
Package ‘MPSEM’
January 13, 2022

Type Package

Version 0.4-1

Date 2022-01-10

Encoding UTF-8

Title Modeling Phylogenetic Signals using Eigenvector Maps

Author Guillaume Guenard, with contribution from Pierre Legendre

Maintainer Guillaume Guenard <guillaume.guenard@gmail.com>

Description Computational tools to represent phylogenetic signals using adapted eigenvector maps.

Depends R (>= 3.0.0), ape

Suggests knitr, caper, xtable

Imports MASS

License GPL-3

LazyLoad yes

NeedsCompilation yes

VignetteBuilder knitr

Repository CRAN

RoxygenNote 7.1.2

Date/Publication 2022-01-13 20:52:47 UTC

R topics documented:
MPSEM-package . 2
graph-class . 4
graph-functions . 5
lm-utils . 7
PEM-class . 9
PEM-functions . 11
trait-simulator . 16

Index 20

1

2 MPSEM-package

MPSEM-package Modeling Phylogenetic Signals using Eigenvector Maps

Description

Computational tools to represent phylogenetic signals using adapted eigenvector maps.

Details

Phylogenetic eignevector maps (PEM) is a method for using phylogeny to model features of or-
ganism, most notably quantitative traits. It consists in calculating sets of explanatory variables
(eigenvectors) that are meant to represent different patters in trait values that are likely to have been
inducted by evolution. These patterns are used to model the data (using a linear model for instance).

If one gets a ‘target’ species (i.e. a species for which the trait value is unknown), and providing that
we know the phylogenetic relationships between that species and those of the model, the method
allows to obtain the scores of that new species on the phylogenetic eigenfunctions underlying a
PEM. These scores are used to make empirical predictions of trait values for the target species on
the basis of those observed for the species of the model.

Functions PEM.build, PEM.updater, PEM.fitSimple, and PEM.forcedSimple allows one to build,
update (i.e. recalculate with alternate weighting parameters) as well as to estimate or force arbitrary
values for the weighting function parameters.

Functions getGraphLocations and Locations2PEMscores allows one to make predictions using
method predict.PEM and a linear model. To obtain these linear model, user can use function lm or
auxiliary functions lmforwardsequentialsidak or lmforwardsequentialAICc, which perform
forward-stepwise variable addition on the basis of either familiwise type I error rate or the Akaike
Information Criterion (AIC), respectively.

The package provides low-level utility function for performing operation on graphs (see graph-
functions), calculate influence matrix (PEMInfluence), and simulate trait values (see trait-simulator).

A phylogenetic modeling tutorial using MPSEM is available as a package vignette (see example be-
low).

The DESCRIPTION file:

Package: MPSEM
Type: Package
Version: 0.4-1
Date: 2022-01-10
Encoding: UTF-8
Title: Modeling Phylogenetic Signals using Eigenvector Maps
Author: Guillaume Guenard, with contribution from Pierre Legendre
Maintainer: Guillaume Guenard <guillaume.guenard@gmail.com>
Description: Computational tools to represent phylogenetic signals using adapted eigenvector maps.
Depends: R (>= 3.0.0), ape
Suggests: knitr, caper, xtable
Imports: MASS
License: GPL-3

MPSEM-package 3

LazyLoad: yes
NeedsCompilation: yes
VignetteBuilder: knitr
Repository: CRAN
RoxygenNote: 7.1.2

Index of help topics:

MPSEM-package Modeling Phylogenetic Signals using Eigenvector
Maps

PEM-class Class and Methods for Phylogenetic Eigenvector
Maps (PEM)

PEM-functions Phylogenetic Eigenvector Maps
graph-class Class and Method for Directed Graphs
graph-functions Graph Manipulation Functions
lm-utils Linear Modelling Utility Functions
trait-simulator Simulates the Evolution of a Quantitative

Trait.

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps (PEM): a
framework to model and predict species traits. Meth. Ecol. Evol. 4: 1120–1131

See Also

Makarenkov, V., Legendre, L. & Desdevise, Y. 2004. Modelling phylogenetic relationships using
reticulated networks. Zool. Scr. 33: 89–96

Blanchet, F. G., Legendre, P. & Borcard, D. 2008. Modelling directional spatial processes in eco-
logical data. Ecol. Model. 215: 325-336

Examples

To view MPSEM tutorial
vignette("MPSEM", package="MPSEM")

4 graph-class

graph-class Class and Method for Directed Graphs

Description

Class and methods to handle graphs.

Usage

S3 method for class 'graph'
print(x, ...)

Arguments

x An object of graph-class.

... Additional parameters to be passed to the method. Currently ignored.

Format

A graph-class object contains:

edge A list whose first two unnamed members are the indices of the origin and destination ver-
tices. Additional members must be named and are additional edge properties (e.g. length).

vertex A list that optionally contain vertex properties, if any (or an empty list if none).

Details

Prints user-relevant information about the graph: number of edges and vertices, edge and vertex
labels, addition edge properties and vertex properties.

Functions

• print.graph: Print method for graph-class objects

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps (PEM): a
framework to model and predict species traits. Meth. Ecol. Evol. 4: 1120–1131

See Also

PEM.build, PEM-class

graph-functions 5

graph-functions Graph Manipulation Functions

Description

A set of primitive functions for creating and munipulating graphs.

Usage

pop.graph(n, vertex = list(), label = NULL)

add.vertex(x, n, vertex = list(), label = NULL)

add.edge(x, from, to, edge = list(), label = NULL)

rm.edge(x, id)

rm.vertex(x, id)

collapse.vertex(x, id)

Phylo2DirectedGraph(tp)

Arguments

n The number of vertex to populate a new graph (pop.graph) or to add to an
existing graph (add.vertex).

vertex A list of vertex properties.

label Labels to be given to edges or vertices.

x A graph-class object.

from The origins of the edge to be added (vertex labels or indices).

to The destinations of the edge to be added (vertex labels or indices).

edge A list of edge properties.

id Indentity (label or index) of vertex or edge to be removed.

tp Phylogenetic tree object of class ‘phylo’, as defined in ape-package.

Details

A new graph can be populated with n vertices using function pop.graph and vertices can be added
later with function add.vertex. The graphs so created contain no edges; the latter are added using
function add.edge. Vertices and edges are removed using functions rm.vertex and rm.edge,
respectively.

Function collapse.vertex allows one to remove a vertex while reestablishing the connections
between the vertices located above and below that vertex using a new set of edges.

6 graph-functions

Function Phylo2DirectedGraph uses the graph functions to convert a rooted phylogenetic tree
of class ‘phylo’ (see ape-package) to a graph-class object. It recycles tip labels and creates
default node labels, if they were absent from the ‘phylo’ object, and uses them as vertex labels. The
resulting acyclic graph can then be edited to represent cases that do not have a tree topology.

Value

A graph-class object. Objects returned by Phylo2DirectedGraph have a numeric edge property
called ‘distance’ featuring branch lengths and a link{logical} vertex property called ‘species’
specifying whether a vertex is a tree tip or an internal node.

Functions

• pop.graph: Creates a graph and populates it with vertices.

• add.vertex: Adds vertices to an existing graph.

• add.edge: Adds edges to a graph.

• rm.edge: Removes edges from a graph.

• rm.vertex: Removes vertices from a graph.

• collapse.vertex: Removes vertices from a graph while also removing their associated
edges.

• Phylo2DirectedGraph: Transforms a phylogenetic tree into a directed graph.

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps (PEM): a
framework to model and predict species traits. Meth. Ecol. Evol. 4: 1120–1131

Makarenkov, V., Legendre, L. & Desdevise, Y. 2004. Modelling phylogenetic relationships using
reticulated networks. Zool. Scr. 33: 89–96

Blanchet, F. G., Legendre, P. & Borcard, D. 2008. Modelling directional spatial processes in eco-
logical data. Ecol. Model. 215: 325–336

See Also

graph-class.

Examples

Populate a graph with 7 vertices labeled A-G having properties x and y:
gr <- pop.graph(n=7,

vertex=list(x=rnorm(7,0,1),y=rnorm(7,0,1)),
label=c("A","B","C","D","E","F","G"))

gr

lm-utils 7

Adding 3 vertices H, I, and J with property x (y is absent) and a new
property z (type character), which is unknown for A-G:
gr <- add.vertex(x=gr,

n=3,
label=c("H","I","J"),
vertex=list(x=rnorm(3,0,1),z=c("A","B","C")))

gr
gr$vertex

Adding 10 edges, labeled E1-E10 and with properties a and b, to the graph:
gr <- add.edge(x=gr,

from=c("A","B","B","C","C","D","D","E","E","F"),
to=c("A","C","D","E","F","F","G","H","I","J"),
edge=list(a=rnorm(10,0,1),b=rnorm(10,0,1)),
label=paste("E",1:10,sep=""))

gr
gr$edge

Removing edges 2, 4, and 7 from the graph:
print(rm.edge(gr,id=c(2,4,7)))

Removing vertices 1, 3, 7, and 10 from the graph:
print(rm.vertex(gr,id=c(1,3,7,10)))
Notice that the edges that had one of the removed vertex as their
origin or destination are also removed:
print.default(rm.vertex(gr,id=c(1,3,7,10)))

Vertex collapsing.
x <- pop.graph(n=9,label=c("A","B","C","D","E","F","G","H","I"))
x <- add.edge(x,from=c("A","A","B","B","C","C","D","D","E","E"),

to=c("B","C","D","E","E","I","F","G","G","H"),
label=paste("E",1:10,sep=""),
edge=list(length=c(1,2,3,2,1,3,2,2,1,3)))

print.default(x)
for(i in c("A","B","C","D","E","F","G","H","I"))

print(collapse.vertex(x,id=i))

if(require(ape)) {
tree1 <- read.tree(
text=paste(

"(((A:0.15,B:0.2)N4:0.15,C:0.35)N2:0.25,((D:0.25,E:0.1)N5:0.3,",
"(F:0.15,G:0.2)N6:0.3)N3:0.1)N1;",sep=""))

x <- Phylo2DirectedGraph(tree1)
print(x)

}

lm-utils Linear Modelling Utility Functions

8 lm-utils

Description

Utility functions to build linear models using Phylogenetic Eigenvector Maps among their explana-
tory variables.

Usage

lmforwardsequentialAICc(y, x, object)

lmforwardsequentialsidak(y, x, object, alpha = 0.05)

Arguments

y A response variable.

x Descriptors to be used as auxiliary traits.

object A PEM-class object.

alpha The threshold above which to stop adding variables.

Details

Function lmforwardsequentialsidak, performs a forward stepwise selection of the PEM eigen-
vectors until the familywise test of significance of the new variable to be included exceeds the
threshold alpha. The familiwise type I error probability is obtained using the Holm-Sidak correc-
tion of the testwise probabilities, thereby correcting for type I error rate inflation due to multiple
testing. lmforwardsequentialAICc carries out forward stepwise selection of the eigenvectors as
long as the candidate model features a lower sample-size-corrected Akaike information criterion
than the previous model. The final model should be regarded as overfit from the Neyman-Pearson
(i.e. frequentist) point of view, but it is the model that minimizes information loss from the stand-
point of information theory.

Value

An lm-class object.

Functions

• lmforwardsequentialAICc: Forward stepwise variable addition using the sample-size-corrected
Akaike Information Criterion.

• lmforwardsequentialsidak: Forward stepwise variable addition using a Sidak multiple test-
ing corrected alpha error threshold as the stopping criterion.

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

PEM-class 9

References

Burnham, K. P. & Anderson, D. R. 2002. Model selection and multimodel inference: a practical
information-theoretic approach, 2nd ed. Springer-Verlag. xxvi + 488 pp.

Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6: 65-70.

Sidak, Z. 1967. Rectangular confidence regions for means of multivariate normal distributions. J.
Am. Stat. Ass. 62, 626-633.

PEM-class Class and Methods for Phylogenetic Eigenvector Maps (PEM)

Description

Class and methods to handle Phylogenetic Eigenvector Maps (PEM).

Usage

S3 method for class 'PEM'
print(x, ...)

S3 method for class 'PEM'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'PEM'
predict(
object,
targets,
lmobject,
newdata,
interval = c("none", "confidence", "prediction"),
level = 0.95,
...

)

Arguments

x A PEM-class object containing a Phylogenetic Eigenvector Map.
... Additional parameters to be passed to the method. Currently ignored.
row.names Included for method consistency reason; ignored.
optional Included for method consistency reason; ignored.
object A PEM-class object.
targets Output of getGraphLocations.
lmobject An object of class ‘lm’ (see lm for details).
newdata Auxiliary trait values.
interval The kind of limits (confidence or prediction) to return with the predictions;

interval="none": do not return a confidence interval.
level Probability of the confidence of prediction interval.

10 PEM-class

Format

A PEM-class object contains:

x The graph-class object that was used to build the PEM (see PEM.build).

sp A logical vector specifying which vertex is a tip.

B The influence matrix for those vertices that are tips.

ne The number of edges.

nsp The number of species (tips).

Bc The column-centred influence matrix.

means The column means of B.

dist Edge lengths.

a The steepness parameter (see PEM.build for details).

psi The relative evolution rate along the edges (see PEM.build for details).

w Edge weights.

BcW The weighted and column-centred influence matrix.

d The singular values of BcW.

u The eigenvectors (left singular vectors) of BcW.

vt The right singular vectors of BcW.

In addition to these standard component, function, PEM.fitSimple and PEM.forcedSimple add
the following members, which are necessary to make predictions:

S2 The variances of responses (one value for each response).

y A copy of the responses.

opt The list returned by optim.

The estimated weighting parameters are also given as an edge property.

Details

The print method provides the number of eigenvectors, the number of observations these vectors
are spanning, and their associated eigenvalues.

The as.data.frame method extracts the eigenvectors from the object and allows one to use PEM-class
objects as data parameter in function such as lm and glm.

The predict object is a barebone interface meant to make predictions. It must be given species lo-
cations with respect to the phylogenetic graph (target), which are provided by function getGraphLocations
and a linear model in the form of an object from lm. The user must provide auxiliary trait values if
lmobject involves such trait.

Functions

• print.PEM: Print method for PEM-class objects

• as.data.frame.PEM: Method as.data.frame for PEM-class objects

• predict.PEM: Predict method for PEM-class objects

PEM-functions 11

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps (PEM): a
framework to model and predict species traits. Meth. Ecol. Evol. 4: 1120–1131

See Also

PEM.build, PEM-class

PEM-functions Phylogenetic Eigenvector Maps

Description

Functions to calculate and manipulate Phylogenetic Eigenvector Maps (PEM).

Usage

PEMInfluence(x, mroot = TRUE)

PEMweights(d, a = 0, psi = 1)

PEM.build(
x,
d = "distance",
sp = "species",
a = 0,
psi = 1,
tol = .Machine$double.eps^0.5

)

PEM.updater(object, a, psi = 1, tol = .Machine$double.eps^0.5)

PEM.fitSimple(
y,
x,
w,
d = "distance",
sp = "species",
lower = 0,
upper = 1,
tol = .Machine$double.eps^0.5

)

12 PEM-functions

PEM.forcedSimple(
y,
x,
w,
d = "distance",
sp = "species",
a = 0,
psi = 1,
tol = .Machine$double.eps^0.5

)

getGraphLocations(tpall, targets)

getAncGraphLocations(x, tpall)

Locations2PEMscores(object, gsc)

Arguments

x A graph-class object containing a phylogenetic graph.

mroot Boolean (TRUE or FALSE) specifying whether multiple rooting is allowed.

d The name of the member of x$edge where the phylogenetic distances (edge
lengths) can be found.

a The steepness parameter describing whether changes occur, on average, pro-
gressively long edges (a close to 0) or abruptly at vertices (a close to 1).

psi Relative evolution rate along the edges (default: 1). This parameter is only rele-
vant when multiple values are assigned to different portions of the phylogeny.

sp Name of the member of x$vertex where a logical vertex property specifying
which vertices are species can be found. (see graph-class).

tol Eigenvalue threshold to regard eigenvectors as usable.

object A PEM-class object containing a Phylogenetic Eigenvector Map.

y One or many response variable(s) in the form of a numeric vector or a matrix,
respectively.

w A graph-class object containing a phylogenetic graph.

lower Lower limit for the L-BFGS-B optimization algorithm as implemented in optim.

upper Upper limit for the L-BFGS-B optimization algorithm as implemented in optim.

tpall Parameter of function getGraphLocations: Phylogenetic tree object of class
‘phylo’ (package ape) containing all species (model and target) used in the study.

targets Name of the target species to extract using the tpall.

gsc The output of getGraphLocations.

PEM-functions 13

Details

Functions PEMInfluence and PEMweights are used internally by PEM.build to create a binary
matrix referred to as an ‘influence matrix’ and weight its columns. That matrix has a row for
each vertex of graph ‘x’ and a column for each of its edges. The elements of the influence matrix
are 1 whenever the vertex associated with a row is located in the tree either directly or indirectly
downward the edge associated with a column. That function is implemented in C language using
recursive function calls. Although PEMInfluence allows one to use multiple roots as its default
parameter, it is called within PEM.build with mroot = FALSE. User must therefore ensure that the
graph provided to PEMap is single-rooted.

Function PEM.build is used to produce a phylogenetic eigenvector map, while function PEM.updater
allows one to re-calculate a PEM-class object with new weighting function parameters. Function
PEM.fitSimple performs a maximum likelihood estimation of a and psi assuming single values
for the whole tree whereas function PEM.forcedSimple allows one the force parameters a and psi
to a PEM-class object while adding the same computational details as those PEM.fitSimple would
have produced (and which are necessary to make predictions).

Functions getGraphLocations returns the coordinates of a species in terms of its position with
respect to the influence matrix while function Locations2PEMscores transforms these coordinates
into sets of scores that can be used to make predictions. Function getAncGraphLocations pro-
duce the same output as getGraphLocations, but of the ancestral species (i.e. the nodes of the
phylogeny) in order to estimate ancestral trait values.

Value

Function PEMInfluence returns the influence matrix of graph x and function PEMweights returns
weights corresponding to the distances. Functions PEM.build, PEM.fitSimple, PEM.forcedSimple
returns a PEM-class object. Function getGraphLocations returns a list whose first member is an
influence coordinates matrix whose rows refer to the target species and columns refer to the edges
and second member is the lengths of the terminal edges connecting each target species to the rest
of the phylogeny. Function Locations2PEMscores returns a list whose first member is a PEM
score matrix whose rows refer to the target species and columns refer to the eigenvectors and sec-
ond member is the variance associated with the terminal edges connecting the target species to the
phylogeny.

Functions

• PEMInfluence: Calculate the influence matrix of a phylogenetic graph.

• PEMweights: Calculates the edge weights to be used in PEM calculation.

• PEM.build: Calculates a PEM with parameters given by arguments a and psi.

• PEM.updater: Update a PEM with new parameters given by arguments a and psi.

• PEM.fitSimple: Fit a PEM with a single “a” parameter value for the whole phylogeny (as-
sumes psi = 1).

• PEM.forcedSimple: Calculates a PEM while forcing a single value for parameter “a” for the
whole phylogeny (assumes psi = 1).

• getGraphLocations: Get the location of species on a phylogenic graph.

• getAncGraphLocations: Get the location of an ancestral species on the phylogenetic graph.

• Locations2PEMscores: Calculates the PEM scores on phylogenetic graph locations.

14 PEM-functions

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps (PEM): a
framework to model and predict species traits. Meth. Ecol. Evol. 4: 1120–1131

Makarenkov, V., Legendre, L. & Desdevise, Y. 2004. Modelling phylogenetic relationships using
reticulated networks. Zool. Scr. 33: 89–96

Blanchet, F. G., Legendre, P. & Borcard, D. 2008. Modelling directional spatial processes in eco-
logical data. Ecol. Model. 215: 325–336

See Also

graph-class.

Examples

t1 <- read.tree(text=paste(
"(((A:0.15,B:0.2)N4:0.15,C:0.35)N2:0.25,((D:0.25,E:0.1)N5:0.3,",
"(F:0.15,G:0.2)N6:0.3)N3:0.1)N1;",sep=""))

x <- Phylo2DirectedGraph(t1)

Calculates the (binary) influence matrix
PEMInfluence(x)
PEMInfluence(x)[x$vertex$species,]

Building phylogenetic eigenvector maps
PEM1 <- PEM.build(x)
print(PEM1)
PEM2 <- PEM.build(x, a = 0.2)
PEM3 <- PEM.build(x, a = 1)
PEM4 <- PEM.updater(PEM3,a=0.5)

Extracts the eigenvectors
as.data.frame(PEM4)

Example of an hypothetical set of trait values
y <- c(A=-1.1436265,B=-0.3186166,C=1.9364105,D=1.7164079,E=1.0013993,

F=-1.8586351,G=-2.0236371)

Estimate single steepness parameter for the whole tree.
PEMfs1 <- PEM.fitSimple(y=y,x=NULL,w=x,d="distance",sp="species",lower=0,upper=1)
PEMfs1$optim # Results of the optimization.

Force neutral evolution for the whole tree.
PEMfrc1 <- PEM.forcedSimple(y=y,x=NULL,w=x,d="distance",sp="species",a=0)
PEMfrc1xedge$a # Steepness parameter forced for each individual edge.

Get graph locations for target species X, Y, and Z

PEM-functions 15

tpAll <- read.tree(text=paste("((X:0.45,((A:0.15,B:0.2)N4:0.15,",
"(C:0.25,Z:0.2)NZ:0.1)N2:0.05)NX:0.2,",
"(((D:0.25,E:0.1)N5:0.05,Y:0.25)NY:0.25,",
"(F:0.15,G:0.2)N6:0.3)N3:0.1)N1;",sep=""))

grloc <- getGraphLocations(tpAll, c("X","Y","Z"))

PEMfs2 <- PEM.fitSimple(y=y, x=NULL, w=grloc$x, d="distance", sp="species",
lower=0,upper=1)

Same as for PEMfs1$optim
PEMfs2$optim

PEMsc1 <- Locations2PEMscores(PEMfs2, grloc)
lm1 <- lm(y~V_2+V_3+V_5,data=PEMfs2)

ypred <- predict(object=PEMfs2,targets=grloc,lmobject=lm1,interval="none")

tpModel <- drop.tip(tpAll,c("X","Y","Z"))

Plotting the results:
layout(t(c(1,1,2)))
par(mar=c(6,2,2,0.5)+0.1)
plot(tpModel,show.tip.label=TRUE,show.node.label=TRUE,root.edge = TRUE,

srt = 0,adj=0.5,label.offset=0.08,font=1,cex=1.5,xpd=TRUE)
edgelabels(paste("E",1:nrow(tpModel$edge),sep=""),

edge=1:nrow(tpModel$edge),bg="white",font=1,cex=1)
points(x=0.20,y=2.25,pch=21,bg="black")
lines(x=c(0.20,0.20,0.65),y=c(2.25,0.55,0.55),xpd=TRUE,lty=2)
text("X",x=0.69,y=0.55,xpd=TRUE,font=1,cex=1.5)
points(x=0.35,y=4.5,pch=21,bg="black")
lines(x=c(0.35,0.35,0.6),y=c(4.5,5.47,5.47),xpd=TRUE,lty=2)
text("Y",x=0.64,y=5.47,xpd=TRUE,font=1,cex=1.5)
points(x=0.35,y=3,pch=21,bg="black")
lines(x=c(0.35,0.35,0.55),y=c(3,3.5,3.5),xpd=TRUE,lty=2)
text("Z",x=0.59,y=3.5,xpd=TRUE,font=1,cex=1.5)
text(c("NX","NY","NZ"),x=c(0.20,0.35,0.35),y=c(2.25,4.5,3)+0.3*c(1,-1,-1),

font=1,cex=1)
add.scale.bar(length=0.1,cex=1.25)
par(mar=c(3.75,0,2,2)+0.1)
plot(x=y,y=1:7,ylim=c(0.45,7),xlim=c(-4,4), axes=FALSE, type="n", xlab="")
axis(1,label=c("-4","-2","0","2","4"),at=c(-4,-2,0,2,4))
abline(v=0)

Observed values:
points(x=y,y=1:7,xlim=c(-2,2),pch=21,bg="black")
text("B)",x=-3.5,y=7,cex=1.5,xpd=TRUE) ; text("Trait value",x=0,y=-0.5,

cex=1.25,xpd=TRUE)

Predicted values:
points(x=ypred,y=c(0.5,5.5,3.5),pch=23,bg="white",cex=1.25)

Estimating ancestral trait values:
ANCloc <- getAncGraphLocations(x)

16 trait-simulator

PEMfsAnc <- PEM.fitSimple(y=y,x=NULL,w=ANCloc$x,d="distance",sp="species",
lower=0,upper=1)

PEMfsAnc$optim

PEManc1 <- Locations2PEMscores(PEMfsAnc, ANCloc)
y_anc <- predict(object=PEMfsAnc,targets=ANCloc,lmobject=lm1,

interval="confidence")

trait-simulator Simulates the Evolution of a Quantitative Trait.

Description

Functions to simulate the evolution of a quantitative trait along a phylogenetic tree inputted as an
object of class ‘phylo’ (package ape) or graph-class object.

Usage

EvolveOptimMarkovTree(tp, tw, anc, p = 1, root = tp$edge[1, 1])

TraitOUsimTree(tp, a, sigma, opt, p = 1, root = tp$edge[1, 1])

OUvar(d, a = 0, theta = 1, sigma = 1)

PEMvar(d, a = 0, psi = 1)

TraitVarGraphSim(x, variance, distance = "distance", p = 1, ...)

Arguments

tp A rooted phylogenetic tree of class ‘phylo’ (see package ape).
tw Transition matrix giving the probability that the optimum trait value changes

from one state to another at vertices. All rows must sum to 1.
anc Ancestral state of a trait (at the root).
p Number of variates to generate.
root Root node of the tree.
a Selection rate (OUvar) or steepness (PEMvar).
sigma Neutral evolution rate, i.e. mean trait shift by drift.
opt An index vector of optima at the nodes.
d Phylogenetic distances (edge lengths).
theta Adaptive evolution rate, i.e. mean trait shift by natural selection.
psi Mean evolution rate.
x A graph-class object.
variance Variance function (OUvar, PEMvar, or any suitable user-defined function).
distance The name of the member of ‘x$edge’ where edge lengths can be found.
... Additional parameters for the specified variance function.

trait-simulator 17

Details

Function EvolveOptimMarkovTree allows one to simulate the changes of optimum trait values as
a Markov process. The index whereby the process starts, at the tree root, is set by parameter anc;
this is the ancestral character state. From the root onwards to the tips, the optimum is given the
opportunity to change following a multinomial random draw with transition probabilities given by
the rows of matrix tw. The integers thus obtained can be used as indices of a vector featuring
the actual optimum trait values corresponding to the simulated selection regimes. The resulting
optimum trait values at the nodes are used by TraitOUsimTree as its parameters opt to simulate
trait values at nodes and tips. Function TraitVarGraphSim uses a graph variance function (either
OUvar or PEMvar) to reconstruct a covariance matrix that is used to generate covariates drawn from
a multi-normal distribution.

Value

Functions EvolveOptimMarkovTree and TraitOUsimTree return a matrix whose rows represent
the vertices (nodes and tips) of the phylogenetic tree and whose columns stand for the n differ-
ent trials the function was asked to perform. For EvolveQTraitTree, the elements of the ma-
trix are integers, representing the selection regimes prevailing at the nodes and tips, whereas for
TraitOUsimTree, the elements are simulated quantitative trait values at the nodes and tips. These
functions are implemented in C language and therefore run swiftly even for large (10000+ species)
trees.

Function TraitVarGraphSim returns p phylogenetic signals and is implemented using a rotation of
a matrix of standard normal random (mean=0, variance=1) deviates. The rotation matrix is itself
obtained by Choleski factorization of the trait covariance matrix expected for a given set of trees,
variance function, and variance function parameters.

Functions

• EvolveOptimMarkovTree: Simulates the evolution of trait optima along a phylogeny.

• TraitOUsimTree: Simulates the evolution of trait values along a phylogeny.

• OUvar: Describe here...

• PEMvar: Describe here...

• TraitVarGraphSim: Describe here...

Author(s)

Guillaume Guenard, with contribution from Pierre Legendre Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Butler, M. A. & King, A. A. 2004. Phylogenetic comparative analysis: a modeling approach for
adaptive evolution. Am. Nat. 164: 683-695.

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps (PEM): a
framework to model and predict species traits. Meth. Ecol. Evol. 4: 1120–1131

18 trait-simulator

Examples

opt <- c(-2,0,2) # Three trait optima: -2, 0, and 2
Transition probabilities:
transit <- matrix(c(0.7,0.2,0.2,0.2,0.7,0.1,0.1,0.1,0.7),

length(opt),length(opt),dimnames=list(from=opt,to=opt))

In this example, the trait has a probability of 0.7 to stay at a given
optimum, a probability of 0.2 for the optimum to change from -2 to 0,
from 0 to -2, and from 2 to -2, and a probability of 0.1 for the
optimum to change from -2 to 2, from 0 to 2, and from 2 to 0.
nsp <- 25 # A random tree for 25 species.
tree2 <- rtree(nsp,tip.label=paste("Species",1:nsp,sep=""))
tree2$node.label=paste("N",1:tree2$Nnode,sep="") # Node labels.

Simulate 10 trials of optimum change.
reg <- EvolveOptimMarkovTree(tp=tree2,tw=transit,p=10,anc=2)
y1 <- TraitOUsimTree(tp=tree2,a=0,sigma=1,

opt=opt[reg[,1]],p=10) ## Neutral
y2 <- TraitOUsimTree(tp=tree2,a=1,sigma=1,

opt=opt[reg[,1]],p=10) ## Few selection.
y3 <- TraitOUsimTree(tp=tree2,a=10,sigma=1,

opt=opt[reg[,1]],p=10) ## Strong selection.

Display optimum change with colours.
displayOUprocess <- function(tp,trait,regime,mvalue) {

layout(matrix(1:2,1,2))
n <- length(tp$tip.label)
ape::plot.phylo(tp,show.tip.label=TRUE,show.node.label=TRUE,root.edge=FALSE,

direction="rightwards",adj=0,
edge.color=rainbow(length(trait))[regime[tp$edge[,2]]])

plot(y=1:n,x=mvalue[1:n],type="b",xlim=c(-5,5),ylab="",xlab="Trait value",yaxt="n",
bg=rainbow(length(trait))[regime[1:n]],pch=21)

text(trait[regime[1:n]],y=1:n,x=5,col=rainbow(length(trait))[regime[1:n]])
abline(v=0)

}

displayOUprocess(tree2,opt,reg[,1],y1[,1]) # Trait evolve neutrally,
displayOUprocess(tree2,opt,reg[,1],y2[,1]) # under weak selection,
displayOUprocess(tree2,opt,reg[,1],y3[,1]) # under strong selection.

x <- Phylo2DirectedGraph(tree2)
y4 <- TraitVarGraphSim(x, variance = OUvar, p=10, a=5)

DisplayTreeEvol <- function(tp,mvalue) {
layout(matrix(1:2,1,2))
n <- length(tp$tip.label)
ape::plot.phylo(tp,show.tip.label = TRUE, show.node.label = TRUE,

root.edge = FALSE, direction = "rightwards", adj = 0)
plot(y=1:n, x=mvalue[1:n], type="b", xlim=c(-5,5), ylab="",

xlab="Trait value", yaxt="n", pch=21)
abline(v=0)

}

trait-simulator 19

Recursively displays the simulated traits.
for(i in 1:10) {

DisplayTreeEvol(tree2,y4[i,])
if(is.null(locator(1)))
break ## Stops recursive display on a mouse right-click.

}

Index

add.edge (graph-functions), 5
add.vertex (graph-functions), 5
ape, 12, 16
as.data.frame, 10
as.data.frame.PEM (PEM-class), 9

collapse.vertex (graph-functions), 5

EvolveOptimMarkovTree, 17
EvolveOptimMarkovTree

(trait-simulator), 16

getAncGraphLocations, 13
getAncGraphLocations (PEM-functions), 11
getGraphLocations, 2, 9, 10, 13
getGraphLocations (PEM-functions), 11
glm, 10
graph-class, 4
graph-functions, 2, 5

lm, 2, 8–10
lm-utils, 7
lmforwardsequentialAICc, 2
lmforwardsequentialAICc (lm-utils), 7
lmforwardsequentialsidak, 2, 8
lmforwardsequentialsidak (lm-utils), 7
Locations2PEMscores, 2, 13
Locations2PEMscores (PEM-functions), 11
logical, 10, 12

matrix, 12
MPSEM-package, 2

numeric, 6

optim, 10, 12
OUvar, 16
OUvar (trait-simulator), 16

PEM-class, 9
PEM-functions, 11

PEM.build, 2, 4, 10, 11, 13
PEM.build (PEM-functions), 11
PEM.fitSimple, 2, 10, 13
PEM.fitSimple (PEM-functions), 11
PEM.forcedSimple, 2, 10, 13
PEM.forcedSimple (PEM-functions), 11
PEM.updater, 2, 13
PEM.updater (PEM-functions), 11
PEMInfluence, 2, 13
PEMInfluence (PEM-functions), 11
PEMvar, 16
PEMvar (trait-simulator), 16
PEMweights, 13
PEMweights (PEM-functions), 11
Phylo2DirectedGraph, 6
Phylo2DirectedGraph (graph-functions), 5
pop.graph (graph-functions), 5
predict, 10
predict.PEM, 2
predict.PEM (PEM-class), 9
print, 10
print.graph (graph-class), 4
print.PEM (PEM-class), 9

rm.edge (graph-functions), 5
rm.vertex (graph-functions), 5

trait-simulator, 2, 16
TraitOUsimTree, 17
TraitOUsimTree (trait-simulator), 16
TraitVarGraphSim, 17
TraitVarGraphSim (trait-simulator), 16

20

	MPSEM-package
	graph-class
	graph-functions
	lm-utils
	PEM-class
	PEM-functions
	trait-simulator
	Index

