ccrM = crM,
  cF = 1,
  chF = 0,
  crF = 0,
  ccF = cF,
  cchF = chF,
  ccrF = crF,
  dW = 0,
  dhW = 0,
  drW = 0,
  ddW = dW,
  ddhW = dhW,
  ddrW = drW,
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
 xiM = NULL,
  s = NULL
)
```

Arguments

сМ	Cutting efficiency in males, one Cas9 allele
chM	Homing efficiency in males, one Cas9 allele
crM	Resistance efficiency in males, one Cas9 allele

cubeTGD 39

ссМ	Cutting efficiency in males, two Cas9 alleles
cchM	Homing efficiency in males, two Cas9 alleles
ccrM	Resistance efficiency in males, two Cas9 alleles
cF	Cutting efficiency in females, one Cas9 allele
chF	Homing efficiency in females, one Cas9 allele
crF	Resistance efficiency in females, one Cas9 allele
ccF	Cutting efficiency in females, two Cas9 alleles
cchF	Homing efficiency in females, two Cas9 alleles
ccrF	Resistance efficiency in females, two Cas9 alleles
dW	Maternal deposition cutting, one Cas9 allele
dhW	Maternal deposition homing, one Cas9 allele
drW	Maternal deposition resistance, one Cas9 allele
ddW	Maternal deposition cutting, two Cas9 alleles
ddhW	Maternal deposition homing, two Cas9 alleles
ddrW	Maternal deposition resistance, two Cas9 alleles
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeTGD Inheritance Cube: tGD	
-------------------------------	--

Description

The trans-complementing Gene Drive (tGD) is a 1-locus, 2 target site drive. The first target site corresponds to the Cas protein, the second to an effector gene and the gRNAs. There are two sets of gRNAs, because each target site may have different cutting/homing/resistance rates, and each sex can have different rates for all of those things. Additionally, the parent that you receive your Cas from dictates its efficiency. Therefor, this construct has 5 alleles at the first locus and 4 alleles at the second.

• Locus 1

- W: Wild-type

40 cubeTGD

```
- P: Paternal Cas9
- M: Maternal Cas9
- R: Resistant allele 1
- B: Resistant allele 2
```

• Locus 2

- W: Wild-type - G: gRNAs - R: Resistant 1 - B: Resistant 2

Usage

```
cubeTGD(
  cM1 = 0,
  cM2 = 0,
  cP1 = 0,
  cP2 = 0,
 hM1 = 0,
 hM2 = 0,
 hP1 = 0,
 hP2 = 0,
  rM1 = 0,
 rM2 = 0,
 rP1 = 0,
  rP2 = 0,
 crM = 0,
 crP = 0,
 eta = NULL,
 phi = NULL,
 omega = NULL,
 xiF = NULL,
 xiM = NULL,
  s = NULL
)
```

Arguments

cM1	Maternally inherited Cas9 cutting rate at locus 1
cM2	Maternally inherited Cas9 cutting rate at locus 2
cP1	Paternally inherited Cas9 cutting rate at locus 1
cP2	Paternally inherited Cas9 cutting rate at locus 2
hM1	Maternally inherited Cas9 homing efficiency at locus 1
hM2	Maternally inherited Cas9 homing efficiency at locus 2
hP1	Paternally inherited Cas9 homing efficiency at locus 1
hP2	Paternally inherited Cas9 homing efficiency at locus 2

cubeTGDX 41

rM1 Mate	rnally inherited Cas9 resistance efficiency at locus 1
rM2 Mate	rnally inherited Cas9 resistance efficiency at locus 2
rP1 Pater	rnally inherited Cas9 resistance efficiency at locus 1
rP2 Pater	rnally inherited Cas9 resistance efficiency at locus 2
	rnal crossover rate, 0 is completely linked, 0.5 is unlinked, 1.0 is complete gence
	nal crossover rate, 0 is completely linked, 0.5 is unlinked, 1.0 is complete gence
eta Geno	otype-specific mating fitness
phi Geno	otype-specific sex ratio at emergence
omega Geno	otype-specific multiplicative modifier of adult mortality
xiF Geno	otype-specific female pupatory success
xiM Geno	otype-specific male pupatory success
s Geno	otype-specific fractional reduction(increase) in fertility

Details

This drive corresponds to the transcomplementing gene drive developed by the Gantz and Bier lab.

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

Inheritance Cube: tGDX

Description

The trans-complementing Gene Drive (tGD) is a 1-locus, 2 target site drive. The first target site corresponds to the Cas protein, the second to an effector gene and the gRNAs. There are two sets of gRNAs, because each target site may have different cutting/homing/resistance rates, and each sex can have different rates for all of those things. Additionally, the parent that you receive your Cas from dictates its efficiency. Therefor, this construct has 6 alleles at the first locus and 5 alleles at the second.

- Locus 1
 - W: Wild-type
 - P: Paternal Cas9
 - M: Maternal Cas9
 - R: Resistant allele 1
 - B: Resistant allele 2
 - Y: Y allele

42 cubeTGDX

• Locus 2

- W: Wild-type

- G: gRNAs

- R: Resistant 1

- B: Resistant 2

- Y: Y allele

Usage

```
cubeTGDX(
  cM1 = 0,
 cM2 = 0,
 cP1 = 0,
  cP2 = 0,
 hM1 = 0,
 hM2 = 0,
 hP1 = 0,
 hP2 = 0,
 rM1 = 0,
 rM2 = 0,
 rP1 = 0,
 rP2 = 0,
 crM = 0,
 eta = NULL,
 phi = NULL,
 omega = NULL,
 xiF = NULL,
 xiM = NULL,
  s = NULL
)
```

Arguments

cM1	Maternally inherited Cas9 cutting rate at locus 1
cM2	Maternally inherited Cas9 cutting rate at locus 2
cP1	Paternally inherited Cas9 cutting rate at locus 1
cP2	Paternally inherited Cas9 cutting rate at locus 2
hM1	Maternally inherited Cas9 homing efficiency at locus 1
hM2	Maternally inherited Cas9 homing efficiency at locus 2
hP1	Paternally inherited Cas9 homing efficiency at locus 1
hP2	Paternally inherited Cas9 homing efficiency at locus 2
rM1	Maternally inherited Cas9 resistance efficiency at locus 1
rM2	Maternally inherited Cas9 resistance efficiency at locus 2
rP1	Paternally inherited Cas9 resistance efficiency at locus 1
rP2	Paternally inherited Cas9 resistance efficiency at locus 2

cubeTwoLocusTA 43

crM	Maternal crossover rate, 0 is completely linked, 0.5 is unlinked, 1.0 is complete divergence
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Details

This drive corresponds to the transcomplementing gene drive developed by the Gantz and Bier lab.

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

Description

This function creates a 2 locus maternal-toxin/zygotic-antidote system. This is similar to the construct called UDmel. There is no resistance generation in this model.

This drive has 2 unlinked alleles, 1 allele each at 2 loci:

- A: Maternal-toxin 1, zygotic-antidote 2
- a: Wild-type at locus A
- B: Maternal-toxin 2, zygotic-antidote 1
- b: Wild-type at locus B

```
cubeTwoLocusTA(
   TAEfficacy = 1,
   TBEfficacy = 1,
   eta = NULL,
   phi = NULL,
   omega = NULL,
   xiF = NULL,
   xiM = NULL,
   s = NULL
)
```

44 cubeWolbachia

Arguments

TAEfficacy	Maternal toxin A efficacy
TBEfficacy	Maternal toxin B efficacy
eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

cubeWolbachia Inheritance Cube: Wolbachia

Description

This function creates an inheritance cube to model a Wolbachia infection. Wolbachia is a parasite that can infect mosquitoes. It biases its inheritance through cytoplasmic incompatibility. This drive has 2 alleles at 1 locus:

- · W: has Wolbachia
- w: does not have Wolbachia

Usage

```
cubeWolbachia(
  eta = NULL,
  phi = NULL,
  omega = NULL,
  xiF = NULL,
  xiM = NULL,
  s = NULL
)
```

Arguments

eta	Genotype-specific mating fitness
phi	Genotype-specific sex ratio at emergence
omega	Genotype-specific multiplicative modifier of adult mortality
xiF	Genotype-specific female pupatory success
xiM	Genotype-specific male pupatory success
S	Genotype-specific fractional reduction(increase) in fertility

eraseDirectory 45

Details

Cytoplasmic Incompatibility:

• male W cross female w -> all offspring die (complete penetrance)

• male w cross female W -> all offspring inherit Wolbachia

Value

Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele, and all genotype-specific parameters.

eraseDirectory

Erase all files in a directory

Description

Given a directory path, check that it exists, and if so, delete all its contents.

Usage

```
eraseDirectory(directory, verbose = TRUE)
```

Arguments

directory Directory whose contents will be deleted

verbose Chatty? Default is TRUE

Examples

```
## Not run:
# Path to directory, can tilde expand
myPath <- "~/path/to/write/output"

# Erase directory
# No return value
eraseDirectory(directory = myPath)
## End(Not run)</pre>
```

generateReleaseVector Make List of Modified Mosquito Releases

Description

Sets up a release schedule for a single patch, calls basicRepeatedReleases internally.

Usage

```
generateReleaseVector(driveCube, releasesParameters, nameGenotypes = NULL)
```

Arguments

driveCube Gene-drive cube

releasesParameters

A list containing the releasesStart, releasesNumber releasesInterval, and release-Proportion named values.

nameGenotypes

Optional list to specify different genotypes for egg/male/female releases. This is required for mated female releases. This parameter overrides the default release type.

Examples

```
# setup a drive cube, using Mendelian as the example
cube <- cubeMendelian()</pre>
# setup release parameter list
# releasesStart is the time of first release
# releasesNumber is the number of releases
# releasesInterval is the number of days between releases
# releaseProportion is the number of mosquitoes released
relParams <- list(releasesStart = 25, releasesNumber = 1,</pre>
                  releasesInterval = 0, releaseProportion = 10)
# generate male releases
mRelVec <- generateReleaseVector(driveCube = cube,
                                 releasesParameters = relParams)
# generate mated female releases
fRelVec <- generateReleaseVector(driveCube = cube,</pre>
                                 releasesParameters = relParams,
                                 nameGenotypes = list(c("AA", "AA", 10),
                                                       c("AA", "aa", 10)))
```

get_alpha_Network 47

get_alpha_Network

Get alpha

Description

Return density dependent mortality, see calcDensityDependentDeathRate

Usage

```
get_alpha_Network(ix)
```

Arguments

ix

Index of patch

get_beta_Network

Get beta

Description

Return size of wild-type egg batch

Usage

```
get_beta_Network()
```

get_conF_Network

Get conADF

Description

Return connection where adult female dynamics are written to

```
get_conF_Network()
```

48 get_eta_Network

get_conM_Network

Get conADM

Description

Return connection where adult male dynamics are written to

Usage

```
get_conM_Network()
```

 ${\tt get_drivecubeindex_Network}$

Get Element(s) of Drive Cube by Index

Description

Return elements or slices of drive cube. If all NULL return entire cube.

Usage

```
get_drivecubeindex_Network(fG = NULL, mG = NULL, oG = NULL)
```

Arguments

fG	Female genotype index
mG	Male genotype index
oG	Offspring genotype index

get_eta_Network

Get eta

Description

Get eta

Usage

```
get_eta_Network(fIdx)
```

Arguments

fIdx Index of female genotype to pull

Return genotype-specific mating fitness

get_femalePop_Patch 49

```
get_femalePop_Patch Get female Population
```

Description

Return females (nGenotypes X nGenotypes matrix)

Usage

```
get_femalePop_Patch()
```

```
get_genotypesID_Network
```

Get genotypesID

Description

Return character vector of possible genotypes

Usage

```
get_genotypesID_Network()
```

```
{\tt get\_genotypesN\_Network}
```

Get genotypesN

Description

Return number of possible genotypes

Usage

```
get_genotypesN_Network()
```

get_malePop_Patch

Get male Population

Description

Return males (nGenotypes vector)

```
get_malePop_Patch()
```

get_muAd_Network

Get muAd

Description

Return adult mortality

Usage

```
get_muAd_Network()
```

get_muAq_Network

Get muAq

Description

 $Return\ larval\ mortality, see\ {\tt calcLarvalStageMortalityRate}$

Usage

```
get_muAq_Network()
```

get_nPatch_Network

Get nPatch

Description

Return number of patches

Usage

```
get_nPatch_Network()
```

get_omega_Network

Get omega

Description

Return genotype-specific multiplicative modifier of adult mortality

```
get_omega_Network()
```

get_patchReleases_Network

Get Patch Release Schedule

Description

Return the release schedule for a patch for male or female

Usage

```
get_patchReleases_Network(patch, sex = "M")
```

Arguments

patch Index of patch

sex Character in 'M', 'F', 'Egg', 'mF'

Description

Return genotype-specific sex ratio at emergence

Usage

```
get_phi_Network()
```

get_s_Network Gets

Description

Return genotype-specific fractional reduction(increase) in fertility

```
get_s_Network()
```

52 get_tNow_Network

get_tau_Network

Get Female Viability Mask (tau)

Description

Get Female Viability Mask (tau)

Usage

```
get_tau_Network(fG = NULL, mG = NULL, oG = NULL)
```

Arguments

fG	Number for which female genotype to get
mG	Number for which male genotype to get
oG	Number for which offspring genotype to get

Return matrix

get_timeAq_Network

Get timeAq

Description

Return duration of aquatic stages.

Usage

```
get_timeAq_Network(stage = NULL)
```

Arguments

stage

Character in 'E', 'L', 'P'; if NULL return total duration

get_tNow_Network

Get tNow

Description

Return current simulation time

```
get_tNow_Network()
```

get_xiF_Network 53

get_xiF_Network

Get xiF

Description

Return genotype-specific female pupatory success

Usage

```
get_xiF_Network()
```

get_xiM_Network

Get xiM

Description

Return genotype-specific male pupatory success

Usage

```
get_xiM_Network()
```

ggColUtility

Utility to Imitate ggplot2 Colors

Description

Sample at equally spaced intervals along the color wheel

Usage

```
ggColUtility(n, alpha = 0.75)
```

Arguments

n Number of colors alpha Transparency

54 MGDrivE

kernels

Kernels Parameters

Description

A named list containing maximum likelihood fitted parameter values from mosquito dispersal estimates.

Usage

data(kernels)

Format

named list with 5 elements:

lnorm_mean log mean of log-normal density
lnorm_sd log standard deviation of log-normal density
gamma_shape shape parameter of gamma density
gamma_sd rate parameter of gamma density
exp_rate rate parameter of exponential density

MGDrivE

MGDrivE: Mosquito Gene Drive Explorer

Description

MGDrivE: Mosquito Gene Drive Explorer

Introduction

Recent developments of CRISPR-Cas9 based homing endonuclease gene drive systems, for the suppression or replacement of mosquito populations, have generated much interest in their use for control of mosquito-borne diseases (such as dengue, malaria, Chikungunya and Zika). This is because genetic control of pathogen transmission may complement or even substitute traditional vector-control interventions, which have had limited success in bringing the spread of these diseases to a halt. Despite excitement for the use of gene drives for mosquito control, current modeling efforts have analyzed only a handful of these new approaches (usually studying just one per framework). Moreover, these models usually consider well-mixed populations with no explicit spatial dynamics. To this end, we are developing MGDrivE (Mosquito Gene DRIVe Explorer), in cooperation with the 'UCI Malaria Elimination Initiative', as a flexible modeling framework to evaluate a variety of drive systems in spatial networks of mosquito populations. This framework provides a reliable testbed to evaluate and optimize the efficacy of gene drive mosquito releases. What separates MGDrivE from other models is the incorporation of mathematical and computational mechanisms to simulate a wide array of inheritance-based technologies within the same, coherent set of equations. We do this

MGDrivE 55

by treating the population dynamics, genetic inheritance operations, and migration between habitats as separate processes coupled together through the use of mathematical tensor operations. This way we can conveniently swap inheritance patterns whilst still making use of the same set of population dynamics equations. This is a crucial advantage of our system, as it allows other research groups to test their ideas without developing new models and without the need to spend time adapting other frameworks to suit their needs.

Brief Description

MGDrivE is based on the idea that we can decouple the genotype inheritance process from the population dynamics equations. This allows the system to be treated and developed in three semi-independent modules that come together to form the system. The way this is done will be described later in this document but a reference diagram is shown here.

Previous Work

The original version of this model was based on work by (Deredec et al. 2011; Hancock and Godfray 2007) and adapted to accommodate CRISPR homing dynamics in a previous publication by our team (Marshall et al. 2017). As it was described, we extended this framework to be able to handle a variable number of genotypes, and migration across spatial scenarios. We accomplish this by adapting the equations to work in a tensor-oriented manner, where each genotype can have different processes affecting their particular strain (death rates, mating fitness, sex-ratio bias, et cetera).

Notation and Conventions

Before beginning the full description of the model we will define some of the conventions we followed for the notation of the written description of the system.

- Overlines are used to denote the dimension of a tensor.
- Subscript brackets are used to indicate an element in time. For example: $L_{[t-1]}$ is the larval population at time: t-1.
- Parentheses are used to indicate the parameter(s) of a function. For example: $\overline{O(T_e+T_l)}$ represents the function O evaluated with the parameter: T_e+T_l
- Matrices follow a 'row-first' indexing order (i: row, j: column)

In the case of one dimensional tensors, each slot represents a genotype of the population. For example, the male population is stored in the following way:

$$\overline{Am} = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ g_n \end{pmatrix}_i$$

All the processes that affect mosquitoes in a genotype-specific way are defined and stored in this way within the framework.

56 MGDrivE-Cube

There are two tensors of squared dimensionality in the model: the adult females matrix, and the genotype-specific male-mating ability $(\overline{\eta})$ In the case of the former the rows represent the females' genotype, whilst the columns represent the genotype of the male they mated with:

$$\overline{\overline{Af}} = \begin{pmatrix} g_{11} & g_{12} & g_{13} & \cdots & g_{1n} \\ g_{21} & g_{22} & g_{23} & \cdots & g_{2n} \\ g_{31} & g_{32} & g_{33} & \cdots & g_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & g_{n3} & \cdots & g_{nn} \end{pmatrix}_{ij}$$

The genotype-specific male mating ability, on the other hand, stores the females' genotype in the rows, and the male genotypes in the columns of the matrix.

References

Deredec A, Godfray HCJ, Burt A (2011). "Requirements for effective malaria control with homing endonuclease genes." *Proceedings of the National Academy of Sciences of the United States of America*, **108**(43), E874–80. ISSN 1091-6490, doi: 10.1073/pnas.1110717108, https://www.pnas.org/content/108/43/E874.

Hancock PA, Godfray HCJ (2007). "Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions." *Malaria journal*, **6**, 98. ISSN 1475-2875, doi: 10.1186/14752875698, https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-6-98.

Marshall J, Buchman A, C. HMS, Akbari OS (2017). "Overcoming evolved resistance to population-suppressing homing-based gene drives." *Nature Scientific Reports*, 1–46. ISSN 2045-2322, doi: 10.1038/s41598017027447, https://www.nature.com/articles/s41598-017-02744-7.

MGDrivE-Cube

MGDrivE: Inheritance Cube

Description

To model an arbitrary number of genotypes efficiently in the same mathematical framework, we use a 3-dimensional array structure (cube) where each axis represents the following information:

- x: female adult mate genotype
- y: male adult mate genotype
- z: proportion of the offspring that inherits a given genotype (layer)

Details

The cube structure gives us the flexibility to apply tensor operations to the elements within our equations, so that we can calculate the stratified population dynamics rapidly; and within a readable, flexible computational framework. This becomes apparent when we define the equation we use for the computation of eggs laid at any given point in time:

MGDrivE-Cube 57

$$\overline{O(T_x)} = \sum_{j=1}^{n} \left(\left(\left(\beta * \overline{s} * \overline{\overline{Af_{[t-T_x]}}} \right) * \overline{\overline{\overline{lh}}} \right) * \Lambda \right)_{ij}^{\top}$$

In this equation, the matrix containing the number of mated adult females (\overline{Af}) is multiplied element-wise with each one of the layers containing the eggs genotypes proportions expected from this cross $(\overline{\overline{Ih}})$. The resulting matrix is then multiplied by a binary 'viability mask' (Λ) that filters out female-parent to offspring genetic combinations that are not viable due to biological impediments (such as cytoplasmic incompatibility). The summation of the transposed resulting matrix returns us the total fraction of eggs resulting from all the male to female genotype crosses $(O(T_x))$.

Note: For inheritance operations to be consistent within the framework the summation of each element in the z-axis (this is, the proportions of each one of the offspring's genotypes) must be equal to one.

Drive-specific Cubes

An inheritance cube in an array object that specifies inheritance probabilities (offspring genotype probability) stratified by male and female parent genotypes. MGDrivE provides the following cubes to model different gene drive systems:

- cubeOneLocusTA: 1 Locus Maternal-Toxin/Zygotic-Antidote System
- cubeTwoLocusTA: 2 Locus Maternal-Toxin/Zygotic-Antidote System
- cubeClvR: 1 Locus Cleave and Rescue (ClvR)
- cubeClvR2: 2 Locus Cleave and Rescue (ClvR)
- cubeHoming1RA: Homing Drive with 1 Resistance Allele
- cubeHomingDrive: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) with 2 Resistance Allele
- cubeECHACR: ECHACR (uh....)
- cubeECHACRX: ECHACR, X-Linked
- cubeKillerRescue: Killer-Rescue System
- cubeMEDEA: MEDEA (Maternal Effect Dominant Embryonic Arrest)
- cubeReciprocalTranslocations: Reciprocal Translocation
- cubeRIDL: RIDL (Release of Insects with Dominant Lethality)
- cubeMendelian: Mendelian
- cubeSplitDrive: Split CRISPR drive
- cubeTGD: trans-complementing Gene Drive
- cubeTGDX: trans-complementing Gene Drive, X-Linked
- cubeWolbachia: Wolbachia

Functions for Cubes

We provide one auxiliary function to operate on cube objects.

cube2csv: Export slices of a cube to .csv format

MGDrivE-Model

MGDrivE-Model

MGDrivE: Model's Mathematical Description

Description

The original version of this model was based on work by (Deredec et al. 2011; Hancock and Godfray 2007) and adapted to accommodate CRISPR homing dynamics in a previous publication by our team (Marshall et al. 2017). As it was described, we extended this framework to be able to handle a variable number of genotypes, and migration across spatial scenarios. We did this by adapting the equations to work in a tensor-oriented manner, where each genotype can have different processes affecting their particular strain (death rates, mating fitness, sex-ratio bias, et cetera).

Inheritance Cube and Oviposition

To allow the extension of the framework to an arbitrary number of genotypes, we transformed traditional inheritance matrices into inheritance cubes, where each of the axis represents the following information:

- x: female adult mate genotype
- y: male adult mate genotype
- z: proportion of the offspring that inherits a given genotype (slice)

The 'cube' structure gives us the flexibility to apply tensor operations to the elements within our equations, so that we can calculate the stratified population dynamics rapidly; and within a readable, flexible computational framework. This becomes apparent when we define the equation we use for the computation of eggs laid at any given point in time:

$$\overline{O(T_x)} = \sum_{j=1}^n \left(\left((\beta * \overline{s} * \overline{\overline{A}f_{[t-T_x]}}) * \overline{\overline{\overline{Ih}}} \right) * \Lambda \right)_{ij}^{\top}$$

In this equation, the matrix containing the number of mated adult females (\overline{Af}) is multiplied element-wise with each one of the slices containing the eggs genotypes proportions expected from this cross $(\overline{\overline{lh}})$. The resulting matrix is then multiplied by a binary 'viability mask' (Λ) that filters out female-parent to offspring genetic combinations that are not viable due to biological impediments (such as cytoplasmic incompatibility). The summation of the transposed resulting matrix returns us the total fraction of eggs resulting from all the male to female genotype crosses $(\overline{O(T_x)})$.

Note: For inheritance operations to be consistent within the framework, the summation of each element in the 'z' axis (this is, the proportions of each one of the offspring's genotypes) must be equal to one.

Population Dynamics

During the three aquatic stages, a density-independent mortality process takes place:

$$\theta_{st} = (1 - \mu_{st})^{T_{st}}$$

MGDrivE-Model 59

Along with a density dependent process dependent on the number of larvae in the environment:

$$F(L[t]) = \left(\frac{\alpha}{\alpha + \sum \overline{L[t]}}\right)^{1/T_l}$$

where α represents the strength of the density-dependent process. This parameter is calculated with:

$$\alpha = \left(\frac{1/2 * \beta * \theta_e * Ad_{eq}}{R_m - 1}\right) * \left(\frac{1 - (\theta_l / R_m)}{1 - (\theta_l / R_m)^{1/T_l}}\right)$$

in which β is the species' fertility in the absence of gene-drives, Ad_{eq} is the adult mosquito population equilibrium size, and R_m is the population growth in the absence of density-dependent mortality. This population growth is calculated with the average generation time (g), the adult mortality rate (μ_{ad}) , and the daily population growth rate (r_m) :

$$g = T_e + T_l + T_p + \frac{1}{\mu_{ad}} R_m = (r_m)^g$$

Larval Stages: The computation of the larval stage in the population is crucial to the model because the density dependent processes necessary for equilibrium trajectories to be calculated occur here. This calculation is performed with the following equation:

$$D(\theta_{l}, T_{x}) = \begin{array}{c} \theta'_{l[0]} = \theta_{l} & i = 0\\ \theta'_{l[i+1]} = \theta'_{l[i]} * F(\overline{L_{[t-i-T_{x}]}}) & i \leq T_{l} \end{array}$$

In addition to this, we need the larval mortality (μ_l) :

$$\mu_l = 1 - \left(\frac{R_m * \mu_{ad}}{1/2 * \beta * (1 - \mu_m)}\right)^{\frac{1}{T_e + T_l + T_p}}$$

With these mortality processes, we are now able to calculate the larval population:

$$\overline{L_{[t]}} = \overline{L_{[t-1]}} * (1 - \mu_l) * F(\overline{L_{[t-1]}}) + \overline{O(T_e)} * \theta_e - \overline{O(T_e + T_l)} * \theta_e * D(\theta_l, 0)$$

where the first term accounts for larvae surviving one day to the other; the second term accounts for the eggs that have hatched within the same period of time; and the last term computes the number of larvae that have transformed into pupae.

Adult Stages: We are ultimately interested in calculating how many adults of each genotype exist at any given point in time. For this, we first calculate the number of eggs that are laid and survive to the adult stages with the equation:

$$\overline{E'} = \overline{O(T_e + T_l + T_p)} \left(\overline{\xi_m} * (\theta_e * \theta_p) * (1 - \mu_{ad}) * D(\theta_l, T_p) \right)$$

With this information we can calculate the current number of male adults in the population by computing the following equation:

$$\overline{Am_{[t]}} = \overline{Am_{[t-1]}} * (1 - \mu_{ad}) * \overline{\omega_m} + (1 - \overline{\phi}) * \overline{E'} + \overline{\nu m_{[t-1]}}$$

in which the first term represents the number of males surviving from one day to the next; the second one, the fraction of males that survive to adulthood $(\overline{E'})$ and emerge as males $(1-\phi)$; the last one is used to add males into the population as part of gene-drive release campaigns.

Female adult populations are calculated in a similar way:

$$\overline{\overline{Af_{[t]}}} = \overline{\overline{Af_{[t-1]}}} * (1 - \mu_{ad}) * \overline{\omega_f} + \left(\overline{\phi} * \overline{E'} + \overline{\nu f_{[t-1]}}\right)^\top * \left(\frac{\overline{\overline{\eta}} * \overline{Am_{[t-1]}}}{\sum \overline{Am_{[t-1]}}}\right)$$

where we first compute the surviving female adults from one day to the next; and then we calculate the mating composition of the female fraction emerging from pupa stage. To do this, we obtain the surviving fraction of eggs that survive to adulthood $(\overline{E'})$ and emerge as females (ϕ) , we then add the new females added as a result of gene-drive releases $(\overline{\nu}f_{[t-1]})$. After doing this, we calculate the proportion of males that are allocated to each female genotype, taking into account their respective mating fitnesses $(\overline{\eta})$ so that we can introduce the new adult females into the population pool.

Gene Drive Releases and Effects

As it was briefly mentioned before, we are including the option to release both male and/or female individuals into the populations. Another important t hing to emphasize is that we allow flexible releases sizes and schedules. Our] model handles releases internally as lists of populations compositions so, it is possible to have releases performed at irregular intervals and with different numbers of mosquito genetic compositions as long as no new genotypes are introduced (which have not been previously defined in the inheritance cube).

$$\overline{\nu} = \left\{ \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ g_n \end{pmatrix}_{t=1}, \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ g_n \end{pmatrix}_{t=2}, \dots, \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ g_n \end{pmatrix}_{t=x} \right\}$$

So far, however, we have not described the way in which the effects of these gene-drives are included into the mosquito populations dynamics. This is done through the use of various modifiers included in the equations:

- $\overline{\omega}$: Relative increase in mortality (zero being full mortality effects and one no mortality effect)
- $\overline{\phi}$: Relative shift in the sex of the pupating mosquitoes (zero biases the sex ratio towards males, whilst 1 biases the ratio towards females).
- \overline{\pi}: Standardized mating fitness (zero being complete fitness ineptitude, and one being regular mating skills).
- $\overline{\beta}$: Fecundity (average number of eggs laid).
- $\overline{\xi}$: Pupation success (zero being full mortality and one full pupation success).

Migration

To simulate migration within our framework we are considering patches (or nodes) of fully-mixed populations in a network structure. This allows us to handle mosquito movement across spatially-distributed populations with a transitions matrix, which is calculated with the tensor outer product

MGDrivE-Model 61

of the genotypes populations tensors and the transitions matrix of the network as follows:

$$\overline{Am_{(t)}^i} = \sum \overline{A_m^j} \otimes \overline{\overline{\tau m_{[t-1]}}} \overline{\overline{Af_{(t)}^i}} = \sum \overline{\overline{A_f^j}} \otimes \overline{\overline{\tau f_{[t-1]}}}$$

In these equations the new population of the patch i is calculated by summing the migrating mosquitoes of all the j patches across the network defined by the transitions matrix τ , which stores the mosquito migration probabilities from patch to patch. It is worth noting that the migration probabilities matrices can be different for males and females; and that there's no inherent need for them to be static (the migration probabilities may vary over time to accommodate wind changes due to seasonality).

Parameters

This table compiles all the parameters required to run MGDrivE clustered in six categories:

- Life Stages: These deal with the structure of mosquito population.
- Bionomics: This set of parameters is related to the behavior of the specific mosquito species being modeled.
- Gene Drive: Genotype-specific vectors of parameters that affect how each gene-drive modifies the responses of populations to them.
- Releases: List of vectors that control the release of genetically-modified mosquitoes.
- Population: General mosquito-population parameters that control environmentally-determined variables.
- Network: Related to migration between nodes of population units

Stochasticity

MGDrivE allows stochasticity to be included in the dynamics of various processes; in an effort to simulate processes that affect various stages of mosquitoes lives. In the next section, we will describe all the stochastic processes that can be activated in the program. It should be noted that all of these can be turned on and off independently from one another as required by the researcher.

Mosquito Biology: Oviposition

Stochastic egg laying by female/male pairs is separated into two steps: calculating the number of eggs laid by the females and then distributing laid eggs according to their genotypes. The number of eggs laid follows a Poisson distribution conditioned on the number of female/male pairs and the fertility of each female.

$$Poisson(\lambda = numFemales * Fertility)$$

Multinomial sampling, conditioned on the number of offspring and the relative viability of each genotype, determines the genotypes of the offspring.

$$Multinomial (numOffspring, p_1, p_2 \dots p_b) = \frac{numOffspring!}{p_1! p_2 \dots p_n} p_1^{n_1} p_2^{n_2} \dots p_n^{n_n}$$

Sex Determination

62 moveMatAll2

Sex of the offspring is determined by multinomial sampling. This is conditioned on the number of eggs that live to hatching and a probability of being female, allowing the user to design systems that skew the sex ratio of the offspring through reproductive mechanisms.

$$Multinomial(numHatchingEggs, p_{female}, p_{female})$$

Mating Stochastic mating is determined by multinomial sampling conditioned on the number of males and their fitness. It is assumed that females mate only once in their life, therefore each female will sample from the available males and be done, while the males are free to potentially mate with multiple females. The males' ability to mate is modulated with a fitness term, thereby allowing some genotypes to be less fit than others (as seen often with lab releases).

$$Multinomial(numFemales, p_1f_1, p_2f_2, \dots p_nf_n)$$

Hatching

Other Stochastic Processes All remaining stochastic processes (larval survival, hatching, pupating, surviving to adult hood) are determined by multinomial sampling conditioned on factors affecting the current life stage. These factors are determined empirically from mosquito population data.

Migration: Variance of stochastic movement (not used in diffusion model of migration).

References

Deredec A, Godfray HCJ, Burt A (2011). "Requirements for effective malaria control with homing endonuclease genes." *Proceedings of the National Academy of Sciences of the United States of America*, **108**(43), E874–80. ISSN 1091-6490, doi: 10.1073/pnas.1110717108, https://www.pnas.org/content/108/43/E874.

Hancock PA, Godfray HCJ (2007). "Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions." *Malaria journal*, **6**, 98. ISSN 1475-2875, doi: 10.1186/14752875698, https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-6-98.

Marshall J, Buchman A, C. HMS, Akbari OS (2017). "Overcoming evolved resistance to population-suppressing homing-based gene drives." *Nature Scientific Reports*, 1–46. ISSN 2045-2322, doi: 10.1038/s41598017027447, https://www.nature.com/articles/s41598-017-02744-7.

moveMatAll2 Movement Matrix: All 2

Description

A movement matrix for simulation with 3 patches.

Usage

data(moveMatAll2)

moveMatCascade3 63

Format

A matrix with 3 rows and 3 columns:

Patches 1 and 3 are sources for patch 2, which is a sink.

moveMatCascade3

Movement Matrix: Cascade 3

Description

A movement matrix for simulation with 3 patches.

Usage

data(moveMatCascade3)

Format

A matrix with 3 rows and 3 columns:

Mosquitoes in patch 1 have equal probability to stay or move to 2; mosquitoes in patch 2 have equal probability to stay or move to 3; mosquitoes in patch 3 stay there.

moveMatDiag

Movement Matrix: Diagonal

Description

A movement matrix for simulation with 3 patches.

Usage

data(moveMatDiag)

Format

A matrix with 3 rows and 3 columns:

3 independent patches.

64 moveMatDie

moveMatDiagOneCity

Movement Matrix: Diagonal One City

Description

A movement matrix for simulation with 1 patch.

Usage

```
data(moveMatDiagOneCity)
```

Format

A matrix with 1 rows and 1 columns:

A 1 by 1 matrix with entry 1.

moveMatDie

Movement Matrix: Die

Description

A movement matrix for simulation with 3 patches.

Usage

data(moveMatDie)

Format

A matrix with 3 rows and 3 columns:

All entries of matrix are 0 for testing that all mosquitoes will be killed.

moveMatIndependent3 65

moveMatIndependent3

Movement Matrix: Independent 3

Description

A movement matrix for simulation with 3 patches.

Usage

data(moveMatIndependent3)

Format

A matrix with 3 rows and 3 columns:

Mosquitoes in patch 1 stay with probability 0.975, move to patch 2 with probability 0.025, mosquitoes in patch 2 and 3 stay in their patches.

 ${\tt moveMatMixedSpil}$

Movement Matrix: Mixed Spill

Description

A movement matrix for simulation with 3 patches.

Usage

data(moveMatMixedSpil)

Format

A matrix with 3 rows and 3 columns:

Mosquitoes in patch 1 stay with probability 0.999, move to patch 2 with probability 0.001, mosquitoes in patch 2 and 3 stay in their patches.

66 moveMatTriDiagonal

moveMatTaleOfTwoCities

Movement Matrix: Tale of Two Cities

Description

A movement matrix for simulation with 2 patches.

Usage

```
data(moveMatTaleOfTwoCities)
```

Format

A matrix with 2 rows and 2 columns:

Mosquitoes do not move between the two patches.

moveMatTriDiagonal Movemen

Movement Matrix: Tri-diagonal

Description

A movement matrix for simulation with 12 patches.

Usage

```
data(moveMatTriDiagonal)
```

Format

A matrix with 12 rows and 12 columns:

Tri-diagonal matrix with approximately 0.985 probability on diagonal and rest of probability mass on k-1 and k+1 off-diagonal elements.

moveMatTriple 67

moveMatTriple

Movement Matrix: Triple

Description

A movement matrix for simulation with 3 patches.

Usage

```
data(moveMatTriple)
```

Format

A matrix with 3 rows and 3 columns:

All entries of matrix are 1 for testing that mosquitoes will be produced.

multRun_Network

Run Simulation

Description

Run multiple simulations on this network

Usage

```
multRun_Network(verbose = TRUE)
```

Arguments

verbose

Chatty? Default is TRUE

Network

Network Class Definition

Description

A Network class object stores all the information for a simulation on a defined landscape.

Format

An R6Class generator object

68 Network

Constructor

- params: see parameterizeMGDrivE
- driveCube: an inheritance cube
- patchReleases: see basicRepeatedReleases for examples on how to set up release schedules
- migrationMale: a stochastic matrix whose dimensions conform to the number of patches
- migrationFemale: a stochastic matrix whose dimensions conform to the number of patches
- migrationBatch: a list of batch migration parameters. SeebasicBatchMigration
- · directory: character string of output directory
- verbose: Chatty? Default is TRUE

Methods

- get_timeAq: see get_timeAq_Network
- get_beta: see get_beta_Network
- get_muAd: see get_muAd_Network
- get_muAq: see get_muAq_Network
- get_alpha: see get_alpha_Network
- get_drivecubeindex: see get_drivecubeindex_Network
- get_tau: see get_tau_Network
- get_genotypesID: see get_genotypesID_Network
- get_genotypesN: see get_genotypesN_Network
- get_eta: see get_eta_Network
- get_phi: see get_phi_Network
- get_omega: see get_omega_Network
- get_xiF: see get_xiF_Network
- get_xiM: see get_xiM_Network
- get_s: see get_s_Network
- get_nPatch: see get_nPatch_Network
- get_conADM: see get_conM_Network
- get_conADF: see get_conF_Network
- get_tNow: see get_tNow_Network
- get_patchReleases: see get_patchReleases_Network
- oneDay_Migration: see oneDay_Migration_Deterministic_Network or see oneDay_Migration_Stochastic_Netw
- reset: see reset_Network
- oneDay: see oneDay_Network
- oneRun: see oneRun_Network
- multRun: see multRun_Network

Network 69

Fields

- parameters: see parameterizeMGDrivE
- patches: a list of Patch objects
- nPatch: number of patches
- simTime: maximum time of simulation
- sampTime: how often to write output, tNow %% sampTime
- driveCube: an inheritance cube
- tNow: current time of simulation (time starts at 2 because time 1 is the initial equilibrium state)
- runID: an identifier for the current simulation run, useful for Monte Carlo simulation
- directory: a character string of where to store output
- conADM: a connection to write male population dynamics out to
- conADF: a connection to write female population dynamics out to
- migrationMale: a stochastic matrix whose dimensions conform to the number of patches
- migrationFemale: a stochastic matrix whose dimensions conform to the number of patches
- migrationBatch: list of items for batch migration in stochastic sim.
- mMoveMat: holder object for male migration
- fMoveArray: holder object for female migration
- patchReleases: a list of release schedules for each patch

Examples

```
## Not run:
# There are no simple examples for this, so looking at the vignettes would be
# most useful.

# Complete manual with examples, but none explored in depth.
vignette("MGDrivE-Examples", package = "MGDrivE")

# One example, explored in great detail. This is probably more helpful.
vignette("MGDrivE-Run", package = "MGDrivE")

## End(Not run)
```

normalise

Normalise a Numeric Vector

Description

Normalise a numeric vector to sum to one

Usage

normalise(vector)

Arguments

vector

Numeric vector

 ${\tt oneDay_adultDeath_deterministic_Patch}$

Deterministic Adult Survival

Description

Daily adult survival is calculated according to

$$\overline{\overline{Af_{[t-1]}}} * (1 - \mu_{ad}) * \overline{\omega_{m/f}}$$

, where μ_{ad} corresponds to adult mortality rate and $\overline{\omega_{m/f}}$ corresponds to genotype-specific male/female mortality effects.

Usage

oneDay_adultDeath_deterministic_Patch()

Description

Daily adult survival is sampled from a binomial distribution where survival probability is given by

$$(1 - \mu_{ad}) * \overline{\omega_m/f}$$

. μ_{ad} corresponds to adult mortality rate and $\overline{\omega_m/f}$ corresponds to genotype-specific mortality effects.

Usage

oneDay_adultDeath_stochastic_Patch()

oneDay_eggDM_deterministic_Patch

Deterministic Egg Death and Pupation

Description

Daily egg survival is calculated according to

$$\overline{E_{[t-1]}}*(1-\mu_{aq})$$

, where μ_{aq} corresponds to daily non-density-dependent aquatic mortality. Eggs transition into larvae at the end of T_e .

See parameterizeMGDrivE for how these parameters are derived.

Usage

oneDay_eggDM_deterministic_Patch()

oneDay_eggDM_stochastic_Patch

Stochastic Egg Death and Pupation

Description

Daily egg survival is sampled from a binomial distribution, where survival probability is given by $1 - \mu_{aq}$. μ_{aq} corresponds to daily non-density-dependent aquatic mortality.

Eggs transition into larvae at the end of T_e .

See parameterizeMGDrivE for how these parameters are derived.

Usage

```
oneDay_eggDM_stochastic_Patch()
```

oneDay_eggReleases_Patch

Release Eggs in a Patch

Description

Based on this patch's release schedule, generateReleaseVector, this function handles daily egg releases.

```
oneDay_eggReleases_Patch()
```

oneDay_initOutput_Patch

Initialize Output from Focal Patch

Description

Writes output to the text connections specified in the enclosing Network.

Usage

oneDay_initOutput_Patch()

oneDay_larvaDM_deterministic_Patch

Deterministic Larva Death and Pupation

Description

Calculate the number of larvae surviving from day to day, given by:

$$\overline{L_{[t-1]}} * (1 - \mu_{aq}) * F(L)$$

. F(L), the density dependence is calculated as

$$F(L[t]) = \left(\frac{\alpha}{\alpha + \sum \overline{L[t]}}\right)^{1/T_l}$$

. See parameterizeMGDrivE for how these parameters are derived. Pupation has no parameters, so the final day of larvae naturally enter the pupal state.

Usage

oneDay_larvaDM_deterministic_Patch()

oneDay_larvaDM_stochastic_Patch

Stochastic Larva Death and Pupation

Description

The daily number of larvae surviving is drawn from a binomial distribution, where survival probability is given by

$$(1 - \mu_{aq}) * F(L)$$

. F(L), the density dependence is calculated as

$$F(L[t]) = \left(\frac{\alpha}{\alpha + \sum \overline{L[t]}}\right)^{1/T_l}$$

. See parameterizeMGDrivE for how these parameters are derived. Pupation has no parameters, so the final day of larvae naturally enter the pupal state.

Usage

oneDay_larvaDM_stochastic_Patch()

Description

Mating is calculated as the outer product of newly emerging adult females and all-current adult males, modulated by $\overline{\eta}$, the genotype-specific male mating fitness. $\overline{\eta}$ corresponds to all female (rows) and male (columns) genotypes, to perform any type of assortative mating.

If there are no adult males, the unmated females experience one day of death, calculated as

$$\overline{Af_t} * (1 - \mu_{ad}) * \overline{\omega_f}$$

, and remain unmated until tomorrow.

Usage

oneDay_mating_deterministic_Patch()

Description

Mating for each newly emerging adult female genotype is sampled from a multinomial distribution with probabilities equal to the adult male population vector multiplied by $\overline{\eta}$, the genotype-specific male mating fitness. $\overline{\eta}$ corresponds to all female (rows) and male (columns) genotypes, to perform any type of assortative mating.

If there are no adult males, the unmated females experience one day of death, sampled from a binomial distribution parameterized by

$$(1-\mu_{ad})*\overline{\omega_f}$$

, and remain unmated until tomorrow.

Usage

oneDay_mating_stochastic_Patch()

oneDay_migrationIn_Patch

Inbound Migration

Description

Accumulate all inbound migration to this patch.

Usage

oneDay_migrationIn_Patch(maleIn, femaleIn)

Arguments

maleIn Vector of inbound migration femaleIn Matrix of inbound migration

oneDay_Migration_Deterministic_Network

Deterministic Inter-Patch Migration

Description

Deterministic model of interpatch migration from each patch. popFemale/popMale is retrieved from each patch using get_femalePop_Patch/get_malePop_Patch. Migration location is determined from the supplied matrices, private\$migrationFemale or private\$migrationMale. Final migration status is held in private\$fMoveArray or private\$mMoveMat.

Batch migration is not used in the deterministic model.

Usage

oneDay_Migration_Deterministic_Network()

Details

This function handles outbound and inbound migration. See MGDrivE-Model, 'Migration' section for more details on how inter-patch migration is handled.

oneDay_Migration_Stochastic_Network

Stochastic Inter-Patch Migration

Description

Stochastic model of interpatch migration from each patch. popFemale/popMale is retrieved from each patch using get_femalePop_Patch/get_malePop_Patch. Migration location is determined from the supplied matrices, private\$migrationFemale or private\$migrationMale. Migration is modeled as a Multinomial process parameterized by migration location probabilities corresponding to each patch. Movement is sampled from rmultinom.

Batch migration begins as a rbinom sampled from private\$migrationBatch\$batchProbs.If there is batch migration, the location of migration is sampled uniformly (see sample), parameterized by private\$migrationBatch\$moveProbs. The amount of each sex that migrations is sampled from rbinom, parameterized by private\$migrationBatch\$sexProbs.

Usage

oneDay_Migration_Stochastic_Network()

Details

This function handles outbound and inbound migration. See MGDrivE-Model, 'Migration' section for more details on how inter-patch migration is handled.

oneDay_Network

Run a Single Day on a Network

Description

Runs a single day of simulation on a Network object, handling population dynamics, migration, population update, and output.

Usage

oneDay_Network()

 ${\tt oneDay_oviposit_deterministic_Patch}$

Deterministic Oviposition

Description

Calculate the number of eggs oviposited by female mosquitoes following:

$$\overline{O(T_x)} = \sum_{j=1}^n \left(\left(\left(\beta * \overline{s} * \overline{\overline{Af_{[t]}}} \right) * \overline{\overline{lh}} \right) * \Lambda \right)_{ij}^{\top}$$

Usage

oneDay_oviposit_deterministic_Patch()

Description

Calculate the number of eggs oviposited by female mosquitoes following:

$$\overline{O(T_x)} = \sum_{j=1}^{n} \left(\left(\beta * \overline{s} * \overline{\overline{Af_{[t]}}} \right) * \overline{\overline{lh}} \right) * \Lambda \right)_{ij}^{\top}$$

The deterministic result for number of eggs is used as the mean of a Poisson-distributed number of actual eggs oviposited.

Usage

oneDay_oviposit_stochastic_Patch()

oneDay_PopDynamics_Patch

Daily Population Dynamics for a Patch

Description

Run population dynamics (including migration) for this patch.

Performed in this order, see the following for each function:

 $\label{lem:adultDeath} Adult Death: one Day_adultDeath_deterministic_Patch or one Day_adultDeath_stochastic_Patch Pupa Death/Maturation: one Day_pupa DM_deterministic_Patch or one Day_pupa DM_stochastic_Patch Larva Death/Maturation: one Day_larva DM_deterministic_Patch or one Day_larva DM_stochastic_Patch or one Day_larva DM_stochastic_Patc$

Egg Death/Maturation: oneDay_eggDM_deterministic_Patch or oneDay_eggDM_stochastic_Patch
Pupation: oneDay_pupation_deterministic_Patch or oneDay_pupation_stochastic_Patch

Releases: oneDay_releases_Patch

 ${\bf Mating:}\ one {\tt Day_mating_deterministic_Patch}\ or\ one {\tt Day_mating_stochastic_Patch}$

Lay Eggs: oneDay_oviposit_deterministic_Patch or oneDay_oviposit_stochastic_Patch

Release Eggs: oneDay_eggReleases_Patch

Usage

oneDay_PopDynamics_Patch()

oneDay_pupaDM_deterministic_Patch

Deterministic Pupa Death and Pupation

Description

Daily pupa survival is calculated according to

$$\overline{P_{[t-1]}} * (1 - \mu_{aq})$$

, where μ_{aq} corresponds to daily non-density-dependent aquatic mortality. See parameterizeMGDrivE for how these parameters are derived.

Usage

oneDay_pupaDM_deterministic_Patch()

oneDay_pupaDM_stochastic_Patch

Stochastic Pupa Death and Pupation

Description

Daily pupa survival is sampled from a binomial distribution, where survival probability is given by

$$1-\mu_{aq}$$

. μ_{aq} corresponds to daily non-density-dependent aquatic mortality. See parameterizeMGDrivE for how these parameters are derived.

Usage

oneDay_pupaDM_stochastic_Patch()

oneDay_pupation_deterministic_Patch

Deterministic Pupation

Description

Pupa first undergo one extra day of survival, calculated as

$$\overline{P_{[t-1]}}*(1-\mu_{ad})$$

. This is an artifact of the conversion from continuous to discrete time (as mentioned in the original Hancock paper this model is derived from).

Then, pupation into adult males is calculated as

$$(1-\overline{\phi})*\overline{P_{[t]}}$$

and into adult females as

$$\overline{\phi}*\overline{P_{[t]}}$$

Usage

oneDay_pupation_deterministic_Patch()

Description

Pupa first undergo one extra day of survival, calculated as a binomial over

$$\overline{P_{[t-1]}} * (1 - \mu_{ad})$$

. This is an artifact of the conversion from continuous to discrete time (as mentioned in the original Hancock paper this model is derived from).

Then, pupation is sampled from a binomial, where $(1 - \overline{\phi})$ is the genotype-specific probability of becoming male, and $\overline{\phi}$ is the genotype-specific of becoming female.

Usage

oneDay_pupation_stochastic_Patch()

oneDay_releases_Patch Release Male/Female/Mated-Female Mosquitoes in a Patch

Description

Based on this patch's release schedule, generateReleaseVector, this function handles daily releases.

Usage

oneDay_releases_Patch()

oneDay_writeOutput_Patch

Write Output from Focal Patch

Description

Writes output to the text connections specified in the enclosing Network.

Usage

oneDay_writeOutput_Patch()

oneRun_Network

Run Simulation

Description

Run a single simulation on this network.

Usage

```
oneRun_Network(verbose = TRUE)
```

Arguments

verbose

Chatty? Default is TRUE

parameterizeMGDrivE

parameterizeMGDrivE

Description

Generate parameters for simulation on a Network. Parameters include: average generation time g, population growth rate R_m , aquatic mortality μ_{Aq} , and aquatic survival θ_{Aq} , which are shared between patches and calculated by calcAverageGenerationTime, calcPopulationGrowthRate, and calcLarvalStageMortalityRate.

Patch-specific parameters α and L_{eq} are calculated for each patch by calcDensityDependentDeathRate and calcLarvalPopEquilibrium.

Usage

```
parameterizeMGDrivE(
  runID = 1L,
  nPatch,
  simTime,
  sampTime = 1L,
  tEgg = 1L,
  tLarva = 14L,
  tPupa = 1L,
  beta = 32,
  muAd = 0.123,
  popGrowth = 1.096,
  AdPopEQ,
  LarPopRatio,
  AdPopRatio_F,
  AdPopRatio_M,
  inheritanceCube
)
```

Patch 81

Arguments

runID Begin counting runs with this set of parameters from this value

nPatch Number of Patch

simTime Maximum time to run simulation

sampTime Times to sample, used as tNow %% sampTime, default is every day

tEgg Length of egg stage

tLarva Length of larval instar stage

tPupa Length of pupal stage

beta Female egg batch size of wild-type

muAd Wild-type daily adult mortality (1/muAd is average wild-type lifespan)

popGrowth Daily population growth rate (used to calculate equilibrium)

AdPopEQ Single number or vector of adult population size at equilibrium (single number

implies all patches have the same population)

LarPopRatio May be empty; if not, a vector gives the wildtype gene frequencies among lar-

val stages at the beginning of simulation or a matrix provides different initial frequencies for each patch (every row is a different patch, must have nrow =

nPatch)

AdPopRatio_F May be empty; if not, a vector gives the wildtype gene frequencies among adult

females at the beginning of simulation or a matrix provides different initial frequencies for each patch (every row is a different patch, must have nrow = nPatch)

AdPopRatio_M May be empty; if not, a vector gives the wildtype gene frequencies among adult

males at the beginning of simulation or a matrix provides different initial frequencies for each patch (every row is a different patch, must have nrow = nPatch)

inheritanceCube

Inheritance cube to check/set population ratios at the beginning of the simulation

Examples

Patch Class Definition

Description

A Patch is a single well-mixed population that is the smallest unit of simulation for MGDrivE.

Format

An R6Class generator object

82 Patch

Constructor

- patchID: integer ID of this patch
- genotypesID: character vector of genotypes
- timeAq: integer vector of length 3 specifying the length of each aquatic stage
- numPatches: integer, total number of patches in this simulation
- adultEQ: integer, total adult population in this patch for the duration of the simulation
- larvalEQ: integer, total larval population in this patch for the duration of the simulation
- muAq: double vector, length 3, daily death rate for each aquatic stage
- alpha: double, density-dependent centering parameter, see parameterizeMGDrivE
- adultRatioF: named double vector, distribution of adult female genotypes, see parameterizeMGDrivE
- adultRatioM: named double vector, distribution of adult male genotypes, see parameterizeMGDrivE
- larvalRatio: named double vector, distribution of all aquatic genotypes, see parameterizeMGDrivE
- eggReleases: egg release schedule for this patch, see basicRepeatedReleases
- maleReleases: male release schedule for this patch, see basicRepeatedReleases
- femaleReleases: female release schedule for this patch, see basicRepeatedReleases
- matedFemaleReleases: mated females release schedule for this patch, see basicRepeatedReleases

Methods

- set NetworkPointer: see set_NetworkPointer_Patch
- get_femalePopulation: see get_femalePop_Patch
- get_malePopulation: see get_malePop_Patch
- initialPopulation: see set_initialPopulation_Patch
- setPopulation: see set_population_deterministic_Patch or set_population_stochastic_Patch
- reset: see reset_Patch
- oneDay_initOutput: see oneDay_initOutput_Patch
- oneDay writeOutput: see oneDay_writeOutput_Patch
- oneDay_migrationIn: see oneDay_migrationIn_Patch
- oneDay_PopDynamics: see oneDay_PopDynamics_Patch
- oneDay_adultD: see oneDay_adultDeath_deterministic_Patch or oneDay_adultDeath_stochastic_Patch
- oneDay_pupaDM: see oneDay_pupaDM_deterministic_Patch or oneDay_pupaDM_stochastic_Patch
- oneDay_larvaDM: see oneDay_larvaDM_deterministic_Patch or oneDay_larvaDM_stochastic_Patch
- oneDay_eggDM: see oneDay_eggDM_deterministic_Patch or oneDay_eggDM_stochastic_Patch
- oneDay_pupation: see oneDay_pupation_deterministic_Patch or oneDay_pupation_stochastic_Patch
- oneDay_releases: see oneDay_releases_Patch
- oneDay_releaseEggs: see oneDay_eggReleases_Patch
- oneDay_mating: see oneDay_mating_deterministic_Patch or oneDay_mating_stochastic_Patch
- oneDay_layEggs: see oneDay_oviposit_deterministic_Patch or oneDay_oviposit_stochastic_Patch

plotMGDrivEMult 83

Fields

- patchID: integer ID of this patch
- popAquatic: matrix, nGenotype x sum(timeAquatic), holding all eggs, larva, and pupa
- popMale: vector, nGenotype x 1, holds adult males
- popFemale: matrix, nGenotype x nGenotype, holds mated adult females
- popHolder: vector, nGenotype x 1, temporary population storage
- popPupSex: vector, nGenotype x 1, used in stochastic pupation as another temporary popula-
- popUnmated: vector, nGenotype x 1, holds unmated females
- popAquatict0: matrix, nGenotype x sum(timeAquatic), holding all eggs, larva, and pupa for reset, see reset_Patch
- popMalet0: vector, nGenotype x 1, holds adult males for reset see reset_Patch
- popFemalet0: matrix, nGenotype x nGenotype, holds mated adult females for reset see reset_Patch
- eggReleases: list of egg releases for this patch. See oneDay_eggReleases_Patch
- maleReleases: list of adult male releases for this patch. See oneDay_releases_Patch
- femaleReleases: list of adult female releases for this patch. See oneDay_releases_Patch
- matedFemaleReleases: list of mated adult female releases for this patch. See oneDay_releases_Patch
- NetworkPointer: a reference to enclosing Network

plotMGDrivEMult Plot

Description

Plots several traces from MGDrivE, assuming each set is another repetition from the same experiment

Given the readDir, this function assumes the follow file structure:

- readDir
 - repetition 1
 - * patch 1
 - * patch 2
 - * patch 3
 - repetition 2
 - * patch 1
 - * patch 2
 - * patch 3
 - repetition 3
 - repetition 4
 - **–** ...

84 plotMGDrivESingle

Usage

Arguments

readDir Directory to find repetition folders in

whichPatches Vector of patches to plot, must be less than 15. Default is NULL if less than 15

patches

totalPop Boolean, to plot the total population or not. Default is FALSE nonZeroGen Boolean, to plot genotypes that are always zero in simulation

lwd Double, specify the line width for plottingalpha Double, specify the opacity for plotting

Details

This function plots output from one run or one set of runs after being analyzed. Setting totalPop to FALSE keeps it from plotting the total population. NonZeroGen accounts for genotypes that could exist, but are not created in the simulation. Default is FALSE, as this is easier to read on a plot.

Examples

```
## Not run:
# Requires the user to have run MGDrivE, logically stochastic, analyzed
# the data, and stored it in the directory shown below.
# See vignette for complete example

# Folder where single run is stored
fPath <- "path/to/data/containing/folder"

# plot output to see effect
plotMGDrivEMult(readDir=fPath,totalPop = TRUE,lwd=3.5,alpha=1)
## End(Not run)</pre>
```

plotMGDrivESingle

Plot

Description

Plots one run from MGDrivE

Usage

quantileC 85

Arguments

readDir Path to file from single-run of MGDrivE or from analysis function

whichPatches Vector of patches to plot, must be less than 15. Default is NULL if less than 15

patches

totalPop Boolean, to plot the total population or not.

nonZeroGen Boolean, to plot genotypes that are always zero in simulation

lwd Double, specify the line width for plotting alpha Double, specify the opacity for plotting

Details

This function plots output from one run or one set of runs after being analyzed. Setting totalPop to FALSE keeps it from plotting the total population. NonZeroGen accounts for genotypes that could exist, but are not created in the simulation. Default is FALSE, as this is easier to read on a plot.

Examples

```
## Not run:
# Requires the user to have run MGDrivE, deterministic or stochastic, analyzed
# the data, and stored it in the directory shown below.
# See vignette for complete example

# Folder where single run is stored
fPath <- "path/to/data/containing/folder"

# plot output to see effect
plotMGDrivESingle(readDir=fPath,totalPop = TRUE,lwd=3.5,alpha=1)
## End(Not run)</pre>
```

quantileC

Quantiles Function

Description

Calculate the given quantiles of a matrix.

Usage

```
quantileC(Trials, Probs)
```

Arguments

Trials Integer matrix to calculate quantiles over

Probs Vector of quantiles

86 reset_Network

Details

This function calculates the given quantiles over the rows of an integer matrix. It uses method 8 of the stat::quantiles() function. It gives the same result, to numerical accuracy, and is designed to handle matrix input. It is only designed to work on integer matrices!

Value

Numeric Matrix

rDirichlet

Dirichlet Distribution

Description

Make a single draw from a Dirichlet distribution with the shape parameter one.

Usage

```
rDirichlet(migrationPoint)
```

Arguments

migrationPoint Vector of weights for draws. Must be positive.

reset_Network

Reset Network

Description

Reset a Network between runs, useful for Monte Carlo simulation. This calls reset_Patch on each patch and resets tNow = 2 and increments the runID.

Usage

```
reset_Network(verbose = TRUE)
```

Arguments

verbose

Chatty? Default is TRUE

reset_Patch 87

Description

Resets a patch to its initial configuration so that a new one does not have to be created and allocated in the network (for Monte Carlo simulation).

Usage

```
reset_Patch(verbose = TRUE)
```

Arguments

verbose Chatty? Default is TRUE

Description

Read in output from directory. The resulting object will be a nested list; outermost nesting dimension indexes runID, within runID elements are split by sex and innermost nesting is over patches.

Usage

```
retrieveOutput(readDir, verbose = TRUE)
```

Arguments

readDir Directory where output was written to; must not end in path separator

verbose Chatty? Default is TRUE

Value

Nested List

88 setupMGDrivE

Examples

```
## Not run:
# Example assumes user has run and analyzed MGDrivE.
# See vignette for examples of how to do that.

# set read directory
fPath <- "path/to/split/aggregated/output"

# read in data as nested lists
dataList <- retrieveOutput(readDir = fPath)
## End(Not run)</pre>
```

setupMGDrivE

Setup MGDrivE

Description

Initialize methods in Patch to run deterministic or stochastic simulations. This sets internal function definitions so that oneRun_Network and multRun_Network run either deterministic or stochastic functions.

Usage

```
setupMGDrivE(stochasticityON = FALSE, verbose = TRUE)
```

Arguments

stochasticityON

Enable/disable stochastic simulation. Default is FALSE, implying deterministic

simulation

verbose Chatty? Default is TRUE

Examples

```
# run deterministic MGDrivE
setupMGDrivE(stochasticityON = FALSE)
# run stochastic MGDrivE
setupMGDrivE(stochasticityON = TRUE)
```

Description

This hidden function distributes the population at time 0 in the steady-state conformation. This involves finding the number of mosquitoes in each day of the aquatic stages, and then splitting adults into male and female. Each stage is appropriately split amongst the initial population genotypes (see parameterizeMGDrivE). It internally calls calcLarvalDist to determine the distribution of larvae before setting the eggs and pupa from that.

Usage

```
set_initialPopulation_Patch(
   adultEQ = adultEQ,
   larvalEQ = larvalEQ,
   adultRatioF = adultRatioF,
   adultRatioM = adultRatioM,
   larvalRatio = larvalRatio,
   timeAq = timeAq,
   muAq = muAq,
   alpha = alpha
)
```

Arguments

adultEQ	Equilibrium number of adults
larvalEQ	Equilibrium number of larvae
adultRatioF	Genotype specific ratio for adult females
adultRatioM	Genotype specific ratio for adult males
larvalRatio	Genotype specific ratio for larvae
timeAq	Time for each aquatic stage
muAq	Aquatic death rate
alpha	Density-dependent centering parameter

Description

Set a reference to the enclosing Network object

Usage

```
set_NetworkPointer_Patch(NetworkPointer)
```

Arguments

NetworkPointer A Network object

Description

Calls set_initialPopulation_Patch to initialize a steady-state population distribution.

Usage

```
set_population_deterministic_Patch(
  adultEQ = adultEQ,
  larvalEQ = larvalEQ,
  adultRatioF = adultRatioF,
  adultRatioM = adultRatioM,
  larvalRatio = larvalRatio,
  timeAq = timeAq,
  muAq = muAq,
  alpha = alpha
)
```

Arguments

adultE0

-	•
larvalEQ	Equilibrium number of larvae
adultRatioF	Genotype specific ratio for adult females
adultRatioM	Genotype specific ratio for adult males
larvalRatio	Genotype specific ratio for larvae

Equilibrium number of adults

timeAq Time for each aquatic stage

muAq Aquatic death rate

alpha Density-dependent centering parameter

```
set_population_stochastic_Patch
```

Set Initial Population Stochastic

Description

Calls set_initialPopulation_Patch to initialize a steady-state population distribution. Populations are then rounded to integer values.

Usage

```
set_population_stochastic_Patch(
  adultEQ = adultEQ,
  larvalEQ = larvalEQ,
  adultRatioF = adultRatioF,
  adultRatioM = adultRatioM,
  larvalRatio = larvalRatio,
  timeAq = timeAq,
  muAq = muAq,
  alpha = alpha
)
```

Arguments

adultEQ	Equilibrium number of adults
larvalEQ	Equilibrium number of larvae

adultRatioF Genotype specific ratio for adult females
adultRatioM Genotype specific ratio for adult males
larvalRatio Genotype specific ratio for larvae

timeAq Time for each aquatic stage

muAq Aquatic death rate

alpha Density-dependent centering parameter

92 splitOutput

splitOutput

Split Output by Patch

Description

Split output into multiple files by patches.

Usage

```
splitOutput(readDir, writeDir = NULL, remFile = TRUE, verbose = TRUE)
```

Arguments

readDir Directory where output was written to

writeDir Directory to write output to. Default is readDir remFile Remove original output? Default is TRUE

verbose Chatty? Default is TRUE

Examples

```
## Not run:
# This example assumes user has already run MGDrivE and generated output.
# If that's untree, see vignette for complete example
fPath <- "path/to/data/containing/folder"
oPath <- "path/to/write/output"

# split data by patch, keep original files
# no return value
splitOutput(readDir = fPath, writeDir = oPath, remFile = FALSE)

# Alternatively, remove the original files and write new ones in their place
fPath <- "path/to/data/containing/folder"

splitOutput(readDir = fPath, writeDir = NULL, remFile = TRUE)

## End(Not run)</pre>
```

Index

* R6	calcQuantiles, 17
Network, 67	calcVinEll, <i>10</i> , <i>11</i> , <i>13</i> , <i>15</i> , 19
Patch, 81	calcVinSph, 20
* class	calcZeroInflation, 13, 20
Network, 67	connection, <i>47</i> , <i>48</i> , <i>69</i>
Patch, 81	cube2csv, 21, <i>57</i>
* datasets	cubeClvR, 22, 57
kernels, 54	cubeClvR2, 23, 57
moveMatAll2, 62	cubeECHACR, 25, 57
moveMatCascade3, 63	cubeECHACRX, 27, 57
moveMatDiag, 63	cubeHoming1RA, 29, 30, 57
moveMatDiagOneCity, 64	cubeHomingDrive, 30, 57
moveMatDie, 64	cubeKillerRescue, 31, 57
moveMatIndependent3, 65	cubeMEDEA, 32, 57
moveMatMixedSpil, 65	cubeMendelian, 33, 57
moveMatTaleOfTwoCities, 66	cubeModifiers, 34
moveMatTriDiagonal, 66	cube0neLocusTA, 35, 57
moveMatTriple, 67	cubeReciprocalTranslocations, 36, 57
	cubeRIDL, 37, 57
aggregateFemales, 4	cubeSplitDrive, 38, 57
aggregateOutput, 5	cubeTGD, 39, 57
	cubeTGDX, 41, 57
basicBatchMigration, 6, 68	cubeTwoLocusTA, 43, 57
basicRepeatedReleases, 7, 46, 68, 82	cubeWolbachia, 44, 57
	, ,
${\sf calcAquaticStageSurvivalProbability}, 8$	eraseDirectory,45
calcAverageGenerationTime, 9, 17, 80	Exponential, <i>11</i> , <i>13</i>
calcCos, 9	
calcDensityDependentDeathRate, 10, 14,	GammaDist, 11
47, 80	generateReleaseVector, 7, 46, 71, 79
calcExpKernel, 10	get_alpha_Network,47,68
calcGammaKernel, 11	get_beta_Network, 47, 68
calcHaversine, 12	get_conF_Network, 47, 68
calcHurdleExpKernel, 13	get_conM_Network, 48, 68
calcLarvalDist, 14, 89	get_drivecubeindex_Network, 48, 68
calcLarvalPopEquilibrium, 14, 80	get_eta_Network, 48, 68
calcLarvalStageMortalityRate, 15, 50, 80	get_femalePop_Patch, 49, 75, 82
calcLognormalKernel, 15	get_genotypesID_Network, 49, 68
calcOmega, 16	get_genotypesN_Network, 49, 68
calcPopulationGrowthRate, 14, 15, 17, 80	get_malePop_Patch, 49, 75, 82

94 INDEX

${\tt get_muAd_Network}, {\tt 50}, {\tt 68}$	oneDay_larvaDM_stochastic_Patch, 73, 77,
get_muAq_Network, 50, 68	82
get_nPatch_Network, 50, 68	<pre>oneDay_mating_deterministic_Patch, 73,</pre>
get_omega_Network, 50, 68	77, 82
<pre>get_patchReleases_Network, 51, 68</pre>	<pre>oneDay_mating_stochastic_Patch, 74, 77,</pre>
get_phi_Network, 51, 68	82
get_s_Network, 51, 68 get_tau_Network, 52, 68	oneDay_Migration_Deterministic_Network 68,75
_	,
get_timeAq_Network, 52, 68	oneDay_Migration_Stochastic_Network, 6, 68.75
get_tNow_Network, 52, 68	,
get_xiF_Network, 53, 68	oneDay_migrationIn_Patch, 74, 82
get_xiM_Network, 53, 68	oneDay_Network, 68, 76
ggColUtility, 53	oneDay_oviposit_deterministic_Patch, 76,77,82
kernels, 54	oneDay_oviposit_stochastic_Patch, 76, 77, 82
Lognormal, 15	oneDay_PopDynamics_Patch, 77, 82
MGDrivE, 54	oneDay_pupaDM_deterministic_Patch, 77, 77, 82
MGDrivE-Cube, 56	oneDay_pupaDM_stochastic_Patch, 77, 78,
MGDrivE-Model, 58	82
moveMatAll2, 62	<pre>oneDay_pupation_deterministic_Patch,</pre>
moveMatCascade3, 63	77, 78, 82
moveMatDiag, 63	oneDay_pupation_stochastic_Patch, 77,
moveMatDiagOneCity, 64	79, 82
moveMatDie, 64	oneDay_releases_Patch, 7, 77, 79, 82, 83
moveMatIndependent3, 65	oneDay_writeOutput_Patch, 79, 82
moveMatMixedSpil, 65	
moveMatTaleOfTwoCities, 66	oneRun_Network, 68 , 80 , 88
moveMatTriDiagonal, 66	parameterizeMGDrivE, 68, 69, 71–73, 77, 78,
moveMatTriple, 67	
multRun_Network, 67, 68, 88	80, 82, 89
multivan_network, 07, 00, 00	Patch, 69, 81, 81, 88
Network, 67, 72, 76, 79, 80, 83, 86, 90	plotMGDrivEMult, 83
normalise, 70	plotMGDrivESingle, 84
normalise, 70	guantilac 05
<pre>oneDay_adultDeath_deterministic_Patch,</pre>	quantileC, 85
70, 77, 82	DCC1-00 67 91
	R6Class, 67, 81
oneDay_adultDeath_stochastic_Patch, 70, 77, 82	rbinom, 75
	rDirichlet, 86
oneDay_eggDM_deterministic_Patch, 71,	reset_Network, 68, 86
77, 82	reset_Patch, 82, 83, 86, 87
oneDay_eggDM_stochastic_Patch, 71, 77,	retrieveOutput, 87
82	rmultinom, 75
oneDay_eggReleases_Patch, 7, 71, 77, 82,	1 75
83	sample, 75
oneDay_initOutput_Patch, 72, 82	set_initialPopulation_Patch, 14, 82, 89,
oneDay_larvaDM_deterministic_Patch, 72,	90, 91
77, 82	set_NetworkPointer_Patch, 82,90

INDEX 95

```
\begin{array}{c} \mathtt{set\_population\_deterministic\_Patch}, \, 82, \\ 90 \\ \mathtt{set\_population\_stochastic\_Patch}, \, 82, \, 91 \\ \mathtt{setupMGDrivE}, \, 88 \\ \mathtt{splitOutput}, \, 92 \\ \end{array}
```