Package 'MKdescr'

August 5, 2021
Version 0.7
Date 2021-08-05
Title Descriptive Statistics
Author Matthias Kohl [aut, cre] (https://orcid.org/0000-0001-9514-8910)
Maintainer Matthias Kohl Matthias.Kohl@stamats.de
Depends R(>=3.5.0)
Imports stats, graphics, ggplot2, scales
Suggests knitr, rmarkdown
VignetteBuilder knitr
Description Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), doi:10.2307/1268758), robust coefficient of variation (CV) (Arachchige et al. (2019), arXiv:1907.01110), robust signal to noise ratio (SNR), zscore, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for 'ggplot2' (Wickham (2016), ISBN:978-3-319-24277-4).
License LGPL-3
URL https://www.stamats.de/
NeedsCompilation no
Repository CRAN
Date/Publication 2021-08-05 19:00:02 UTC

R topics documented:

MKdescr-package . 2
CV . 3
fiveNS . 4
glog . 5
illustrate.boxplot . 6
illustrate.quantile . 7
IQrange . 8
meanAD . 9
melt.long 11
qboxplot 12
qbxp.stats 15
simCorVars 17
skippedMean 18
SMD 19
SNR 21
thyroid 22
transformations 23
zscore 25
Index 27

MKdescr-package Descriptive Statistics.

Description

Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), doi:10.2307/1268758), robust coefficient of variation (CV) (Arachchige et al. (2019), arXiv:1907.01110), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for 'ggplot2' (Wickham (2016), ISBN:978-3-319-24277-4).

Details

Package:	MKdescr
Type:	Package
Version:	0.7
Date:	$2021-08-05$
Depends:	$\mathrm{R}(>=3.5 .0)$
Imports:	stats, graphics, ggplot2, scales
Suggests:	knitr, rmarkdown
License:	LGPL-3
URL:	https://www.stamats.de/

library(MKmisc)

Author(s)

Matthias Kohl https://www.stamats.de
Maintainer: Matthias Kohl matthias.kohl@stamats.de

CV Compute CV

Description

The functions compute coefficient of variation (CV) as well as two robust versions of the CV.

Usage

CV(x, na.rm = FALSE)
medCV (x, na. $\mathrm{rm}=$ FALSE, constant $=1 /$ qnorm(0.75))
$\operatorname{iqrCV}(x$, na.rm $=$ FALSE, type $=7$, constant $=2 * q n o r m(0.75)$)

Arguments

x	numeric vector with positive numbers.
na.rm	logical. Should missing values be removed?
type	an integer between 1 and 9 selecting one of nine quantile algorithms; for more details see quantile.
constant	standardizing contant; see mad and SIQR, respectively.

Details

The functions compute the (classical) CV as well as two robust variants. medCV uses the (standardized) MAD instead of SD and median instead of mean. iqrCV uses the (standardized) IQR instead of SD and median instead of mean.

Value

CV value.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

C.N.P.G. Arachchige, L.A. Prendergast and R.G. Staudte. Robust analogues to the Coefficient of Variation. https://arxiv.org/abs/1907.01110.

Examples

```
## 5% outliers
out <- rbinom(100, prob = 0.05, size = 1)
sum(out)
x <- (1-out)*rnorm(100, mean = 10, sd = 2) + out*25
CV(x)
medCV(x)
iqrCV(x)
```

fiveNS Five-Number Summaries

Description

Function to compute five-number summaries (minimum, 1st quartile, median, 3rd quartile, maximum)

Usage

fiveNS(x, na.rm = TRUE, type = 7)

Arguments

x
numeric vector
na.rm logical; remove NA before the computations.
type an integer between 1 and 9 selecting one of nine quantile algorithms; for more details see quantile.

Details

In contrast to fivenum the functions computes the first and third quartile using function quantile.

Value

A numeric vector of length 5 containing the summary information.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

See Also

fivenum, quantile

Examples

```
x <- rnorm(100)
fiveNS(x)
fiveNS(x, type = 2)
fivenum(x)
```


Description

The functions compute the generalized logarithm, which is more or less identical to the area hyperbolic sine, and their inverse; see details.

Usage

$g \log (x$, base $=\exp (1))$
glog10(x)
$g \log 2(x)$
inv.glog(x, base $=\exp (1))$
inv.glog10(x)
inv.glog2(x)

Arguments

x
base a positive or a positive or complex number: the base with respect to which logarithms are computed. Defaults to $\mathrm{e}=\exp (1)$.

Details

The function computes

$$
\log \left(x+\sqrt{x^{2}+1}\right)-\log (2)
$$

where the first part corresponds to the area hyperbolic sine. Subtracting $\log (2)$ makes the function asymptotically identical to the logarithm.

Value

A vector of the same length as x containing the transformed values.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

Examples

```
curve(log, from = -3, to = 5)
curve(glog, from = -3, to = 5, add = TRUE, col = "orange")
legend("topleft", fill = c("black", "orange"), legend = c("log", "glog"))
curve(log10(x), from = -3, to = 5)
curve(glog10(x), from = -3, to = 5, add = TRUE, col = "orange")
legend("topleft", fill = c("black", "orange"), legend = c("log10", "glog10"))
```

```
inv.glog(glog(10))
inv.glog(glog(10, base = 3), base = 3)
inv.glog10(glog10(10))
inv.glog2(glog2(10))
```

illustrate.boxplot Illustrate Box-and-Whisker Plots

Description

Function to illustrate the computation of box-and-whisker plots.

Usage

illustrate. boxplot(x)

Arguments

x
numeric vector

Details

The function visualizes the computation of box-and-whisker plots.

Value

An invisible object of class ggplot.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

See Also

boxplot, geom_boxplot

Examples

```
set.seed(123)
illustrate.boxplot(rt(50, df = 5))
illustrate.boxplot(rnorm(50, mean = 3, sd = 2))
```


Description

Function to illustrate the computation of quantiles.

Usage

illustrate.quantile(x, alpha, type)

Arguments

$x \quad$ numeric vector
alpha numeric value in the interval $(0,1)$.
type integer values between 1 and 9 selecting one or several of nine quantile algorithms; for more details see quantile. If missing, all nine are computed.

Details

The function visualizes the computation of alpha-quantiles.

Value

An invisible object of class ggplot.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

See Also

quantile

Examples

```
x <- 1:10
illustrate.quantile(x, alpha \(=0.15\) )
illustrate.quantile( \(x\), alpha \(=0.5\) )
illustrate.quantile(x, alpha \(=0.8\), type \(=2\) )
illustrate.quantile(x, alpha \(=0.8\), type \(=c(2,7)\) )
illustrate.quantile \((x=\) rnorm(20), alpha \(=0.95)\)
illustrate. quantile( \(x=\) rnorm(21), alpha \(=0.95\) )
```

IQrange The Interquartile Range

Description

Computes (standardized) interquartile range of the x values.

Usage

IQrange(x, na.rm = FALSE, type = 7)
sIQR(x, na.rm = FALSE, type $=7$, constant $=2 *$ qnorm(0.75))

Arguments

x
na.rm
type
constant standardizing contant; see details below.

Details

This function IQrange computes quartiles as $\operatorname{IQR}(x)=$ quantile $(x, 3 / 4)$-quantile $(x, 1 / 4)$. The function is identical to function IQR. It was added before the type argument was introduced to function IQR in 2010 (r53643, r53644).

For normally $N(m, 1)$ distributed X, the expected value of $\operatorname{IQR}(X)$ is $2 * \operatorname{qnorm}(3 / 4)=1.3490$, i.e., for a normal-consistent estimate of the standard deviation, use $\operatorname{IQR}(x) / 1.349$. This is implemented in function sIQR (standardized IQR).

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

quantile, IQR.

Examples

```
IQrange(rivers)
## identical to
IQR(rivers)
## other quantile algorithms
IQrange(rivers, type = 4)
IQrange(rivers, type = 5)
## standardized IQR
sIQR(rivers)
## right-skewed data distribution
sd(rivers)
mad(rivers)
## for normal data
x <- rnorm(100)
sd(x)
sIQR(x)
mad(x)
```

meanAD

Description

Computes (standardized) mean absolute deviation.

Usage

```
meanAD(x, na.rm = FALSE, constant = sqrt(pi/2))
```


Arguments

x	a numeric vector.
na.rm	logical. Should missing values be removed?
constant	standardizing contant; see details below.

Details

The mean absolute deviation is a consistent estimator of $\sqrt{2 / \pi} \sigma$ for the standard deviation of a normal distribution. Under minor deviations of the normal distributions its asymptotic variance is smaller than that of the sample standard deviation (Tukey (1960)).
It works well under the assumption of symmetric, where mean and median coincide. Under the normal distribution it's about 18% more efficient (asymptotic relative efficiency) than the median absolute deviation $((1 / q n o r m(0.75)) / \operatorname{sqrt}(\mathrm{pi} / 2))$ and about 12% less efficient than the sample standard deviation (Tukey (1960)).

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Tukey, J. W. (1960). A survey of sampling from contaminated distribution. In Olkin, I., editor, Contributions to Probability and Statistics. Essays in Honor of H. Hotelling., pages 448-485. Stanford University Press.

See Also

sd, mad, sIQR.

Examples

```
## right skewed data
## mean absolute deviation
meanAD(rivers)
## standardized IQR
sIQR(rivers)
## median absolute deviation
mad(rivers)
## sample standard deviation
sd(rivers)
## for normal data
x <- rnorm(100)
sd(x)
sIQR(x)
mad(x)
meanAD(x)
## Asymptotic relative efficiency for Tukey's symmetric gross-error model
## (1-eps)*Norm(mean, sd = sigma) + eps*Norm(mean, sd = 3*sigma)
eps <- seq(from = 0, to = 1, by = 0.001)
ARE <- function(eps){
    0.25*((3*(1+80*eps))/((1+8*eps)^2)-1)/(pi*(1+8*eps)/(2*(1+2*eps)^2)-1)
}
plot(eps, ARE(eps), type = "l", xlab = "Proportion of gross-errors",
        ylab = "Asymptotic relative efficiency",
        main = "ARE of mean absolute deviation w.r.t. sample standard deviation")
abline(h = 1.0, col = "red")
text(x = 0.5, y = 1.5, "Mean absolute deviation is better", col = "red",
    cex = 1, font = 1)
## lower bound of interval
uniroot(function(x){ ARE(x)-1 }, interval = c(0, 0.002))
## upper bound of interval
uniroot(function(x){ ARE(x)-1 }, interval = c(0.5, 0.55))
## worst case
optimize(ARE, interval = c(0,1), maximum = TRUE)
```


Description

The function transforms a given data.frame form wide to long form.

Usage

melt.long(data, select, group)

Arguments

data data.frame that shall be transformed.
select optional integer vector to select a subset of the columns of data.
group optional vector to include an additional grouping in the output; for more details see examples below.

Details

The function transforms a given data.frame form wide to long form. This is for example useful for plotting with ggplot2.

Value

data.frame in long form.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

Examples

```
library(ggplot2)
## some random data
test <- data.frame(x = rnorm(10), y = rnorm(10), z = rnorm(10))
test.long <- melt.long(test)
test.long
ggplot(test.long, aes(x = variable, y = value)) +
    geom_boxplot(aes(fill = variable))
## introducing an additional grouping variable
group <- factor(rep(c("a","b"), each = 5))
test.long.gr <- melt.long(test, select = 1:2, group = group)
test.long.gr
ggplot(test.long.gr, aes(x = variable, y = value, fill = group)) +
    geom_boxplot()
```


Description

Produce box-and-whisker plot(s) of the given (grouped) values. In contrast to boxplot quartiles are used instead of hinges (which are not necessarily quartiles) the rest of the implementation is identical to boxplot.

Usage

```
qboxplot(x, ...)
    ## S3 method for class 'formula'
    qboxplot(formula, data = NULL, ..., subset, na.action = NULL, type = 7)
    ## Default S3 method:
    qboxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,
        notch = FALSE, outline = TRUE, names, plot = TRUE,
        border = par("fg"), col = NULL, log = "",
        pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
        horizontal = FALSE, add = FALSE, at = NULL, type = 7)
```


Arguments

formula	a formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor).
data	a data.frame (or list) from which the variables in formula should be taken.
subset	an optional vector specifying a subset of observations to be used for plotting.
na.action	a function which indicates what should happen when the data contain NAs. The default is to ignore missing values in either the response or the group.
x	for specifying data from which the boxplots are to be produced. Either a numeric vector, or a single list containing such vectors. Additional unnamed arguments specify further data as separate vectors (each corresponding to a component boxplot). NAs are allowed in the data.
	For the formula method, named arguments to be passed to the default method. For the default method, unnamed arguments are additional data vectors (unless x is a list when they are ignored), and named arguments are arguments and graphical parameters to be passed to bxp in addition to the ones given by argument pars (and override those in pars).
range	this determines how far the plot whiskers extend out from the box. If range is positive, the whiskers extend to the most extreme data point which is no more than range times the interquartile range from the box. A value of zero causes the whiskers to extend to the data extremes.
width	a vector giving the relative widths of the boxes making up the plot.

\(\left.$$
\begin{array}{ll}\text { varwidth } & \begin{array}{l}\text { if varwidth is TRUE, the boxes are drawn with widths proportional to the square- } \\
\text { roots of the number of observations in the groups. } \\
\text { if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of } \\
\text { two plots do not overlap this is 'strong evidence' that the two medians differ } \\
\text { (Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used. } \\
\text { if outline is not true, the outliers are not drawn (as points whereas S+ uses } \\
\text { lines). } \\
\text { group labels which will be printed under each boxplot. Can be a character vector } \\
\text { or an expression (see plotmath). }\end{array} \\
\text { outline } & \begin{array}{l}\text { a scale factor to be applied to all boxes. When there are only a few groups, the } \\
\text { appearance of the plot can be improved by making the boxes narrower. } \\
\text { names }\end{array}
$$

staple line width expansion, proportional to box width.\end{array}\right\}\)| outlier line width expansion, proportional to box width. |
| :--- |
| if TRUE (the default) then a boxplot is produced. If not, the summaries which the |
| boutwex |
| blot |
| border |
| an optional vector of colors for the outlines of the boxplots. The values in |
| border are recycled if the length of border is less than the number of plots. |
| if col is non-null it is assumed to contain colors to be used to colour the bodies |
| of the box plots. By default they are in the background colour. |
| character indicating if x or y or both coordinates should be plotted in log scale. |

Details

The generic function qboxplot currently has a default method (qboxplot. default) and a formula interface (qboxplot.formula).
If multiple groups are supplied either as multiple arguments or via a formula, parallel boxplots will be plotted, in the order of the arguments or the order of the levels of the factor (see factor).
Missing values are ignored when forming boxplots.

Value

List with the following components:
stats
a matrix, each column contains the extreme of the lower whisker, the lower hinge, the median, the upper hinge and the extreme of the upper whisker for one group/plot. If all the inputs have the same class attribute, so will this component.
$\mathrm{n} \quad$ a vector with the number of observations in each group.
conf a matrix where each column contains the lower and upper extremes of the notch.
out the values of any data points which lie beyond the extremes of the whiskers.
group a vector of the same length as out whose elements indicate to which group the outlier belongs.
names a vector of names for the groups.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
\& Brooks/Cole.
Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Wadsworth
\& Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman \& Hall/CRC Press.
See also boxplot.stats.

See Also

qbxp. stats which does the computation, bxp for the plotting and more examples; and stripchart for an alternative (with small data sets).

Examples

```
## adapted examples from boxplot
op <- par()
## qboxplot on a formula:
qboxplot(count ~ spray, data = InsectSprays, col = "lightgray")
# *add* notches (somewhat funny here):
qboxplot(count ~ spray, data = InsectSprays,
        notch = TRUE, add = TRUE, col = "blue")
qboxplot(decrease ~ treatment, data = OrchardSprays,
    log = "y", col = "bisque")
rb <- qboxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")
title("Comparing boxplot()s and non-robust mean +/- SD")
mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)
sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)
xi <- 0.3 + seq(rb$n)
points(xi, mn.t, col = "orange", pch = 18)
arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,
    code = 3, col = "pink", angle = 75, length = .1)
```

```
    ## boxplot on a matrix:
    mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),
    `5T` = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
qboxplot(as.data.frame(mat),
    main = "qboxplot(as.data.frame(mat), main = ...)")
par(las = 1)# all axis labels horizontal
qboxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)",
    horizontal = TRUE)
## Using 'at = ' and adding boxplots -- example idea by Roger Bivand :
qboxplot(len ~ dose, data = ToothGrowth,
    boxwex = 0.25, at = 1:3 - 0.2,
    subset = supp == "VC", col = "yellow",
    main = "Guinea Pigs' Tooth Growth",
    xlab = "Vitamin C dose mg",
    ylab = "tooth length",
    xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")
qboxplot(len ~ dose, data = ToothGrowth, add = TRUE,
    boxwex = 0.25, at = 1:3 + 0.2,
    subset = supp == "OJ", col = "orange")
legend(2, 9, c("Ascorbic acid", "Orange juice"),
    fill = c("yellow", "orange"))
par(op)
```

qbxp.stats
Box Plot Statistics

Description

This functions works identical to boxplot. stats. It is typically called by another function to gather the statistics necessary for producing box plots, but may be invoked separately.

Usage

qbxp.stats (x, coef $=1.5$, do.conf $=$ TRUE, do.out $=$ TRUE, type $=7$)

Arguments

$x \quad$ a numeric vector for which the boxplot will be constructed (NAs and NaNs are allowed and omitted).
coef it determines how far the plot 'whiskers' extend out from the box. If coef is positive, the whiskers extend to the most extreme data point which is no more than coef times the length of the box away from the box. A value of zero causes the whiskers to extend to the data extremes (and no outliers be returned).
do. conf logical; if FALSE, the conf component will be empty in the result.
do. out logical; if FALSE, out component will be empty in the result.
type an integer between 1 and 9 selecting one of nine quantile algorithms; for more details see quantile.

Details

The notches (if requested) extend to $+/-1.58 \mathrm{IQR} / \operatorname{sqrt}(\mathrm{n})$. This seems to be based on the same calculations as the formula with 1.57 in Chambers et al. (1983, p. 62), given in McGill et al. (1978, p. 16). They are based on asymptotic normality of the median and roughly equal sample sizes for the two medians being compared, and are said to be rather insensitive to the underlying distributions of the samples. The idea appears to be to give roughly a 95% confidence interval for the difference in two medians.

Value

List with named components as follows:

```
stats a vector of length 5, containing the extreme of the lower whisker, the first quar-
    tile, the median, the third quartile and the extreme of the upper whisker.
n the number of non-NA observations in the sample.
conf the lower and upper extremes of the 'notch' (if(do.conf)). See the details.
out the values of any data points which lie beyond the extremes of the whiskers
    (if(do.out)).
```

Note that \$stats and \$conf are sorted in increasing order, unlike S, and that \$n and \$out include any + -Inf values.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Tukey, J. W. (1977) Exploratory Data Analysis. Section 2C.
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statistician 32, 12-16.
Velleman, P. F. and Hoaglin, D. C. (1981) Applications, Basics and Computing of Exploratory Data Analysis. Duxbury Press.
Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 of Understanding Robust and Exploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and J. W. Tukey. Wiley.
Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Wadsworth
\& Brooks/Cole.

See Also

quantile, boxplot.stats

Examples

```
## adapted example from boxplot.stats
x <- c(1:100, 1000)
(b1 <- qbxp.stats(x))
(b2 <- qbxp.stats(x, do.conf=FALSE, do.out=FALSE))
```

```
stopifnot(b1$stats == b2$stats) # do.out=F is still robust
qbxp.stats(x, coef = 3, do.conf=FALSE)
## no outlier treatment:
qbxp.stats(x, coef = 0)
qbxp.stats(c(x, NA)) # slight change : n is 101
(r <- qbxp.stats(c(x, -1:1/0)))
stopifnot(r$out == c(1000, -Inf, Inf))
```

simCorVars Simulate correlated variables.

Description

The function simulates a pair of correlated variables.

Usage

$\operatorname{simCorVars}(n, r, m u 1=0, m u 2=0, s d 1=1, s d 2=1, p l o t=T R U E)$

Arguments

$\mathrm{n} \quad$ integer: sample size.
r numeric: correlation.
mu1 numeric: mean of first variable.
mu2 numeric: mean of second variable.
sd1 numeric: SD of first variable.
sd2 numeric: SD of second variable.
plot logical: generate scatter plot of the variables.

Details

The function is mainly for teaching purposes and simulates n observations from a pair of normal distributed variables with correlation r.
By specifying plot $=$ TRUE a scatter plot of the data is generated.

Value

data.frame with entries Var1 and Var2

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

Examples

```
set.seed(123)
res <- simCorVars(n = 100, r = 0.8)
cor(res$Var1, res$Var2)
colMeans(res)
apply(res, 2, sd)
set.seed(123)
res <- simCorVars(n = 100, r = 0.8, mu1 = -1, mu2 = 1, sd1 = 2, sd2 = 0.5)
cor(res$Var1, res$Var2)
colMeans(res)
apply(res, 2, sd)
```

skippedMean Hyber-type Skipped Mean and SD

Description

Computes Huper-type Skipped Mean and SD.

Usage

skippedMean(x, na.rm = FALSE, constant = 3.0)
skippedSD(x, na.rm = FALSE, constant = 3.0)

Arguments

x a numeric vector.
na.rm
logical. Should missing values be removed?
constant multiplier for outlier identification; see details below.

Details

The Huber-type skipped mean and is very close to estimator X42 of Hampel (1985), which uses 3.03 x MAD. Quoting Hampel et al. (1986), p. 69, the X42 estimator is "frequently quite reasonable, according to present preliminary knowledge".

For computing the Huber-type skipped mean, one first computes median and MAD. In the next step, all observations outside the interval [median - constant x MAD, median + constant x MAD] are removed and arithmetic mean and sample standard deviation are computed on the remaining data.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Hampel, F.R. (1985). The breakdown points of the mean combined with some rejection rules. Technometrics, 27: 95-107.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A (1986). Robust statistics. The approach based on influence functions. New York: Wiley.

See Also

mean, sd, median, mad.

Examples

```
## normal data
x <- rnorm(100)
mean(x)
median(x)
skippedMean(x)
sd(x)
mad(x)
skippedSD(x)
## Tukey's gross error model
## (1-eps)*Norm(mean, sd = sigma) + eps*Norm(mean, sd = 3*sigma)
ind <- rbinom(100, size = 1, prob = 0.1)
x.err <- (1-ind)*x + ind*rnorm(100, sd = 3)
mean(x.err)
median(x.err)
skippedMean(x.err)
sd(x.err)
mad(x.err)
skippedSD(x.err)
```


Description

The function computes the standardized mean difference, where a bias correction can be applied.

Usage

$\operatorname{SMD}(x, y$, bias.cor $=$ TRUE, var.equal $=$ FALSE, na.rm $=$ FALSE $)$

Arguments

x
$y \quad$ numeric vector, data of group 2.
bias.cor a logical variable indicating whether a bias correction should be performed.
var.equal a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch-Satterthwaite approximation is used.
na.rm
numeric vector, data of group 1.

Details

The function compute the (bias-corrected) standardized mean difference.
If bias. cor = FALSE and var. equal = TRUE, the result corresponds to Cohen's d (Cohen (1988)).
If bias.cor = TRUE and var. equal = TRUE, the result corresponds to Hedges' g (Hedges (1981)).
If bias.cor = FALSE and var. equal $=$ FALSE, the result is closely related to the test statistic of Welch's t test (Aoki (2020)).

If bias.cor = TRUE and var. equal = FALSE, the result corresponds to Aoki's e (Aoki (2020)) which incorporates a Welch-Satterthwaite approximation in combination with a bias correction.

Value

SMD value.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Aoki, S. (2020). Effect sizes of the differences between means without assuming variance equality and between a mean and a constant. Heliyon, 6(1), e03306.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge. ISBN 978-1-134-74270-7.

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effectsize and related estimators. Journal of Educational Statistics 6, 107-128.

Examples

```
n1 <- 200
x <- rnorm(n1)
n2 <- 300
y <- rnorm(n2, mean = 3, sd = 2)
## true value
(0-3)/sqrt((1 + n1/n2*2^2)/(n1/n2+1))
## estimates
## Aoki's e
SMD(x, y)
```

```
## Hedges' g
SMD(x, y, var.equal = TRUE)
## standardized test statistic of Welch's t-test
SMD(x, y, bias.cor = FALSE)
## Cohen's d
SMD(x, y, bias.cor = FALSE, var.equal = TRUE)
## Example from Aoki (2020)
SMD(0:4, c(0, 0, 1, 2, 2))
SMD(0:4, c(0, 0, 1, 2, 2), var.equal = TRUE)
SMD(0:4, c(0, 0, 1, 2, 2), bias.cor = FALSE)
SMD(0:4, c(0, 0, 1, 2, 2), bias.cor = FALSE, var.equal = TRUE)
```

SNR
Compute SNR

Description

The functions compute the signal to noise ration (SNR) as well as two robust versions of the SNR.

Usage

```
SNR(x, na.rm = FALSE)
medSNR(x, na.rm = FALSE, constant = 1/qnorm(0.75))
iqrSNR(x, na.rm = FALSE, type = 7, constant = 2*qnorm(0.75))
```


Arguments

x
na.rm
type
constant
numeric vector.
logical. Should missing values be removed?
an integer between 1 and 9 selecting one of nine quantile algorithms; for more details see quantile.
standardizing contant; see mad and sIQR, respectively.

Details

The functions compute the (classical) SNRas well as two robust variants.
medSNR uses the (standardized) MAD instead of SD and median instead of mean.
iqrSNR uses the (standardized) IQR instead of SD and median instead of mean.

Value

SNR value.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

C.N.P.G. Arachchige, L.A. Prendergast and R.G. Staudte. Robust analogues to the Coefficient of Variation. https://arxiv.org/abs/1907.01110.

Examples

```
## 5% outliers
out <- rbinom(100, prob = 0.05, size = 1)
sum(out)
x <- (1-out)*rnorm(100, mean = 10, sd = 2) + out*25
SNR(x)
medSNR(x)
iqrSNR(x)
```

```
thyroid
```

Plot TSH, fT3 and fT4 with respect to reference range.

Description

The function computes and plots TSH, fT3 and fT4 values with respect to the provided reference range.

Usage

thyroid(TSH, fT3, fT4, TSHref, fT3ref, fT4ref)

Arguments

TSH numeric vector of length 1: measured TSH concentration.
fT3 numeric vector of length 1: measured fT3 concentration.
fT4 numeric vector of length 1: measured fT4 concentration.
TSHref numeric vector of length 2: reference range TSH.
fT3ref numeric vector of length 2: reference range fT3.
fT4ref numeric vector of length 2 : reference range fT4.

Details

A simple function that computes the relative values of the measured values with respect to the provided reference range and visualizes the values using a barplot. Relative values between 40% and 60% are marked as O.K..

Value

Invisible data.frame with the relative values.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

Examples

thyroid(TSH $=1.5, \mathrm{fT} 3=2.5, \mathrm{fT} 4=14$, TSHref $=\mathrm{c}(0.2,3.0)$, fT3ref $=c(1.7,4.2)$, fT4ref $=c(7.6,15.0))$
transformations New Transformations for Use with ggplot2 Package

Description

The functions generate new transformations for the generalized logarithm and the negative logarithm that can be used for transforming the axes in ggplot2 plots.

Usage

```
glog_trans(base = exp(1))
glog10_trans()
glog2_trans()
scale_y_glog(...)
scale_x_glog(...)
scale_y_glog10(...)
scale_x_glog10(...)
scale_y_glog2(...)
scale_x_glog2(...)
neglog_breaks(n = 5, base = 10)
neglog_trans(base = exp(1))
neglog10_trans()
neglog2_trans()
    scale_y_neglog(...)
    scale_x_neglog(...)
    scale_y_neglog10(...)
    scale_x_neglog10(...)
    scale_y_neglog2(...)
    scale_x_neglog2(...)
```


Arguments

base a positive or a positive or complex number: the base with respect to which generalized and negative logarithms are computed. Defaults to $\mathrm{e}=\exp (1)$.
... Arguments passed on to scale_(xly)_continuous.
$n \quad$ desired number of breaks.

Details

The functions can be used to transform axes in ggplot2 plots. The implementation is analogous to e.g. scale_y_log10.

The negative logarithm is for instance of use in case of p values (e.g. volcano plots),
The functions were adapted from packages scales and ggplot2.

Value

A transformation.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

See Also

scale_continuous, log_trans

Examples

```
library(ggplot2)
data(mpg)
p1 <- ggplot(mpg, aes(displ, hwy)) + geom_point()
p1
p1 + scale_x_log10()
p1 + scale_x_glog10()
p1 + scale_y_log10()
p1 + scale_y_glog10()
## A volcano plot
x <- matrix(rnorm(1000, mean = 10), nrow = 10)
g1 <- rep("control", 10)
y1 <- matrix(rnorm(500, mean = 11.25), nrow = 10)
y2 <- matrix(rnorm(500, mean = 9.75), nrow = 10)
g2 <- rep("treatment", 10)
group <- factor(c(g1, g2))
Data <- rbind(x, cbind(y1, y2))
pvals <- apply(Data, 2, function(x, group) t.test(x ~ group)$p.value,
    group = group)
## compute log-fold change
logfc <- function(x, group){
    res <- tapply(x, group, mean)
    log2(res[1]/res[2])
}
lfcs <- apply(Data, 2, logfc, group = group)
ps <- data.frame(pvals = pvals, logfc = lfcs)
ggplot(ps, aes(x = logfc, y = pvals)) + geom_point() +
```

```
geom_hline(yintercept = 0.05) + scale_y_neglog10() +
geom_vline(xintercept = c(-0.1, 0.1)) + xlab("log-fold change") +
ylab("-log10(p value)") + ggtitle("A Volcano Plot")
```

zscore Compute z-Scores

Description

The functions compute the classical z -score as well as two robust versions of z -scores.

Usage

zscore(x, na.rm = FALSE)
medZscore(x, na.rm = FALSE, constant = 1/qnorm(0.75))
iqrZscore (x, na.rm $=$ FALSE, type $=7$, constant $=2 *$ qnorm(0.75))

Arguments

x
na.rm logical. Should missing values be removed?
type an integer between 1 and 9 selecting one of nine quantile algorithms; for more details see quantile.
constant standardizing contant; see mad and sIQR, respectively.

Details

The functions compute the (classical) zscore as well as two robust variants.
medZscore uses the (standardized) MAD instead of SD and median instead of mean.
iqrZscore uses the (standardized) IQR instead of SD and median instead of mean.

Value

z-score.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

Examples

```
## 10% outliers
out <- rbinom(100, prob = 0.1, size = 1)
sum(out)
x <- (1-out)*rnorm(100, mean = 10, sd = 2) + out*25
z <- zscore(x)
z.med <- medZscore(x)
z.iqr <- iqrZscore(x)
## mean without outliers (should by close to 0)
mean(z[!out])
mean(z.med[!out])
mean(z.iqr[!out])
## sd without outliers (should by close to 1)
sd(z[!out])
sd(z.med[!out])
sd(z.iqr[!out])
```


Index

```
* distribution
    fiveNS,4
    illustrate.boxplot,6
    illustrate.quantile, }
    IQrange, 8
    meanAD, }
    skippedMean, 18
* dplot
    qbxp.stats, 15
* hplot
    qboxplot, 12
    thyroid, 22
    transformations, }2
* package
    MKdescr-package, 2
* robust
        IQrange, 8
        meanAD, }
        skippedMean,18
* univar
        CV, 3
        fiveNS,4
        glog, 5
        illustrate.boxplot,6
        illustrate.quantile,7
        IQrange, 8
        meanAD, }
        melt.long,11
        simCorVars, 17
        skippedMean, 18
        SMD,19
        SNR, }2
        zscore, 25
boxplot, 6, 12
boxplot.stats, 13-16
bxp, 12-14
CV, }
```

expression, 13
factor, 13
fivens, 4
fivenum, 4
geom_boxplot, 6
glog, 5
glog10 (glog), 5
glog10_trans (transformations), 23
glog2 (glog), 5
glog2_trans (transformations), 23
glog_trans (transformations), 23
illustrate.boxplot, 6
illustrate.quantile, 7
inv.glog (glog), 5
inv.glog10 (glog), 5
inv.glog2 (glog), 5
IQR, 8
IQrange, 8
iqrCV (CV), 3
iqrSNR (SNR), 21
iqrZscore (zscore), 25
log_trans, 24
mad, $3,10,19,21,25$
mean, 19
meanAD, 9
medCV (CV), 3
median, 19
medSNR (SNR), 21
medZscore (zscore), 25
melt.long, 11
MKdescr (MKdescr-package), 2
MKdescr-package, 2
NA, 12, 15
$\mathrm{NaN}, 15$
neglog10_trans (transformations), 23

```
neglog2_trans(transformations), 23
neglog_breaks(transformations), 23
neglog_trans(transformations), 23
plotmath, 13
qboxplot,12
qbxp.stats, 14, 15
quantile, 3, 4, 7, 8, 13, 15, 16, 21, 25
scale_continuous, 24
scale_x_glog (transformations), 23
scale_x_glog10(transformations), 23
scale_x_glog2(transformations), 23
scale_x_neglog (transformations), 23
scale_x_neglog10 (transformations), 23
scale_x_neglog2(transformations), 23
scale_y_glog (transformations), 23
scale_y_glog10(transformations), 23
scale_y_glog2 (transformations), 23
scale_y_neglog (transformations), 23
scale_y_neglog10 (transformations), 23
scale_y_neglog2 (transformations), 23
sd, 10, 19
simCorVars, }1
sIQR, 3, 21, }2
sIQR (IQrange), 8
skippedMean, 18
skippedSD (skippedMean), 18
SMD,19
SNR,21
stripchart,14
thyroid, 22
transformations,23
```

zscore, 25

