Package 'MHCtools'

May 23, 2022

Type Package

Title Analysis of MHC Data in Non-Model Species

Version 1.4.2

Description Twelve tools for bioinformatical processing and analysis of major histocompatibility complex (MHC) data. The functions are tailored for amplicon data sets that have been filtered using the 'dada2' method (for more information on 'dada2', visit https://benjjneb.github.io/dada2/), but even other types of data sets can be analyzed.

The DistCalc() function calculates Grantham, Sandberg, or p-distances from pairwise comparisons of all sequences in a data set, and mean distances of all pairwise comparisons within each sample in a data set. The function additionally outputs five tables with physico-chemical z-descriptor values (based on Sandberg et al. 1998) for each amino acid position in all sequences in the data set. These tables may be useful for further downstream analyses, such as estimation of MHC supertypes. The BootKmeans() function is a wrapper for the kmeans() function of the 'stats' package, which allows for bootstrapping. Bootstrapping k-estimates may be desirable in data sets, where e.g. BIC- vs. k-values do not produce clear inflection points (``elbows''). BootKmeans() performs multiple runs of kmeans() and estimates optimal k-values based on a user-defined threshold of BIC reduction. The method is an automated and bootstrapped version of visually inspecting elbow plots of BIC- vs. k-values.

The ClusterMatch() function is a tool for evaluating whether different k-means() clustering models identify similar clusters, and summarize bootstrap model stats as means for different estimated values of k. It is designed to take files produced by the BootKmeans() function as input, but other data can be analysed if the descriptions of the required data formats are observed carefully.

The HpltFind() function infers putative haplotypes from families in the data set.

The GetHpltTable() and GetHpltStats() functions evaluate the accuracy of the haplotype inference.

The PapaDiv() function compares parent pairs in the data set and calculate their joint MHC diversity, taking into account sequence variants that occur in both parents.

The ReplMatch() function matches replicates in data sets in order to evaluate genotyping success.

The GetReplTable() and GetReplStats() functions perform such an evaluation. The CreateFas() function creates a fasta file with all the sequences in the data set.

The CreateSamplesFas() function creates individual fasta files for each sample in the data set.

License MIT + file LICENSE

Encoding UTF-8 **LazyData** true

Imports stats, utils, mgcv, grDevices, graphics

RoxygenNote 7.1.2 **NeedsCompilation** no

Author Jacob Roved [aut, cre]

Maintainer Jacob Roved < jacob.roved@biol.lu.se>

Depends R (>= 3.5.0) **Repository** CRAN

Index

Date/Publication 2022-05-23 18:10:02 UTC

R topics documented:

BootKmeans	3
ClusterMatch	5
CreateFas	7
CreateSamplesFas	8
DistCalc	9
GetHpltStats	11
GetHpltTable	12
GetReplStats	13
GetReplTable	
HpltFind	
k_summary_table	
nest_table	
PapaDiv	
parents_table	
replicates_table	
ReplMatch	
sequence_table	
sequence_table_fas	
sequence_table_repl	
z1_matrix	
z2_matrix	
z3_matrix	
z4_matrix	
z5_matrix	24

25

BootKmeans 3

BootKmeans

BootKmeans() function

Description

BootKmeans is a wrapper for the kmeans() function of the 'stats' package, which allows for bootstrapping. Bootstrapping k-estimates may be desirable in data sets, where the BIC- vs. k-values do not produce clear inflection points ("elbows").

Usage

```
BootKmeans(
  z1_matrix,
  z2_matrix,
  z3_matrix,
  z4_matrix,
  z5_matrix,
  threshold = 0.01,
  no_scans = 1000,
  max_k = 40,
  iter.max = 1e+06,
  nstart = 200,
  algorithm = "Hartigan-Wong",
  path_out = path_out
)
```

Arguments

z1_matrix	a matrix with numerical values of the first z-descriptor for each amino acid position in all sequences in the data set.
z2_matrix	a matrix with numerical values of the second z-descriptor for each amino acid position in all sequences in the data set.
z3_matrix	a matrix with numerical values of the third z-descriptor for each amino acid position in all sequences in the data set.
z4_matrix	a matrix with numerical values of the fourth z-descriptor for each amino acid position in all sequences in the data set.
z5_matrix	a matrix with numerical values of the fifth z-descriptor for each amino acid position in all sequences in the data set.
threshold	a numerical value between 0 and 1 specifying the threshold of reduction in BIC for selecting a k estimate for each kmeans clustering model. The value specifies a proportion of the max observed reduction in BIC when increasing k by 1 (default 0.01).
no_scans	an integer specifying the number of k estimation scans to run (default 1,000).
max_k	an integer specifying the hypothetical maximum number of clusters to detect (default 40). In each k estimation scan, the algorithm runs a kmeans() clustering model for each value of k between 1 and max_k.

4 BootKmeans

iter.max	an integer specifying the maximum number of iterations allowed in each kmeans() clustering model (default 1,000,000).	
nstart	an integer specifying the number of rows in the set of input matrices that wi chosen as initial centers in the kmeans() clustering models (default 200).	
algorithm	character vector, specifying the method for the kmeans() clustering function, one of c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), default is "Hartigan-Wong".	
path_out	a user defined path to the folder where the output files will be saved.	

Details

BootKmeans() performs multiple runs of kmeans() scanning k-values from 1 to a maximum value defined by the user. In each scan, an optimal k-value is estimated using a user-defined threshold of BIC reduction. The method is an automated version of visually inspecting elbow plots of BIC- vs. k-values. The number of scans to be performed is defined by the user.

For each k-estimate scan, the algorithm produces a summary of the stats incl. total within SS, AIC, and BIC, an elbow plot (BIC vs. k), and a set of cluster files corresponding to the estimated optimal k-value. It also produces a table summarizing the stats of the final selected kmeans() models corresponding to the estimated optimal k-values of each scan.

After running BootKmeans() on a data set, it is recommended to subsequently evaluate the repeatability of the bootstrapped k-estimation scans with the ClusterMatch() function also included in MHCtools.

Input data format: A set of five z-matrices containing numerical values of the z-descriptors (z1-z5) for each amino acid position in a sequence alignment. Each column should represent an amino acid position and each row one sequence in the alignment.

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

The function produces three folders in path_out, which contain for each scan the estimated k-clusters saved as .Rdata files, an elbow plot saved as .pdf, and a stats summary table saved as a .csv file. In path_out a summary of all scans performed in the bootstrap run is also saved as .csv. This table is also shown in the console. Should alternative elbow plots be desired, they may be produced manually with the stats presented in the summary tables for each scan.

Note

AIC and BIC are calculated from the kmeans model objects by the following formulae: - AIC = D + 2*m*k - BIC = D + $\log(n)*m*k$ in which: - m = $\operatorname{ncol}(fit\centers)$ - n = $\operatorname{length}(fit\centers)$ - k = $\operatorname{nrow}(fit\centers)$ - D = $\operatorname{fit}\tents$ tot.withinss

ClusterMatch 5

See Also

ClusterMatch; DistCalc

Examples

```
z1_matrix <- z1_matrix
z2_matrix <- z2_matrix
z3_matrix <- z3_matrix
z4_matrix <- z4_matrix
z5_matrix <- z5_matrix
path_out <- tempdir()
BootKmeans(z1_matrix, z2_matrix, z3_matrix, z4_matrix, z5_matrix, threshold=0.01,
no_scans=10, max_k=20, iter.max=10, nstart=10, algorithm="Hartigan-Wong",
path_out=path_out)</pre>
```

ClusterMatch

ClusterMatch() function

Description

ClusterMatch is a tool for evaluating whether k-means() clustering models with similar estimated values of k identify similar clusters. ClusterMatch() also summarizes model stats as means for different estimated values of k. It is designed to take files produced by the BootKmeans() function as input, but other data can be analysed if the descriptions of the data formats given below are observed carefully.

Usage

```
ClusterMatch(filepath, path_out, k_summary_table)
```

Arguments

filepath

a user defined path to a folder that contains the set of K-cluster files to be matched against each other. The algorithm will attempt to load all files in the folder, so it should contain only the relevant K-cluster files. If the clusters were generated using the BootKmeans() function, such a folder (named Clusters) was created by the algorithm in the output path given by the user. Each K-cluster file should correspond to the model\$cluster object in kmeans() saved as a .Rdata file. Such files are generated as part of the output from BootKmeans(). ClusterMatch() assumes that the file names contain the string "model_" followed by a model number, which must match the corresponding row numbers in k_summary_table. If the data used was generated with the BootKmeans() function, the formats and numbers will match by default.

path_out

a user defined path to the folder where the output files will be saved.

6 ClusterMatch

k_summary_table

a data frame summarizing the stats of the kmeans() models that produced the clusters in the K-cluster files. If the data used was generated with the BootK-means() function, a compatible k_summary_table was produced in the output path with the file name "k_means_bootstrap_summary_stats_<date>.csv". If other data is analysed, please observe these formatting requirements: The k_summary_table must contain the data for each kmeans() model in rows and as minimum the following columns: - k-value (colname: k.est) - residual total within sums-of-squares (colname: Tot.withinss.resid) - residual AIC (colname: AIC.resid) - residual BIC (colname: BIC.resid) - delta BIC/max BIC (colname: prop.delta.BIC) - delta BIC/k.est (colname: delta.BIC.over.k) It is crucial that the models have the same numbers in the K-cluster file names and in the k_summary_table, and that the rows of the table are ordered by the model number.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

The function returns a summary table, which for each estimated number of clusters (i.e. the k-values of the models) lists: - number of models that found i clusters - mean residual total within sums-of-squares - mean residual AIC - mean residual BIC - mean delta BIC/max BIC - mean delta BIC/k - mean number of allele assignments that fall outside of the i most abundant clusters across all pairwise comparisons between the models that found i clusters - mean proportion of allele assignments that fall outside of the i most abundant clusters across all pairwise comparisons between the models that found i clusters The summary table is also saved as a .csv file in the output path.

See Also

BootKmeans

```
filepath <- system.file("extdata/ClusterMatch", package="MHCtools")
path_out <- tempdir()
k_summary_table <- k_summary_table
ClusterMatch(filepath, path_out, k_summary_table)</pre>
```

CreateFas 7

CreateFas	CreateFas() function

Description

CreateFas creates a FASTA file with all the sequences in a 'dada2' sequence table.

Usage

```
CreateFas(seq_table, path_out)
```

Arguments

seq_table seq_table is a sequence table as output by the 'dada2' pipeline, which has sam-

ples in rows and nucleotide sequence variants in columns.

path_out is a user defined path to the folder where the output files will be saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A FASTA file with all the sequences in a 'dada2' sequence table. The sequences are named in the FASTA file by an index number corresponding to their column number in the sequence table.

See Also

CreateSamplesFas; for more information about 'dada2' visit https://benjjneb.github.io/dada2/

```
seq_table <- sequence_table_fas
path_out <- tempdir()
CreateFas(seq_table, path_out)</pre>
```

8 CreateSamplesFas

CreateSamplesFas

CreateSamplesFas() function

Description

CreateSamplesFas creates a set of FASTA files with the sequences present in each sample in a 'dada2' sequence table.

Usage

```
CreateSamplesFas(seq_table, path_out)
```

Arguments

seq_table seq_table is a sequence table as output by the 'dada2' pipeline, which has sam-

ples in rows and nucleotide sequence variants in columns.

path_out is a user defined path to the folder where the output files will be saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A set of FASTA files with the sequences present in each sample in the sequence table. The sequences are named in the FASTA files by an index number corresponding to their column number in the sequence table, thus identical sequences will have identical sample names in all the FASTA files.

See Also

CreateFas; for more information about 'dada2' visit https://benjjneb.github.io/dada2/

```
seq_table <- sequence_table_fas
path_out <- tempdir()
CreateSamplesFas(seq_table, path_out)</pre>
```

DistCalc 9

function

Description

DistCalc calculates Grantham distances, Sandberg distances, or p-distances from pairwise comparisons of aligned sequences.

Usage

```
DistCalc(
   seq_file,
   path_out,
   input_fasta = NULL,
   input_seq = "aa",
   aa_dist = NULL,
   codon_pos = NULL,
   dist_type = "G"
)
```

Arguments

seq_file	is a sequence occurrence table as output by the 'dada2' pipeline, which has samples in rows and nucleotide sequence variants in columns. Optionally, a fasta file can be supplied as input in the format rendered by read.fasta() from the package 'seqinr'.	
path_out	is a user defined path to the folder where the output files will be saved.	
input_fasta	optional, a logical (TRUE/FALSE) that indicates whether the input file is a fasta file (TRUE) or a 'dada2'-style sequence table (NULL/FALSE). The default is NULL/FALSE.	
input_seq	defines the type of sequences in seq_file. It may take the values 'nucl' or 'aa'.	
aa_dist	is optional, a logical (TRUE/FALSE) that determines whether nucleotide sequences should be translated to amino acid sequences before distance calculation, default is NULL/FALSE. Note that aa_dist must be set to TRUE, if Grantham or Sandberg distances are calculated from an alignment of nucleotide sequences.	
codon_pos	is optional, a vector of comma separated integers specifying which codon positions to include in distance calculations. If omitted, distance calculations are made using all codons.	
dist_type	is used to specify which kind of distances that are calculated. It takes the values 'G' for Grantham distances, 'S' for Sandberg distances, or 'P' for p-distances. The argument is optional with 'G' as default setting.	

10 DistCalc

Details

The DistCalc() function takes a fasta file or a 'dada2'-style sequence occurrence table (with aligned sequences as column names and samples in rows) as input and produces a matrix with pairwise distances for all sequences in the data set. If calculation of Sandberg distances is specified, the function additionally outputs five tables with physico-chemical z-descriptor values (based on Sandberg et al. 1998) for each amino acid position in all sequences in the data set. These tables may be useful for further downstream analyses, such as estimation of MHC supertypes. If a sequence occurrence table is provided as input, the DistCalc() function furthermore produces a table with the mean distances from all pairwise comparisons of the sequences in each sample in the data set.

Grantham distances and Sandberg distances are calculated as described in Pierini & Lenz 2018. The Grantham distances produced by DistCalc() are simply the mean Grantham distances (Grantham 1974) between all amino acid codons in sequence pairs. When calculating Sandberg distances, DistCalc() first computes Euclidian distances between all amino acid pairs based on the five physicochemical z-descriptors defined in Sandberg et al. 1998. Sandberg distances are then calculated as the mean Euclidian distances between all amino acid codons in sequence pairs. P-distances calculated by DistCalc() are simply the proportion of varying codons between pairs of sequences.

The DistCalc() function includes an option for the user to specify which codons to compare, which is useful e.g. if conducting the analysis only on codon positions involved in specific functions, such as peptide binding of an MHC molecule. It also accepts calculating amino acid distances directly from protein-coding DNA sequences using the standard genetic code.

The DistCalc() function accepts the following characters in the sequences: Nucleotide sequences: A,T,G,C Amino acid sequences: A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V

It accepts gaps defined by '-'. Nucleotide triplets containing gaps are translated to 'X', if amino acid distances are calculated directly from DNA nucleotide sequences. Please note that '-' or 'X' are treated as unique characters in p-distance calculations. The function will not accept 'X' or gaps in Grantham or Sandberg distance calculations. If you wish to exclude codons with 'X' or gaps from distance calculations, please use the codon_pos option to specify which codons to compare.

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

If you calculated Grantham or Sandberg distances, please additionally cite: Pierini, F., Lenz, T.L. 2018. Divergent allele advantage at human MHC genes: Signatures of past and ongoing selection. Mol. Biol. Evol. 35, 2145–2158.

...and either of the following references: Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 185:862–864. Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S. 1998. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. JMed Chem. 41(14):2481–2491.

Value

The function returns a matrix with distances from all pairwise sequence comparisons, where n is the number of sequences. If a sequence occurrence table is given as input file, the function additionally returns a table with the mean distance for each sample in the data set. If a sequence occurrence

GetHpltStats 11

table is given as input file, the sequences are named in the output matrix by an index number that corresponds to their column number in the input file. If calculation of Sandberg distances is specified, the function additionally outputs five tables with physico-chemical z-descriptor values for each amino acid position in all sequences in the data set. All output tables are saved as .csv files in the output path.

See Also

For more information about 'dada2', visit https://benjjneb.github.io/dada2/

Examples

```
seq_file <- sequence_table_fas
path_out <- tempdir()
DistCalc(seq_file, path_out, input_fasta=NULL, input_seq="nucl", aa_dist=NULL,
codon_pos=c(1,2,3,4,5,6,7,8), dist_type="P")</pre>
```

GetHpltStats

GetHpltStats() function

Description

GetHpltStats uses the output files produced by the HpltFind() function to calculate the mean of the mean proportion of incongruent sequences across all nests in the data set.

Usage

```
GetHpltStats(filepath)
```

Arguments

filepath

is a user defined path to the folder where the output files from the HpltFind() function have been saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A mean of the mean proportion of incongruent sequences for each nest.

12 GetHpltTable

See Also

```
HpltFind; GetHpltTable
```

Examples

```
filepath <- system.file("extdata/HpltFindOut/", package="MHCtools")
GetHpltStats(filepath)</pre>
```

GetHpltTable

GetHpltTable() function

Description

GetHpltTable uses the output files produced by the HpltFind() function to produce a table with the mean proportion of incongruent sequences for each nest. If the mean proportion of incongruent sequences is generally low, but certain nests have many incongruent sequences, biological reasons may be causing the mismatches, e.g. extra-pair fertilizations or recombination events.

Usage

```
GetHpltTable(filepath)
```

Arguments

filepath

is a user defined path to the folder where the output files from the HpltFind() function have been saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A table with the mean proportion of incongruent sequences for each nest.

See Also

```
HpltFind; GetHpltStats
```

```
filepath <- system.file("extdata/HpltFindOut/", package="MHCtools")
GetHpltTable(filepath)</pre>
```

GetReplStats 13

GetReplStats

GetReplStats function

Description

GetReplStats uses the output files produced by the ReplMatch() function to calculate statistics on the agreement between replicated samples in the sequencing experiment.

Usage

```
GetReplStats(filepath)
```

Arguments

filepath

is a user defined path to the folder where the output files from the ReplMatch()

function have been saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A list containing the number of replicate sets with zero incongruent sequences, the proportion of replicate sets with zero incongruent sequences, the mean of the mean proportion of incongruent sequences across all replicate sets, and the repeatability of the sequencing experiment.

See Also

```
ReplMatch; GetReplTable
```

```
filepath <- system.file("extdata/ReplMatchOut/", package="MHCtools")
GetReplStats(filepath)</pre>
```

14 GetReplTable

GetReplTable

GetReplTable function

Description

GetReplTable uses the output files produced by the ReplMatch() function to produce a table with the replicate sets and their respective mean proportion of incongruent sequences.

Usage

```
GetReplTable(filepath)
```

Arguments

filepath

is a user defined path to the folder where the output files from the ReplMatch()

function have been saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A table with the mean proportion of incongruent sequences for each replicate set.

See Also

```
ReplMatch; GetReplStats
```

```
filepath <- system.file("extdata/ReplMatchOut/", package="MHCtools")
GetReplTable(filepath)</pre>
```

HpltFind 15

|--|

Description

HpltFind is designed to automatically infer major histocompatibility complex (MHC) haplotypes from the genotypes of parents and offspring in families (defined as nests) in non-model species, where MHC sequence variants cannot be identified as belonging to individual loci. The functions GetHpltTable() and GetHpltStats() are designed to evaluate the output files.

Usage

```
HpltFind(nest_table, seq_table, path_out)
```

Arguments

_	
nest_table	is a table containing the sample names of parents and offspring in each nest. This table should be organized so that the individual names are in the first column (Sample_ID), and the nest number is in the second column (Nest). For each nest, the first two rows should be the parents, followed immediately by the offspring in the subsequent rows, and then followed by the next nest, and so on. It is assumed that nests are numbered consecutively beginning at 1.
seq_table	seq_table is a sequence table as output by the 'dada2' pipeline, which has samples in rows and nucleotide sequence variants in columns.
path_out	is a user defined path to the folder where the output files will be saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A set of R lists containing for each nest the putative haplotypes, the names of sequences that could not be resolved with certainty in each parent, the names of the sequences that were incongruent in the genotypes of the nest, and the mean proportion of incongruent sequences (which is a measure of the haplotype inference success and largely influenced by the exactness of the genotyping experiment). The sequences are named in the output by an index number corresponding to their column number in the sequence table, thus identical sequences will have identical sample names in all the output files. These files can be reopened in R e.g. using the readRDS() function in the base package.

See Also

GetHpltTable; GetHpltStats; for more information about 'dada2' visit https://benjjneb.github.io/dada2/

16 nest_table

Examples

```
nest_table <- nest_table
seq_table <- sequence_table
path_out <- tempdir()
HpltFind(nest_table, seq_table, path_out)</pre>
```

k_summary_table

k_summary_table.rda

Description

k_summary_table contains the results from a bootstrapped kmeans clustering analysis performed on the test data in the tables z1_matrix_test_data, z2_matrix_test_data, z3_matrix_test_data, z4_matrix_test_data, and z5_matrix_test_data using BootKmeans().

Usage

k_summary_table

Format

k_summary_table is a data frame with observations from 10 k-estimation scans in rows and their respective stats in 11 columns.

Source

original data.

nest_table

Data nest_table

Description

nest_table, parents_table, and sequence_table comprise a randomized dataset derived from a real major histocompatibility complex (MHC) genotyping experiment with data from parents and offspring. The nucleotide sequences have been replaced with randomly generated sequences, and sample names have been anonymized.

Usage

nest_table

Format

nest_table is a data frame with 213 samples in rows and 2 columns:

Sample ID Sample ID

Nest Nest index number

PapaDiv 17

Source

original data.

PapaDiv	PapaDiv() function	

Description

PapaDiv calculates the joint major histocompatibility complex (MHC) diversity in parent pairs, taking into account alleles that are shared between the parents. The joint diversity in parent pairs is useful for heritability analyses in non-model species, where one wants to estimate the heritability of MHC diversity. The number of unique alleles in offspring may not be directly derived from the parental genotypes if some alleles are shared between the parents.

Usage

```
PapaDiv(parents_table, seq_table, path_out)
```

Arguments

parents_table is a table containing the sample names of the parents in each nest. This table

should be organized so that each row represents one nest, with the individual names of the mothers in the first column (Mother), and the individual names of

the fathers in the second column (Father).

seq_table seq_table is a sequence table as output by the 'dada2' pipeline, which has sam-

ples in rows and nucleotide sequence variants in columns.

path_out is a user defined path to the folder where the output files will be saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

a set of R lists containing for the joint diversity of each parent pair, the proportion of sequences that are shared between the parents, the diversity of each of the parents, the observed sequence variants in each parent, the matched sequence variants, and the incongruent sequence variants in each parent. The sequences are named in the output by an index number corresponding to their column number in the sequence table, thus identical sequences will have identical sample names in all the output files. These files are saved in a sub folder in the output path called Parent_pairs (created by PapaDiv()) and can be reopened in R e.g. using the readRDS() function in the base

parents_table

package. For downstream data analysis, the PapaDiv() function also produces a summary table with the names of the parents in a pair, their respective MHC diversities, and the joint parent pair diversity. This table is saved as a .csv file in the output path.

See Also

For more information about 'dada2' visit https://benjjneb.github.io/dada2/

Examples

```
parents_table <- parents_table
seq_table <- sequence_table
path_out <- tempdir()
PapaDiv(parents_table, seq_table, path_out)</pre>
```

parents_table

Data parents_table

Description

nest_table, parents_table, and sequence_table comprise a randomized dataset derived from a real major histocompatibility complex (MHC) genotyping experiment with data from parents and offspring. The nucleotide sequences have been replaced with randomly generated sequences, and sample names have been anonymized.

Usage

```
parents_table
```

Format

parents_table is a data frame with 57 parent pairs in rows and 2 columns:

Mother Mother ID

Father Father ID

Source

replicates_table 19

replicates_table

Data replicates_table

Description

replicates_table and sequence_table_repl comprise a randomized dataset derived from a real major histocompatibility complex (MHC) genotyping experiment with technical replicates. The nucleotide sequences have been replaced with randomly generated sequences, and sample names have been anonymized.

Usage

```
replicates_table
```

Format

replicates_table is a data frame with 111 technical replicate samples in rows and 2 columns:

Sample_ID Technical replicate sample ID

Replic_set Index number of replicate set

Source

original data.

ReplMatch

ReplMatch() function

Description

In amplicon filtering it is sometimes valuable to compare technical replicates in order to estimate the accuracy of a genotyping experiment. This may be done both to optimize filtering settings and to estimate repeatability to report in a publication. ReplMatch is designed to automatically compare technical replicates in an amplicon filtering data set and report the proportion of mismatches. The functions GetReplTable() and GetReplStats() are designed to evaluate the output files.

Usage

```
ReplMatch(repl_table, seq_table, path_out)
```

20 sequence_table

Arguments

repl_table is a table containing the sample names of technical replicates in the data set. This table should be organized so that the individual names are in the first column (Sample_ID), and the index number of the replicate set is in the second column (Replic_set). Replicate sets are allowed to contain more than two replicates. It is assumed that replicate sets are numbered consecutively beginning at 1.

seq_table seq_table is a sequence table as output by the 'dada2' pipeline, which has sam-

ples in rows and nucleotide sequence variants in columns.

path_out is a user defined path to the folder where the output files will be saved.

Details

If you publish data or results produced with MHCtools, please cite both of the following references: Roved, J. 2022. MHCtools: Analysis of MHC data in non-model species. Cran. Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. 2022. MHCtools – an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13645

Value

A set of R lists containing for each replicate set the observed sequence variants, the names of the sequences that were incongruent in the replicates, and the mean proportion of incongruent sequences (if 100 matches are expected between the replicates, this is equivalent of an error rate in the sequencing process). The sequences are named in the output by an index number corresponding to their column number in the sequence table, thus identical sequences will have identical sample names in all the output files. These files can be reopened in R e.g. using the readRDS() function in the base package.

See Also

GetReplTable; GetReplStats; for more information about 'dada2' visit https://benjjneb.github.io/dada2/

Examples

```
repl_table <- replicates_table
seq_table <- sequence_table_repl
path_out <- tempdir()
ReplMatch(repl_table, seq_table, path_out)</pre>
```

sequence_table

Data sequence_table

sequence_table_fas 21

Description

nest_table, parents_table, and sequence_table comprise a randomized dataset derived from a real major histocompatibility complex (MHC) genotyping experiment with data from parents and offspring. The nucleotide sequences have been replaced with randomly generated sequences, and sample names have been anonymized.

Usage

```
sequence_table
```

Format

sequence_table is a data frame with 334 samples in rows and 329 DNA sequence variants in columns.

Source

original data.

sequence_table_fas

Data sequence_table_fas

Description

sequence_table_fas is a randomized dataset derived from a real major histocompatibility complex (MHC) genotyping experiment. The nucleotide sequences have been replaced with randomly generated sequences, and sample names have been anonymized.

Usage

```
sequence_table_fas
```

Format

sequence_table_fas is a data frame with 100 samples in rows and 166 DNA sequence variants in columns.

Source

22 z1_matrix

sequence_table_repl
Data sequence_table_repl

Description

replicates_table and sequence_table_repl comprise a randomized dataset derived from a real major histocompatibility complex (MHC) genotyping experiment with technical replicates. The nucleotide sequences have been replaced with randomly generated sequences, and sample names have been anonymized.

Usage

```
sequence_table_repl
```

Format

sequence_table_repl is a data frame with 412 samples in rows and 511 DNA sequence variants in columns.

Source

original data.

z1_matrix

z1_matrix.rda

Description

z1_matrix comprise a randomized dataset derived from 70 nucleotide sequences of a real major histocompatibility complex (MHC) genotyping experiment. z1-descriptor values have been extracted from a subset of 8 amino acid codons and sequence names have been anonymized.

Usage

z1_matrix

Format

z1_matrix is a data frame with 70 sequences in rows and z1-descriptor variables for 8 sequence codons in columns.

Source

z2_matrix 23

z2_matrix z2_matrix.rda

Description

z2_matrix comprise a randomized dataset derived from 70 nucleotide sequences of a real major histocompatibility complex (MHC) genotyping experiment. z2-descriptor values have been extracted from a subset of 8 amino acid codons and sequence names have been anonymized.

Usage

z2_matrix

Format

z2_matrix is a data frame with 70 sequences in rows and z2-descriptor variables for 8 sequence codons in columns.

Source

original data.

z3_matrix

z3 matrix.rda

Description

z3_matrix comprise a randomized dataset derived from 70 nucleotide sequences of a real major histocompatibility complex (MHC) genotyping experiment. z3-descriptor values have been extracted from a subset of 8 amino acid codons and sequence names have been anonymized.

Usage

z3_matrix

Format

z3_matrix is a data frame with 70 sequences in rows and z3-descriptor variables for 8 sequence codons in columns.

Source

z5_matrix

z4_matrix

z4_matrix.rda

Description

z4_matrix comprise a randomized dataset derived from 70 nucleotide sequences of a real major histocompatibility complex (MHC) genotyping experiment. z4-descriptor values have been extracted from a subset of 8 amino acid codons and sequence names have been anonymized.

Usage

z4_matrix

Format

z4_matrix is a data frame with 70 sequences in rows and z4-descriptor variables for 8 sequence codons in columns.

Source

original data.

z5_matrix

z5 matrix.rda

Description

z5_matrix comprise a randomized dataset derived from 70 nucleotide sequences of a real major histocompatibility complex (MHC) genotyping experiment. z5-descriptor values have been extracted from a subset of 8 amino acid codons and sequence names have been anonymized.

Usage

z5_matrix

Format

z5_matrix is a data frame with 70 sequences in rows and z5-descriptor variables for 8 sequence codons in columns.

Source

Index

```
* datasets
                                                  sequence_table_repl, 22
    k_summary_table, 16
                                                  z1_matrix, 22
    nest_table, 16
                                                  z2_{matrix}, 23
    parents_table, 18
                                                  z3_{matrix}, 23
    replicates_table, 19
                                                  z4_matrix, 24
    sequence_table, 20
                                                  z5_matrix, 24
    sequence_table_fas, 21
    sequence_table_repl, 22
    z1_matrix, 22
    z2_matrix, 23
    z3_matrix, 23
    z4_matrix, 24
    z5_matrix, 24
BootKmeans, 3, 3, 6
ClusterMatch, 5, 5
CreateFas, 7, 7, 8
CreateSamplesFas, 7, 8, 8
DistCalc, 5, 9, 9
GetHpltStats, 11, 11, 12, 15
GetHpltTable, 12, 12, 15
GetReplStats, 13, 13, 14, 20
GetReplTable, 13, 14, 14, 20
HpltFind, 12, 15, 15
k_summary_table, 16
nest_table, 16
PapaDiv, 17, 17
parents_table, 18
replicates_table, 19
ReplMatch, 13, 14, 19, 19
sequence_table, 20
sequence_table_fas, 21
```