# Package ‘MTS' 

April 11, 2022

## Type Package

Title All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models
Version 1.2.1
Date 2022-04-02
Maintainer Ruey S. Tsay [ruey.tsay@chicagobooth.edu](mailto:ruey.tsay@chicagobooth.edu)
Author Ruey S. Tsay [aut, cre], David Wood [aut], Jon Lachmann [ctb]
Description Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Errorcorrection VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
License Artistic License 2.0
Imports Rcpp, fGarch, fBasics, mvtnorm
LinkingTo Rcpp, RcppEigen
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-04-11 14:32:30 UTC
RoxygenNote 7.1.1
Encoding UTF-8
$R$ topics documented:
MTS-package ..... 4
apca ..... 5
archTest ..... 6
backtest ..... 7
BEKK11 ..... 8
Btfm2 ..... 9
BVAR ..... 10
ccm ..... 11
comVol ..... 12
Corner ..... 13
dccFit ..... 14
dccPre ..... 15
diffM ..... 16
Eccm ..... 17
ECMvar ..... 18
ECMvar1 ..... 19
EWMAvol ..... 20
FEVdec ..... 21
GrangerTest ..... 22
hfactor ..... 23
ibmspko ..... 24
Kronfit ..... 25
Kronid ..... 26
Kronpred ..... 27
Kronspec ..... 28
MarchTest ..... 29
MCHdiag ..... 31
MCholV ..... 32
Mlm ..... 33
mq ..... 33
msqrt ..... 34
mtCopula ..... 35
MTS-internal ..... 36
MTSdiag ..... 36
MTSplot ..... 37
Mtxprod ..... 38
Mtxprod1 ..... 38
PIwgt ..... 39
PSIwgt ..... 40
qgdp ..... 41
refECMvar ..... 41
refECMvar1 ..... 42
refKronfit ..... 43
refREGts ..... 44
refSCMfit ..... 44
refsVARMA ..... 45
refVAR ..... 46
refVARMA ..... 47
refVARX ..... 48
refVMA ..... 49
refVMAe ..... 50
REGts ..... 51
REGtspred ..... 52
RLS ..... 53
SCCor ..... 54
SCMfit ..... 55
SCMid ..... 56
SCMid2 ..... 57
SCMmod ..... 58
sVARMA ..... 59
sVARMACpp ..... 60
sVARMApred ..... 62
SWfore ..... 63
tenstocks ..... 64
tfm ..... 64
tfm1 ..... 65
tfm2 ..... 66
VAR ..... 68
VARMA ..... 69
VARMAcov ..... 71
VARMACpp ..... 72
VARMAirf ..... 73
VARMApred ..... 74
VARMAsim ..... 75
VARorder ..... 76
VARorderI ..... 77
VARpred ..... 78
VARpsi ..... 79
VARs ..... 80
VARX ..... 81
VARXirf ..... 82
VARXorder ..... 83
VARXpred ..... 84
Vech ..... 85
VechM ..... 86
VMA ..... 87
VMACpp ..... 88
VMAe ..... 89
VMAorder ..... 91

VMAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Vmiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Vpmiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Index 96

MTS-package Multivariate Time Series

## Description

Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index, transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.

## Details

Package: MTS
Type: Package
License: Artistic License 2.0

## Author(s)

Ruey S. Tsay and David Wood

## Description

Perform asymptotic PCA for a data set. Typically for cases in which the number of variables is greater than the number of data points.

## Usage

apca(da, m)

## Arguments

da
A T-by-k data set matrix, where T is the sample size and k is the dimension
m
The number of common factors

## Details

Perform the PCA analysis of interchanging the roles of variables and observations.

## Value

sdev Square root of the eigenvalues
factors The common factors
loadings The loading matrix

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
rtn=matrix(rnorm(1200),12,100)
sp100=apca(rtn,3)
```

archTest ARCH test for univariate time series

## Description

Perform tests to check the conditional heteroscedasticity in a time series. The Ljung-Box statistics of squared series and a rank-based Ljung-Box test are used.

## Usage

archTest(rt, lag = 10)

## Arguments

$r t \quad$ A scalar time series. If rt is a matrix, only the first column is used.
lag The number of lags of ACF used in the Ljung-Box statistics. The default is 10 .

## Details

The Ljung-Box statistics based on the squared series are computed first. The rank series of the squared time series is than used to test the conditional heteroscedasticity.

## Value

The Q-statistic and its p-value. Also, the rank-based Q statistic and its p-value.

## Author(s)

Ruey Tsay

## See Also

MarchTest

## Examples

```
rt=rnorm(200)
archTest(rt)
```


## Description

Perform out-of-sample prediction of a given ARIMA model and compute the summary statistics

## Usage

backtest(m1, rt, orig, $h=1$, $x r e=$ NULL, fixed $=$ NULL, inc.mean $=$ TRUE, reest $=1$, method $=c(" C S S-M L "))$

## Arguments

m1
rt The time series under consideration
orig The starting forecast origin. It should be less than the length of the underlying time series
h
inc.mean
fixed
xre A matrix containing the exogeneous variables used in the ARIMA model
reest A control variable used to re-fit the model in prediction. The program will reestimate the model for every new reest observations. The default is 1 . That is, re-estimate the model with every new data point.
method Estimation method in the ARIMA model

## Details

Perform estimation-prediction-reestimation in the forecasting subsample, and to compuate the summary statistics

| Value |  |
| :--- | :--- |
| origion | Forecast origin |
| error | forecast errors |
| forecasts | forecasts |
| rmse | Root mean squared forecast errors |
| mabso | Mean absolute forecast errors |
| reest | Return the reest value |

## Author(s)

Ruey S. Tsay

## References

Tsay (2010). Analysis of Financial Time Series, 3rd. John Wiley. Hoboken, NJ.
BEKK11 BEKK Model

## Description

Estimation of a $\operatorname{BEKK}(1,1)$ Model for a k-dimensional time series. Only $\mathrm{k}=2$ or 3 is available

## Usage

BEKK11(rt, include.mean $=\mathrm{T}$, cond.dist = "normal", ini.estimates = NULL)

## Arguments

rt A T-by-k data matrix of k-dimensional asset returns
include.mean A logical switch to include a constant vector in the mean equation. Default is with a constant vector.
cond.dist Conditional innovation distribution. Only Gaussian innovations are used in the current version.
ini.estimates Optional initial estimates.

## Value

estimates Parameter estimates
HessianMtx Hessian matrix of the estimates
Sigma.t The multivariate volatilities, each row contains k-by-k elements of the volatility matrix Sigma(t)

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7)

## Examples

```
#data("mts-examples",package="MTS")
#da=ibmspko
#rtn=log(da[,2:3]+1)
#m1=BEKK11(rtn)
```


## Description

Perform back-test of transfer function model with 2 input variable. For a specified tfm 2 model and a given forecast origin, the command iterated between estimation and 1 -step ahead prediction starting at the forecast origin until the (T-1)th observation, where T is the sample size.

## Usage

Btfm2 $(\mathrm{y}, \mathrm{x}, \mathrm{x} 2=\mathrm{NULL}, \mathrm{wt}=\mathrm{NULL}, \mathrm{ct}=\mathrm{NULL}, \operatorname{order} \mathrm{N}=\mathrm{c}(1,0,0)$, $\operatorname{orderS}=\mathrm{c}(0,0,0)$, sea=12, order $1=c(0,1,0)$, order $2=c(0,-1,0)$, orig=(length $(y)-1)$ )

## Arguments

$y \quad$ Data vector of dependent variable
$x \quad$ Data vector of the first input (or independent) variable
x2 Data vector of the second input variable if any
ct Data vector of a given deterministic variable such as time trend, if any
wt Data vector of co-integrated series between input and output variables if any
orderN $\quad$ Order ( $\mathrm{p}, \mathrm{d}, \mathrm{q}$ ) of the regular ARMA part of the disturbance component
orderS Order (P,D,Q) of the seasonal ARMA part of the disturbance component
sea Seasonalityt, default is 12 for monthly data
order1 Order ( $\mathrm{r}, \mathrm{s}, \mathrm{b}$ ) of the transfer function model of the first input variable, where r and $s$ are the degrees of denominator and numerator polynomials and $b$ is the delay
order2 Order ( $\mathrm{r} 2, \mathrm{~s} 2, \mathrm{~b} 2$ ) of the transfer function model of the second input variable, where 2 r and s 2 are the degrees of denominator and numerator polynomials and b 2 is the delay
orig Forecast origin with default being T-1, where T is the sample size

## Details

Perform out-of-sample 1-step ahead prediction to evaluate a fitted tfm 2 model

## Value

| ferror | 1-step ahead forecast errors, starting at the given forecast origin |
| :--- | :--- |
| mse | out-of-sample mean squared forecast errors |
| rmse | root mean squared forecast errors |
| mae | out-of-sample mean absolute forecast errors |
| nobf | The number of 1-step ahead forecast errors computed |
| rAR | Regular AR coefficients |

## Author(s)

Ruey S. Tsay

## References

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd edition, Prentice Hall, Englewood Cliffs, NJ.

## See Also

$$
\mathrm{tfm} 2
$$

## BVAR Bayesian Vector Autoregression

## Description

Estimate a VAR(p) model using Bayesian approach, including the use of Minnesota prior

## Usage

$\operatorname{BVAR}(z, p=1, C, V 0, n 0=5$, Phi0=NULL, include.mean=T)

## Arguments

z A matrix of vector time series, each column represents a series.
$\mathrm{p} \quad$ The AR order. Default is $\mathrm{p}=1$.
C The precision matrix of the coefficient matrix. With constant, the dimension of C is $(\mathrm{kp}+1)$-by- $(\mathrm{kp}+1)$. The covariance matrix of the prior for the parameter vec(Beta) is Kronecker(Sigma_a,C-inverse).
V0 A k-by-k covariance matrix to be used as prior for the Sigma_a matrix
n0 The degrees of freedom used for prior of the Sigma_a matrix, the covariance matrix of the innovations. Default is $\mathrm{n} 0=5$.
Phi0 The prior mean for the parameters. Default is set to NULL, implying that the prior means are zero.
include.mean A logical switch controls the constant term in the VAR model. Default is to include the constant term.

## Details

for a given prior, the program provide the posterior estimates of a $\operatorname{VAR}(\mathrm{p})$ model.

## Value

est Posterior means of the parameters
Sigma Residual covariance matrix

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 2).

## Examples

```
data("mts-examples",package="MTS")
z=log(qgdp[,3:5])
zt=diffM(z)*100
C=0.1*diag(rep(1,7))
v0=diag(rep(1,3))
BVAR(zt,p=2,C,V0)
```

ccm Cross-Correlation Matrices

## Description

Computes sample cross-correlation matrices of a multivariate time series, including simplified ccm matrix and p-value plot of Ljung-Box statistics.

## Usage

ccm(x, lags = 12, level = FALSE, output = T)

## Arguments

$x \quad$ A matrix of vector time series, each column represents a series.
lags The number of lags of CCM to be computed. Default is 12 .
level A logical switch. When level=T, numerical values of CCM is printed. Default is no printing of CCM.
output A logical switch. If ouput=F, no output is given. Default is with output.

## Details

The p-value of Ljung-Box statistics does not include any adjustment in degrees of freedom.

Value

| ccm | Sample cross-correlation matrices |
| :--- | :--- |
| pvalue | p-values for each lag of CCM being a zero matrix |

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 1). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
xt=matrix(rnorm(1500),500,3)
ccm(xt)
ccm(xt,lag=20)
```

```
    comVol Common Volatility
```


## Description

Compute the principal volatility components based on the residuals of a $\operatorname{VAR}(p)$ model.

## Usage

comVol(rtn, m = 10, p = 1, stand = FALSE)

## Arguments

| $r t n$ | A T-by-k data matrix of k-dimensional asset returns |
| :--- | :--- |
| $m$ | The number of lags used to compute generalized cross-Kurtosis matrix |
| $p$ | VAR order for the mean equation |
| stand | A logical switch to standardize the returns |

## Details

Perform a VAR(p) fit, if any. Then, use the residual series to perform principal volatility component analysis. The ARCH test statistics are also computed for the sample principal components

## Value

| residuals | The residuals of a VAR(p) fit |
| :--- | :--- |
| values | Eigenvalues of the principal volatility component analysis |
| vectors | Eigenvectors of the principal volatility component analysis |
| $M$ | The transformation matrix |

## Author(s)

Ruey S. Tsay and Y.B. Hu

## References

Tsay (2014, Chapter 7)

## Examples

```
data("mts-examples",package="MTS")
zt=diffM(log(qgdp[,3:5]))
m1=comVol(zt,p=2)
names(m1)
```

    Corner Compute the Corner table for transfer function model specification
    
## Description

For a given dependent variable and an input variable, the program computes the Corner table for specifying the order ( $\mathrm{r}, \mathrm{s}, \mathrm{d}$ ) of a transfer function

## Usage

Corner ( $\mathrm{y}, \mathrm{x}$, Nrow=11, Ncol=7)

## Arguments

$y \quad$ A pre-whitened dependent (or output) variable
x
A pre-whitened independent (or input) variable. It should be a white noise series
Nrow
The number of rows of the Corner table. Default is 11.
Ncol
The number of columns of the Corner table. Default is 7 .

## Details

For the pair of pre-whitened output and input variables, the program compute the Corner table and its simplified version for specifying the order of a transfer function.

## Value

corner The Corner table

## Author(s)

Ruey S. Tsay

```
dccFit Dynamic Cross-Correlation Model Fitting
```


## Description

Fits a DCC model using either multivariate Gaussian or multivariate Student-t innovations. Two types of DCC models are available. The first type is proposed by Engle and the other is by Tse and Tsui. Both models appear in the Journal of Business and Economic Statistics, 2002.

## Usage

dccFit(rt, type = "TseTsui", theta = c(0.90, 0.02), ub $=c(0.95,0.049999), 1 b=c(0.4,0.00001)$, cond.dist = "std", df = 7, m = 0)

## Arguments

rt The T-by-k data matrix of k-dimensional standardized asset returns. Typically, they are the standardized residuals of the command dccPre.
type A logical switch to specify the type of DCC model. Type="TseTsui" for Tse and Tsui's DCC model. Type $=$ "Engle" for Engle's DCC model. Default is Tse-Tsui model.
theta The initial parameter values for theta1 and theta2
ub Upper bound of parameters
lb Lower bound of parameters
cond.dist Conditional innovation distribution with std for multivariate Student-t innovations.
df degrees of freedom of the multivariate Student-t innovations.
$m \quad$ For Tse and Tsui method only, m denotes the number of returns used in local correlation matrix estimation

## Value

estimates Parameter estimates
Hessian Hessian matrix of the estimates
rho.t Time-varying correlation matrices. Each row contains elements of a crosscorrelation matrix.

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## See Also

dccPre
dccPre Preliminary Fitting of DCC Models

## Description

This program fits marginal GARCH models to each component of a vector return series and returns the standardized return series for further analysis. The garchFit command of fGarch package is used.

## Usage

dccPre(rtn, include.mean $=T, p=0$, cond.dist = "norm")

## Arguments

rtn A T-by-k data matrix of k-dimensional asset returns
include.mean A logical switch to include a mean vector. Deafult is to include the mean.
p
VAR order for the mean equation
cond.dist The conditional distribution of the innovations. Default is Gaussian.

## Details

The program uses fGarch package to estimate univariate GARCH model for each residual series after a $\operatorname{VAR}(p)$ fitting, if any.

## Value

| marVol | A matrix of the volatility series for each return series |
| :--- | :--- |
| sresi | Standardized residual series |
| est | Parameter estimates for each marginal volatility model |
| se.est | Standard errors for parameter estimates of marginal volatility models |

## Note

fGarch package is used

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## See Also

> dccFit

```
diffM Difference of multivariate time series
```


## Description

Performs the difference operation of a vector time series

## Usage

$\operatorname{diffM}(z t, d=1)$

## Arguments

$z t \quad$ A vector time series ( T by k , with sample size T and dimension k )
$\mathrm{d} \quad$ Order of differencing. Default is $\mathrm{d}=1$.

## Details

When $\mathrm{d}=1$, the command is equivalent to apply(zt,2,diff)

## Value

The differenced time series

## Author(s)

Ruey S Tsay

## Examples

```
data("mts-examples",package="MTS")
zt=log(qgdp[,3:5])
xt=diffM(zt)
```


## Eccm Extended Cross-Correlation Matrices

## Description

Compute the extended cross-correlation matrices and the associated two-way table of p-values of multivariate Ljung-Box statistics of a vector time series.

## Usage

$\operatorname{Eccm}(z t, \operatorname{maxp}=5, \operatorname{maxq}=6$, include.mean $=$ FALSE, rev $=$ TRUE)

## Arguments

zt Data matrix (T-by-k) of a vector time series, where T is the sample size and k is the dimension.
$\operatorname{maxp} \quad$ Maximum AR order entertained. Default is 5.
$\operatorname{maxq} \quad$ Maximum MA order entertained. Default is 6 .
include.mean A logical switch controlling the mean vector in estimation. Default assumes zero mean.
rev A logical switch to control the cross-correlation matrices used to compute the multivariate Ljung-Box statistics. Traditional way is to compute test statistics from lag-1 to lag-m. If rev = TRUE, then the test statistics are compute from lag-(m-1) to lag-m, from lag-(m-2) to lag-m, etc.

## Value

$\mathrm{pEccm} \quad$ A two-way table of the p-values of extended cross-correlation matrices
$v E c c m$ The sample extended cross-correlation matrices
ARcoef AR coefficient matrices of iterated VAR fitting

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
zt=matrix(rnorm(900),300,3)
m1=Eccm(zt)
```


## Description

Performs estimation of an Error-Correction VAR(p) model using the Quasi Maximum Likelihood Method.

## Usage

ECMvar(x, p, ibeta, include.const = FALSE, fixed = NULL,
alpha $=$ NULL, se.alpha $=$ NULL, se.beta $=$ NULL, phip $=$ NULL, se.phip $=$ NULL)

## Arguments

x
p
ibeta Initial estimate of the co-integrating matrix. The number of columns of ibeta is the number of co-integrating series
include.const A logical switch to include a constant term in the model. The default is no constant
fixed A logical matrix to set zero parameter constraints.
alpha Initial estimate of alpha, if any
se.alpha Initial estimate of the standard error of alpha, if any
se.beta Initial estimate of the standard error of beta, if any
phip Initial estimate of the VAR coefficients, if any
se.phip Initial estimate of the standard error of the VAR coefficients, if any

## Value

data The vector time series
ncoint The number of co-integrating series
arorder VAR order
include.const Logical switch to include constant
alpha, se.alpha Estimates and their standard errors of the alpha matrix
beta, se.beta Estimates and their standard errors of the beta matrix
aic, bic Information criteria of the fitted model
residuals The residual series
Sigma Residual covariance matrix
Phip, se.Phip Estimates and their standard errors of VAR coefficients

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 5)

## See Also

ECMvar1

## Examples

```
phi=matrix(c(0.5,-0.25,-1.0,0.5),2,2); theta=matrix(c(0.2,-0.1,-0.4,0.2), 2, 2)
Sig=diag(2)
mm=VARMAsim(300, arlags=c(1),malags=c(1),phi=phi, theta=theta, sigma=Sig)
zt=mm$series[,c(2,1)]
beta=matrix(c(1,0.5),2,1)
m1=ECMvar(zt,3,ibeta=beta)
names(m1)
```


## ECMvar1

Error-Correction VAR Model 1

## Description

Perform least-squares estimation of an ECM VAR(p) model with known co-integrating processes

## Usage

ECMvar1(x, p, wt, include.const = FALSE, fixed = NULL, output = TRUE)

## Arguments

x
p
wt
include. const A logical switch to include a constant term. Default is no constant.
fixed
output
A T-by-k data matrix of a k-dimensional co-integrated VAR process
VAR order
A T-by-m data matrix of m-dimensional co-integrated process

A logical matrix to set zero parameter constraints
A logical switch to control output

## Value

| data | The vector time series |
| :--- | :--- |
| wt | The co-integrated series |
| arorder | VAR order |
| include.const | Logical switch to include constant |
| coef | Parameter estimates |
| aic,bic | Information criteria of the fitted model |
| residuals | The residual series |
| Sigma | Residual covariance matrix |

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 5). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## See Also

ECMvar

## Examples

```
phi=matrix(c(0.5,-0.25,-1.0,0.5),2,2); theta=matrix(c(0.2,-0.1,-0.4,0.2),2,2)
Sig=diag(2)
mm=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi,theta=theta,sigma=Sig)
zt=mm$series
wt=0.5*zt[,1]+zt[,2]
m1=ECMvar1(zt,3,wt)
names(m1)
```

EWMAvol Exponentially Weighted Moving-Average Volatility

## Description

Use exponentially weighted moving-average method to compute the volatility matrix

## Usage

EWMAvol(rtn, lambda = 0.96)

## Arguments

rtn A T-by-k data matrix of k -dimensional asset returns, assuming the mean is zero
lambda
Smoothing parameter. The default is 0.96 . If lambda is negative, then the multivariate Gaussian likelihood is used to estimate the smoothing parameter.

## Value

Sigma.t The volatility matrix with each row representing a volatility matrix
return The data
lambda
The smoothing parameter lambda used

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
data("mts-examples",package="MTS")
rtn=log(ibmspko[,2:4]+1)
m1=EWMAvol(rtn)
```

FEVdec Forecast Error Variance Decomposition

## Description

Computes the forecast error variance decomposition of a VARMA model

## Usage

FEVdec(Phi, Theta, Sig, lag = 4)

## Arguments

Phi VAR coefficient matrices in the form Phi=[Phi1, Phi2, ..., Phip], a k-by-kp matrix.
Theta VMA coefficient matrices in form form Theta=[Theta1, Theta2, ..., Thetaq], a k-by-kq matrix.
Sig The residual covariance matrix Sigma, a k-by-k positive definite matrix.
lag The number of lags of forecast errors variance to be computed. Default is 4 .

## Details

Use the psi-weight matrices to compute the forecast error covariance and use Cholesky decomposition to perform the decomposition

## Value

irf Impulse response matrices
orthirf Orthogonal impulse response matrices
Omega Forecast error variance matrices
OmegaR Forecast error variance decomposition

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 3)

## Examples

```
p1=matrix(c(0.2,-0.6,0.3,1.1), 2, 2)
theta1=matrix(c(-0.5,0,0,-0.6),2,2)
Sig=matrix(c(3,1,1,1),2,2)
m1=FEVdec(p1,theta1,Sig)
names(m1)
```

GrangerTest Granger Causality Test

## Description

Performs Granger causality test using a vector autoregressive model

## Usage

GrangerTest(X, $\mathrm{p}=1$, include.mean=T, locInput=c(1))

## Arguments

X a T-by-p data matrix with T denoting sample size and p the number of variables
$\mathrm{p} \quad$ vector AR order.
include.mean
Indicator for including a constant in the model. Default is TRUE.
locInput
Locators for the input variables in the data matrix. Default is the first column being the input variable. Multiple inputs are allowed.

## Details

Perform VAR(p) and constrained VAR(p) estimations to test the Granger causality. It uses likelihood ratio and asymptotic chi-square.

## Value

| data | Original data matrix |
| :--- | :--- |
| cnst | logical variable to include a constant in the model |
| order | order of VAR model used |
| coef | Coefficient estimates |
| constraints | Implied constraints of Granger causality |
| aic, bic, hq | values of information criteria |
| residuals | residual vector |
| secoef | standard errors of coefficient estimates |
| Sigma | Residual covariance matrix |
| Phi | Matrix of VAR coefficients |
| Ph0 | constant vector |
| omega | Estimates of constrained coefficients |
| covomega | covariance matrix of constrained parameters |
| locInput | Locator vector for input variables |

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 2)
hfactor Constrained Factor Model

## Description

Performs factor model analysis with a given constrained matrix

## Usage

hfactor (X, H, r)

## Arguments

X A T-by-k data matrix of an observed k -dimensional time series
H The constrained matrix with each column representing a constraint
$r \quad$ The number of common factor

## Value

Results of the traditional PCA and constrained factor models are given

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 6). Tsai and Tsay (2010, JASA)

## Examples

```
data("mts-examples",package="MTS")
rtn=log(tenstocks[,2:11]+1) # compute log returns
h1=c(1,1,1,1,rep(0,6)) # specify the constraints
h2=c(0,0,0,0,1,1,1,0,0,0)
h3=c(rep (0,7),1,1,1)
H=cbind(h1,h2,h3)
m1=hfactor(rtn,H,3)
```


## Description

Monthly simple returns of the stocks of International Business Machines (IBM) and Coca Cola (KO) and the S\&P Composite index (SP). The sample period is from January 1961 to December 2011. The original data were from the Center for Research in Security Prices (CRSP) of the University of Chicago. The files has four columns. They are dates, IBM, SP, and KO.

## Format

A 2-d list containing $612 \times 4$ observations. The files has four columns. They are dates, IBM, SP, and KO.

## Source

World Almanac and Book of Facts, 1975, page 406.

## Kronfit

## Description

Perform estimation of a VARMA model specified by the Kronecker indices

## Usage

Kronfit(da, kidx, include.mean $=\mathrm{T}$, fixed $=$ NULL, $\mathrm{Kpar=NULL}$, seKpar=NULL, prelim = F, details = F, thres = 1)

## Arguments

| da | Data matrix (T-by-k) of a k-dimensional time series |
| :--- | :--- |
| kidx | The vector consisting of Kronecker indices |
| include.mean | A logical switch for including the mean vector in estimation. Default is to in- <br> clude the mean vector. |
| fixed | A logical matrix used to set zero parameter constraints. This is used mainly in <br> the command refKronfit. |
| Kpar | Parameter vectors for use in model simplification |
| seKpar | Standard errors of the parameter estimates for use in model simplification |
| prelim | A logical switch for a preliminary estimation. |
| details | A logical switch to control output. |
| thres | A threshold for t-ratios in setting parameter to zero. Default is 1. |


| Value |  |
| :--- | :--- |
| data | The observed time series data |
| Kindex | Kronecker indices |
| ARid | Specification of AR parameters: 0 denotes fixing to zero, 1 denotes fixing to 1, <br> and 2 denoting estimation |
| MAid | Specification of MA parameters |
| cnst | A logical variable: include.mean |
| coef | Parameter estimates |
| se.coef | Standard errors of the estimates |
| residuals | Residual series |
| Sigma | Residual covariance matrix |
| aic, bic | Information criteria of the fitted model |
| Ph0 | Constant vector |
| Phi | AR coefficient matrices |
| Theta | MA coefficient matrices |

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## See Also

refKronfit, Kronspec

Kronid Kronecker Index Identification

## Description

Find the Kronecker indices of a k-dimensional time series

## Usage

Kronid(x, plag = 5, crit $=0.05$ )

## Arguments

$x \quad$ Data matrix (T-by-k) of a k-dimensional time series
plag The number of lags used to represent the past vector. Default is 5 .
crit Type-I error used in testing for zero canonical correlations. Deafult is 0.05 .

## Value

index Kronecker indices
tests Chi-square test statistics

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
phi=matrix(c(0.2,-0.6,.3,1.1), 2, 2); sigma=diag(2); theta=-0.5*sigma
m1=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi, theta=theta, sigma=sigma)
zt=m1$series
Kronid(zt)
```

Kronpred | Prediction of a fitted VARMA model via Kronfit, using Kronecker in- |
| :--- |
| dices |

## Description

Compute forecasts of a fitted VARMA model via the command Kronfit

## Usage

Kronpred(model,orig=0,h=1)

## Arguments

model A model fitted by the Kronfit command
orig Forecast origin. The default is 0 , implying that the origin is the last observation
h
Forecast horizon. Default is h=1, 1-step ahead forecast

## Details

For a model, which is the output of the command Kronfit, the command computes forecasts of the model starting at the forecast origin. !-step to h-step ahead forecasts are computed.

## Value

| pred | Forecasts |
| :--- | :--- |
| se.err | Standard errors of the forecasts |
| orig | Return the forecast origin |

## Author(s)

Ruey S. Tsay

## References

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications, John Wiley, Hoboken, New Jersey

## Description

For a given set of Kronecker indices, the program specifies a VARMA model. It gives details of parameter specification.

## Usage

Kronspec (kdx, output = TRUE)

## Arguments

| kdx | A vector of Kronecker indices |
| :--- | :--- |
| output | A logical switch to control output. Default is with output. |

## Value

PhiID Specification of the AR matrix polynomial. 0 denotes zero parameter, 1 denotes fixing parameter to 1 , and 2 denotes the parameter requires estimation

ThetaID Specification of the MA matrix polynomial

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 4)

## Examples

```
kdx=c(2,1,1)
m1=Kronspec(kdx)
names(m1)
```

```
MarchTest Multivariate ARCH test
```


## Description

Perform tests to check the conditional heteroscedasticity in a vector time series

## Usage

MarchTest(zt, lag = 10)

## Arguments

$z t$
a nT-by-k data matrix of a k-dimensional financial time series, each column contains a series.
lag The number of lags of cross-correlation matrices used in the tests

## Details

Several tests are used. First, the vector series zt is transformed into $\mathrm{rt}=[\mathrm{t}(\mathrm{zt})$ perform the test. The second test is based on the ranks of the transformed rt series. The third test is the multivariate Ljung-Box statistics for the squared vector series $\mathrm{zt}{ }^{\wedge} 2$. The fourth test is the multivariate Ljung-Box statistics applied to the 5-percent trimmed series of the transformed series rt .

## Value

Various test statistics and their p-values

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
zt=matrix(rnorm(600),200,3)
MarchTest(zt)
function (zt, lag = 10)
{
    if (!is.matrix(zt))
        zt = as.matrix(zt)
    nT = dim(zt)[1]
    k = dim(zt)[2]
    C0 = cov(zt)
    zt1 = scale(zt, center = TRUE, scale = FALSE)
```

```
C0iv = solve(C0)
wk = zt1 %*% C0iv
wk = wk * zt1
rt2 = apply(wk, 1, sum) - k
m1 = acf(rt2, lag.max = lag, plot = F)
acf = m1$acf[2:(lag + 1)]
c1 = c(1:lag)
deno = rep(nT, lag) - c1
Q = sum(acf^2/deno) * nT * (nT + 2)
pv1 = 1 - pchisq(Q, lag)
cat("Q(m) of squared series(LM test): ", "\n")
cat("Test statistic: ", Q, " p-value: ", pv1, "\n")
rk = rank(rt2)
m2 = acf(rk, lag.max = lag, plot = F)
acf = m2$acf[2:(lag + 1)]
mu = -(rep(nT, lag) - c(1:lag))/(nT * (nT - 1))
v1 = rep(5 * nT^4, lag) - (5 * c(1:lag) + 9) * nT^3 + 9 *
        (c(1:lag) - 2) * nT^2 + 2 * c(1:lag) * (5 * c(1:lag) +
        8) * nT + 16 * c(1:lag)^2
v1 = v1/(5 * (nT - 1)^2 * nT^2 * (nT + 1))
QR = sum((acf - mu)^2/v1)
pv2 = 1 - pchisq(QR, lag)
cat("Rank-based Test: ", "\n")
cat("Test statistic: ", QR, " p-value: ", pv2, "\n")
cat("Q_k(m) of squared series: ", "\n")
x = zt^2
g0 = var(x)
ginv = solve(g0)
qm = 0
df = 0
for (i in 1:lag) {
    x1 = x[(i + 1):nT, ]
    x2 = x[1:(nT - i), ]
    g = cov(x1, x2)
    g = g * (nT - i - 1)/(nT - 1)
    h = t(g) %*% ginv %*% g %*% ginv
    qm = qm + nT * nT * sum(diag(h))/(nT - i)
    df = df + k * k
}
pv3 = 1 - pchisq(qm, df)
cat("Test statistic: ", qm, " p-value: ", pv3, "\n")
cut1 = quantile(rt2, 0.95)
idx = c(1:nT)[rt2 <= cut1]
x = zt[idx, ]^2
eT = length(idx)
g0 = var(x)
ginv = solve(g0)
qm = 0
df = 0
for (i in 1:lag) {
    x1 = x[(i + 1):eT, ]
    x2 = x[1:(eT - i), ]
    g = cov(x1, x2)
```

```
        g = g * (eT - i - 1)/(eT - 1)
        h = t(g) %*% ginv %*% g %*% ginv
        qm = qm + eT * eT * sum(diag(h))/(eT - i)
        df = df + k * k
    }
    pv4 = 1 - pchisq(qm, df)
    cat("Robust Test(5%) : ", qm, " p-value: ", pv4, "\n")
}
```

MCHdiag Multivariate Conditional Heteroscedastic Model Checking

## Description

Apply four portmanteau test statistics to check the validity of a fitted multivariate volatility model

## Usage

MCHdiag(at, Sigma.t, $m=10$ )

## Arguments

at A T-by-k matrix of residuals for a k-dimensional asset return series
Sigma.t The fitted volatility matrices. The dimension is T-by-k^2 matrix
m
The number of lags used in the tests. Default is 10 .

## Details

The four test statistics are given in Tsay (2014, Chapter 7)

## Value

Four test statistics and their p-values

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Description

Use Cholesky decomposition to obtain multivariate volatility models

## Usage

MCholV(rtn, size $=36$, lambda $=0.96, \mathrm{p}=0)$

## Arguments

rtn A T-by-k data matrix of a k-dimensional asset return series.
size The initial sample size used to start recursive least squares estimation
lambda The exponential smoothing parameter. Default is 0.96.
p
VAR order for the mean equation. Default is 0 .

## Details

Use recursive least squares to perform the time-varying Cholesky decomposition. The least squares estimates are then smoothed via the exponentially weighted moving-average method with decaying rate 0.96 . University $\operatorname{GARCH}(1,1)$ model is used for the innovations of each linear regression.

## Value

betat Recursive least squares estimates of the linear transformations in Cholesky decomposition
bt The transformation residual series
Vol The volatility series of individual innovations
Sigma.t Volatility matrices

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7)

## See Also

fGarch

## Description

Fit a multivariate multiple linear regression model via the least squares method

## Usage

Mlm(y, z, constant=TRUE, output=TRUE)

## Arguments

y data matrix of dependent variable. Each column contains one variable.
z data matrix of the explanatory variables. Each column contains one variable.
constant A logical switch for including the constant term
output A logical switch to print the output

## Value

beta coefficient matrix
se.beta standard errors of the coefficient matrix
residuals The residual series
sigma Residual covariance matrix

## Author(s)

Ruey S. Tsay
mq
Multivariate Ljung-Box Q Statistics

## Description

Computes the multivariate Ljung-Box statistics for cross-correlation matrices

## Usage

$m q(x$, lag $=24, a d j=0)$

## Arguments

x
The data matrix of a vector time series or residual series of a fitted multivariate model.
lag The number of cross-correlation matrices used. Default is 24.
adj Adjustment for the degrees of freedom for the Ljung-Box statistics. This is used for residual series. Default is zero.

## Details

Computes the multivariate Ljung-Box statistics and their p-values. For model checking, the subcommand adj can be used to adjust the degrees of freedom of the Chi-square statistics.

## Value

The multivariate Q -statistics and their p-values. Also, it provides a plot of the p-values.

## Author(s)

Ruey S. Tsay

## References

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
x=matrix(rnorm(1500),500,3)
mq(x)
```

```
msqrt Square Root Matrix
```


## Description

Compute the symmetric square root of a positive definite matrix

## Usage

msqrt(M)

## Arguments

M A positive definite matrix

## Details

Use spectral decomposition to compute the square root of a positive definite matrix

## Value

| mtxsqrt | The square root matrix |
| :--- | :--- |
| invsqrt | The inverse of the square root matrix |

## Note

This command is used in some of the MTS functions.

## Author(s)

Ruey S. Tsay

## Examples

```
m=matrix(c(1,0.2,0.2,1),2,2)
m1=msqrt(m)
names(m1)
```

mtCopula Multivariate $t$-Copula Volatility Model

## Description

Fits a t-copula to a k-dimensional standardized return series. The correlation matrices are parameterized by angles and the angles evolve over time via a DCC-type equation.

## Usage

mtCopula(rt, g1, g2, grp = NULL, th0 = NULL, m = 0, include.th0 $=$ TRUE, ub=c(0.95,0.049999))

## Arguments

rt A T-by-k data matrix of k standardized time series (after univariate volatility modeling)
g1 lamda1 parameter, nonnegative and less than 1
g2 lambda2 parameter, nonnegative and satisfying lambda1+lambda $2<1$.
grp a vector to indicate the number of assets divided into groups. Default means each individual asset forms a group.
th0 initial estimate of theta0
m number of lags used to estimate the local theta-angles
include.th0 A logical switch to include theta0 in estimation. Default is to include.
ub
Upper bound of parameters

Value

| estimates | Parameter estimates |
| :--- | :--- |
| Hessian | Hessian matrix |
| rho.t | Cross-correlation matrices |
| theta.t | Time-varying angel matrices |

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

```
MTS-internal MTS Internal Functions
```


## Description

MTS Internal Functions

## Details

These are not to be called by the user.

```
MTSdiag Multivariate Time Series Diagnostic Checking
```


## Description

Performs model checking for a fitted multivariate time series model, including residual crosscorrelation matrices, multivariate Ljung-Box tests for residuals, and residual plots

## Usage

MTSdiag(model, gof = 24, adj = 0, level = F)

## Arguments

model A fitted multivariate time series model
gof The number of lags of residual cross-correlation matrices used in the tests
adj The adjustment for degrees of freedom of Ljung-Box statistics. Typically, the number of fitted coefficients of the model. Default is zero.
level Logical switch for printing residual cross-correlation matrices

## Value

Various test statistics, their p-values, and residual plots.

## Author(s)

Ruey S Tsay

## Examples

```
phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); sigma=diag(2)
m1=VARMAsim(200,arlags=c(1),phi=phi,sigma=sigma)
zt=m1$series
m2=VAR(zt,1,include.mean=FALSE)
MTSdiag(m2)
```

MTSplot Multivariate Time Series Plot

## Description

Provides time plots of a vector time series

## Usage

MTSplot(data, caltime = NULL)

## Arguments

| data | data matrix of a vector time series |
| :--- | :--- |
| caltime | Calendar time. Default is NULL, that is, using time index |

## Details

Provides time plots of a vector time series. The output frame depends on the dimension of the time series

## Value

Time plots of vector time series

## Author(s)

Ruey S. Tsay

## Examples

```
xt=matrix(rnorm(1500),500,3)
MTSplot(xt)
```


## Description

Compute the product of two polynomial matrices

## Usage

Mtxprod(Mtx, sMtx, p, P)

## Arguments

| Mtx | The coefficient matrix of a regular polynomial matrix |
| :--- | :--- |
| sMtx | The coefficient matrix of a seasonal polynomial matrix |
| p | Degree of the regular polynomial matrix |
| $P$ | Degree of the seasonal polynomial matrix |

## Value

Coefficient matrix of the product. The product is in the form reg-AR * sAR, etc.

## Author(s)

Ruey S. Tsay

## Description

Compute the product of two polynomial matrices

## Usage

Mtxprod1 (Mtx, sMtx, p, P)

## Arguments

| Mtx | The coefficient matrix of a regular polynomial matrix |
| :--- | :--- |
| sMtx | The coefficient matrix of a seasonal polynomial matrix |
| p | Degree of the regular polynomial matrix. p is less than P. |
| P | Degree of the seasonal polynomial matrix |

## Details

This polynomial product is used in seasonal VARMA modeling to check the multiplicative nature between the regular and seasonal polynomial matrices

## Value

Coefficient matrix of the product. The product matrix is in the form sAR * reg-AR, etc.

## Author(s)

Ruey S. Tsay

PIwgt Pi Weight Matrices

## Description

Compute the Pi-weight matrices of a VARMA model

## Usage

PIwgt(Phi = NULL, Theta $=$ NULL, lag $=12$, plot $=$ TRUE)

## Arguments

Phi A k-by-kp matrix of VAR coefficients in the form [Phi1, Phi2, Phi3, ..., Phip]
Theta A k-by-kq matrix of VMA coefficients in the form [Theta1, Theta2, ..., Thetaq]
lag The number of Pi-weight matrices to be computed.
plot A logical switch to plot the Pi-weight matrices

## Details

The Pi-weight matrices for a VARMA model is $\mathrm{Pi}(\mathrm{B})=$ inverse $($ Theta $(\mathrm{B}))$ times $\operatorname{Phi}(\mathrm{B})$.

## Value

pi.weight The matrix of Pi-weight coefficient

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapters 2 and 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## See Also

PSIwgt

## Examples

```
Phi1=matrix(0,2,2); Phi2=matrix(c(0.2,-0.6,0.3,1.1),2,2)
Theta1=diag(c(-0.5,-0.4))
Phi=cbind(Phi1,Phi2)
m1=PIwgt(Phi=Phi,Theta=Theta1)
names(m1)
```

```
PSIwgt Psi Wights Matrices
```


## Description

Computes the psi-weight matrices of a VARMA model

## Usage

```
PSIwgt(Phi = NULL, Theta = NULL, lag = 12, plot = TRUE, output = FALSE)
```


## Arguments

| Phi | A k-by-kp matrix of VAR coefficient matrix. Phi=[Phi1, Phi1, ..., Phip] |
| :--- | :--- |
| Theta | A k-by-kq matrix of VMA coefficient matrix. Theta=[Theta1, Theta2, ..., Thetaq] |
| lag | The number of psi-weight matrices to be computed. Deafult is 12. |
| plot | A logical switch to control plotting of the psi-weights. |
| output | A logical switch to control the output. |

## Value

psi.weight Psi-weight matrices
irf Impulse response cofficient matrices

## Author(s)

Ruey S. Tsay

## References

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

## Examples

```
phi=matrix(c(0.2,-0.6,0.3,1.1),2,2)
theta=matrix(c(-0.5,0.2,0.0,-0.6), 2, 2)
m1=PSIwgt(Phi=phi,Theta=theta)
```

qgdp Quarterly real gross domestic products of United Kingdom, Canada, and the United States

## Description

Quarterly real gross domestic products of United Kingdom, Canada, and the United States from the first quarter of 1980 to the second quarter of 2011. The UK and CA data were originally from OECD and the US data from the Federal Reserve Bank of St Louis.

## Format

A 2-d list containing $126 \times 5$ observations. The data set consists of 5 columns: name, year, month, UK, CA, and US.

## Source

The data were downloaded from the FRED of the Federal Reserve Bank of St Louis. The UK data were in millions of chained 2006 Pounds, the CA data were in millions of chained 2002 Canadian dollars, and the US data were in millions of chained 2005 dollars.

```
refECMvar

\section*{Description}

Refining an estimated ECM VAR model by setting insignificant estimates to zero

\section*{Usage \\ \(\operatorname{refECMvar}(\mathrm{m} 1\), thres \(=1)\)}

\section*{Arguments}
m1 An object of the ECMvar command or the refECMvar command
thres Threshold for individual t-ratio. The default is 1 .

\section*{Details}

Set simultaneously all estimates with t-ratio less than the threshold to zero (in modulus).

\section*{Value}

Constrained estimation results of a ECM VAR model

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 5). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
refECMvar1 Refining ECM for a VAR process

\section*{Description}

Performs constrained least squares estimation of a ECM VAR model with known co-integrated processes

\section*{Usage}
```

refECMvar1(m1, thres = 1)

```

\section*{Arguments}
m1 An object of the ECMvar1 command or the refECMvar1 command
thres Threshold for individual t-ratio. Default is 1.

\section*{Details}

Setting all estimates with t-ration less than the threshold, in absoluate value, to zero simultaneously.

\section*{Value}

Constrained estimation results of an ECM VAR model

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 5). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

See Also
ECMvar1, refECMvar
```

refKronfit Refining VARMA Estimation via Kronecker Index Approach

```

\section*{Description}

This program performs model simplification of a fitted VARMA model via the Kronecker index approach

\section*{Usage}
refKronfit(model, thres = 1)

\section*{Arguments}
\[
\begin{array}{ll}
\text { model } & \text { The name of a model from the command Kronfit or refKronfit } \\
\text { thres } & \text { A threshold for t-ratio of individual parameter estimate. The default is } 1 .
\end{array}
\]

\section*{Details}

For a given threshold, the program sets a parameter to zero if its t-ratio (in modulus) is less than the threshold.

\section*{Value}

Same as those of the command Kronfit.

\section*{Author(s)}

\author{
Ruey S. Tsay
}

\section*{References}

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

Kronfit

\section*{Description}

Refines a fitted REGts by setting simultaneously parameters with t-ratios less than the threshold (in modulus) to zero

\section*{Usage \\ refREGts (m1, thres = 1)}

\section*{Arguments}
m1 An output object from the REGts command or refREGts command
thres Threshold value for individual t-ratio. Default is 1.

\section*{Value}

The same as those of the command REGts.

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}
refVAR, refVARMA
refSCMfit Refining Estimation of VARMA Model via SCM Approach

\section*{Description}

Refine estimation of a VARMA model specified via the SCM approach by removing insignificant parameters

\section*{Usage}
```

    refSCMfit(model, thres = 1)
    ```

\section*{Arguments}
\begin{tabular}{ll} 
model & Name of the model from the SCMfit command or the refSCMfit command \\
thres & Threshold for the t-ratio of individual coefficient. Default is 1.
\end{tabular}

\section*{Value}

The same as those of the command SCMfit.

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 4)

\section*{See Also}

\section*{SCMfit}
```

refsVARMA Refining a Seasonal VARMA Model

```

\section*{Description}

Refines a fitted seasonal VARMA model by setting insignificant estimates to zero

\section*{Usage}
refsVARMA(model, thres \(=0.8\) )

\section*{Arguments}
\[
\begin{array}{ll}
\text { model } & \text { An output object of the sVARMA command or the refsVARMA command } \\
\text { thres } & \text { Threshold for individual t-ratio. Default is } 0.8
\end{array}
\]

\section*{Details}

The command removes simultaneously all parameters with \(t\)-ratio less than the threshold in modulus.

\section*{Value}

The same as those of the command sVARMA

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6)

\section*{See Also}
sVARMA

\section*{Description}

Refine a fitted VAR model by removing simultaneously insignificant parameters

\section*{Usage}
refVAR(model, fixed \(=\) NULL, thres = 1)

\section*{Arguments}
model An output object of the command VAR or the refVAR command
fixed A logical matrix for VAR polynomial structure
thres \(\quad\) Threshold used to set parameter to zero. Default is 1.

\section*{Details}

Refine a VAR fitting by setting all estimates with t-ratio less than the threshold (in modulus) to zero.

\section*{Value}

The same as those of the command VAR

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 2)

\section*{See Also}

VAR

\section*{Examples}
```

data("mts-examples",package="MTS")
gdp=log(qgdp[,3:5])
zt=diffM(gdp)
m1=VAR(zt,3)
m2=refVAR(m1,thres=1.0)
names(m2)

```
refVARMA Refining VARMA Estimation

\section*{Description}

Refines a fitted VARMA model by setting insignificant estimates to zero

\section*{Usage}
refVARMA(model, thres = 1.5)

\section*{Arguments}
model An output object from the command VARMA or the command refVARMA
thres A threshold value for individual t-ratio of the estimates.

\section*{Details}

The program simultaneously sets estimates with t-ratios less than the threshold (in modulus) to zero.

\section*{Value}

The same as those of the command VARMA.

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VARMA

\section*{refVARX Refining a VARX Model}

\section*{Description}

Refine a fitted VARX model by setting insignificant parameters to zero

\section*{Usage}
\(\operatorname{refVARX}(m 1\), thres \(=1)\)

\section*{Arguments}
m1 An output object of the VARX command or the refVARX command
thres A threshold for the individual t -ratio. Default is 1.

\section*{Details}

The program sets simultaneously all estimates with t-ratio less than threshold (in modulus) to zero and re-estimate the VARX model.

\section*{Value}

The same as those of the command VARX.

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VARX
refVMA \(\quad\) Refining VMA Models

\section*{Description}

Refines a fitted VMA model by setting insignificant parameters to zero

\section*{Usage}
refVMA(model, thres = 1)

\section*{Arguments}
\(\begin{array}{ll}\text { model } & \text { An output object from the command VMA or the refVMA command } \\ \text { thres } & \text { A threshold for individual t-ratio of parameter estimate. Default is } 1 .\end{array}\)

\section*{Details}

The program simultaneously sets all estimates with t-ratios less than the threshold (in modulus) to zero.

\section*{Value}

The same as those of the command VMA.

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VMA

\section*{Description}

Refines a fitted VMA model via the VMAe command by setting insignificant parameters to zero

\section*{Usage}
refVMAe(model, thres = 1)

\section*{Arguments}
\[
\begin{array}{ll}
\text { model } & \text { An output object of the command VMAe or the command refVMAe itself } \\
\text { thres } & \text { A threshold for individual t-ratio of parameter estimates. Default is } 1 .
\end{array}
\]

\section*{Details}

The program sets simultaneously all estimates with t-ratios less than the threshold (in modulus) to zero.

\section*{Value}

The same as those of the command VMAe.

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

See Also
VMAe, refVMA

REGts Regression Model with Time Series Errors

\section*{Description}

Perform the maximum likelihood estimation of a multivariate linear regression model with timeseries errors

\section*{Usage}

REGts(zt, p, xt, include.mean \(=T\), fixed = NULL, par = NULL, se. par = NULL, details = F)

\section*{Arguments}
zt A T-by-k data matrix of a k-dimensional time series
\(\mathrm{p} \quad\) The VAR order
\(x t \quad\) A T-by-v data matrix of independent variables, where \(v\) denotes the number of independent variables (excluding constant 1).
include.mean A logical switch to include the constant term. Default is to include the constant term.
fixed A logical matrix used to set parameters to zero
par Initial parameter estimates of the beta coefficients, if any.
se.par Standard errors of the parameters in par, if any.
details A logical switch to control the output

\section*{Details}

Perform the maximum likelihood estimation of a multivariate linear regression model with time series errors. Use multivariate linear regression to obtain initial estimates of regression coefficients if not provided

\section*{Value}
data The observed k-dimensional time series
\(x t \quad\) The data matrix of independent variables
aror VAR order
include.mean Logical switch for the constant vector
Phi The VAR coefficients
se.Phi The standard errors of Phi coefficients
beta The regression coefficients
se.beta The standard errors of beta
residuals The residual series
Sigma Residual covariance matrix
coef Parameter estimates, to be used in model simplification.
se.coef Standard errors of parameter estimates

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken NJ.
```

REGtspred

```

Prediction of a fitted regression model with time series errors

\section*{Description}

Perform prediction of a REGts model

\section*{Usage}

REGtspred(model, newxt, \(\mathrm{h}=1\), orig=0)

\section*{Arguments}
model An output of the REGts command for a vector time series with exogenous variables
newxt The new data matrix of the exogenous variables. It must be of the same dimension as the original exogenous variables and of length at least \(h\) (the forecast horizon).
orig The forecast origin. The default is zero indicating that the origin is the last observation.
h The forecast horizon. For a given h, it computes 1-step to h-step ahead forecasts. Default is 1 .

\section*{Details}

Perform prediction of a fitted REGts model

\section*{Value}
pred Forecasts
se.err Standard errors of forecasts
rmse Root mean squares of forecast errors
rmse Root mean squared forecast errors
orig Return the forecast origin

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
\begin{tabular}{ll}
\hline RLS \(\quad\) Recursive Least Squares \\
\hline
\end{tabular}

\section*{Description}

Compute recursive least squares estimation

\section*{Usage}

RLS (y, x, ist = 30, xpxi = NULL, xpy0 = NULL)

\section*{Arguments}
\begin{tabular}{ll}
\(y\) & data of dependent variable \\
\(x\) & data matrix of regressors \\
ist & initial number of data points used to start the estimation \\
xpxi & Inverse of the \(X^{\prime} X\) matrix \\
xpy0 & Initial value of \(X^{\prime} y\).
\end{tabular}

\section*{Value}
\begin{tabular}{ll} 
beta & Time-varying regression coefficient estimates \\
resi & The residual series of recursive least squares estimation
\end{tabular}

\section*{Note}

This function is used internally, but can also be used as a command.

\section*{Author(s)}

Ruey S. Tsay

SCCor Sample Constrained Correlations

\section*{Description}

Compute the sample constrained correlation matrices

\section*{Usage}

SCCor(rt,end, span,grp)

\section*{Arguments}
\begin{tabular}{ll} 
rt & A T-by-k data matrix of a k-dimensional time series \\
end & \begin{tabular}{l} 
The time index of the last data point to be used in computing the sample corre- \\
lations.
\end{tabular} \\
span & The size of the data span used to compute the correlations. \\
grp & \begin{tabular}{l} 
A vector of group sizes. The time series in the same group are pooled to compute \\
the correlation matrix.
\end{tabular}
\end{tabular}

\section*{Value}
\(\begin{array}{ll}\text { unconCor } & \text { Un-constrained sample correlation matrix } \\ \text { conCor } & \text { Constrained sample correlation matrix }\end{array}\)

\section*{Note}

This is an internal function, not intended to be a general command

\section*{Author(s)}

Ruey S. Tsay

\section*{Examples}
```

rt=matrix(rnorm(1000),200,5)
grp=c(3,2)
m1=SCCor(rt, 200, 200,grp)
m1$unconCor
m1$conCor

```

\section*{SCMfit}

Scalar Component Model Fitting

\section*{Description}

Perform estimation of a VARMA model specified via the SCM approach

\section*{Usage}

SCMfit(da, scms, Tdx, include.mean = T, fixed = NULL, prelim = F, details \(=\mathrm{F}\), thres \(=1\), ref \(=0\), SCMpar=NULL, seSCMpar=NULL)

\section*{Arguments}
da
scms A k-by-2 matrix of the orders of SCMs
Tdx A k-dimensional vector for locating "1" of each row in the transformation matrix.
include.mean A logical switch to include the mean vector. Default is to include mean vector.
fixed A logical matrix to set parameters to zero
prelim A logical switch for preliminary estimation. Default is false.
details A logical switch to control details of output
thres Threshold for individual t-ratio when setting parameters to zero. Default is 1 .
ref A switch to use SCMmod in model specification.
SCMpar Parameter estimates of the SCM model, to be used in model refinement
seSCMpar \(\quad\) Standard errors of the parameter estimates in SCMpar

\section*{Details}

Perform conditional maximum likelihood estimation of a VARMA model specified by the scalar component model approach, including the transformation matrix.
\begin{tabular}{ll} 
Value & \\
data & Observed time series \\
SCMs & The specified SCMs \\
Tdx & Indicator vector for the transformation matrix. The length of Tdx is k. \\
locTmtx & Specification of estimable parameters of the transformation matrix \\
locAR & Locators for the estimable parameters of the VAR coefficients \\
locMA & Locators for the estimable parameters of the VMA coefficients \\
cnst & A logical switch to include the constant vector in the model
\end{tabular}
\begin{tabular}{ll} 
coef & The parameter estimates \\
secoef & Standard errors of the parameter estimates \\
residuals & Residual series \\
Sigma & Residual covariance matrix \\
aic, bic & Information criteria of the fitted model \\
Ph0 & Estimates of the constant vector, if any \\
Phi & Estimates of the VAR coefficients \\
Theta & Estimates of the VMA coefficients
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{SCMid Scalar Component Identification}

\section*{Description}

Find the overall order of a VARMA process via the scalar component model approach

\section*{Usage}

SCMid(zt, maxp \(=5, \operatorname{maxq}=5, \mathrm{~h}=0\), crit \(=0.05\), output \(=\) FALSE)

\section*{Arguments}
zt The T-by-k data matrix of a k-dimensional time series
\(\operatorname{maxp} \quad\) Maximum AR order entertained. Default is 5.
maxq Maximum MA order entertained. Default is 5 .
h The additional past lags used in canonical correlation analysis. Default is 0 .
crit Type-I error of the chi-square tests used.
output A logical switch to control the output.

Value
Nmtx The table of the numbers of zero canonical correlations
DDmtx
The diagonal difference table of the number of zero canonical correlations

\section*{Author(s)}

\author{
Ruey S. Tsay
}

\section*{References}

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
```

phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); sigma=diag(2)
m1=VARMAsim(300,arlags=c(1),phi=phi,sigma=sigma)
zt=m1\$series
m2=SCMid(zt)

```

\section*{Description}

Provides detailed analysis of scalar component models for a specified VARMA model. The overall model is specified by SCMid.

\section*{Usage}

SCMid2(zt, \(\operatorname{maxp}=2, \operatorname{maxq}=2, h=0\), crit \(=0.05\), sseq \(=\) NULL)

\section*{Arguments}
zt
\(\operatorname{maxp}\)
\(\operatorname{maxq} \quad\) Maximum MA order specified. Default is 2.
h
crit
sseq The search sequence for SCM components. Default sequence starts with AR order.

\section*{Value}

Tmatrix The transformation matrix T
SCMorder The orders of SCM components

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

SCMid

\section*{Examples}
```

phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); sigma=diag(2)
m1=VARMAsim(300,arlags=c(1),phi=phi,sigma=sigma)
zt=m1\$series
m2=SCMid2(zt)
names(m2)

```
SCMmod Scalar Component Model specification

\section*{Description}

For a given set of SCMs and locator of transformation matrix, the program specifies a VARMA model via SCM approach for estimation

\section*{Usage}

SCMmod(order, Ivor, output)

\section*{Arguments}
order
Ivor
output A logical switch to control output.

\section*{Details}

The command specified estimable parameters for a VARMA model via the SCM components. In the output, " 2 " denotes estimation, " 1 " denotes fixing the value to 1 , and " 0 " means fixing the parameter to zero.

\section*{Value}
\begin{tabular}{ll} 
Tmtx & Specification of the transformation matrix T \\
ARpar & Specification of the VAR parameters \\
MApar & Specification of the VMA parameters
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
```

ord=matrix(c(0,1,1,0,0,1),3,2)
Ivor=c(3,1,2)
m1=SCMmod(ord,Ivor,TRUE)

```
sVARMA Seasonal VARMA Model Estimation

\section*{Description}

Performs conditional maximum likelihood estimation of a seasonal VARMA model

\section*{Usage}
sVARMA(da, order, sorder, s, include.mean = T, fixed = NULL, details = F, switch = F)

\section*{Arguments}
da A T-by-k data matrix of a k-dimensional seasonal time series
order Regular order ( \(\mathrm{p}, \mathrm{d}, \mathrm{q}\) ) of the model
sorder Seasonal order (P,D,Q) of the model
\(s \quad\) Seasonality. \(s=4\) for quarterly data and \(s=12\) for monthly series
include.mean A logical switch to include the mean vector. Default is to include the mean
fixed A logical matrix to set zero parameter constraints
details A logical switch for output
switch A logical switch to exchange the ordering of the regular and seasonal VMA factors. Default is theta(B)*Theta(B).

\section*{Details}

Estimation of a seasonal VARMA model

Value
\begin{tabular}{ll} 
data & The data matrix of the observed k-dimensional time series \\
order \\
sorder & The regular order (p,d,q) \\
period & The seasonal order (P,D,Q) \\
cnst & Seasonality \\
ceof & A logical switch for the constant term \\
secoef & Parameter estimates for use in model simplification \\
residuals & Standard errors of the parameter estimates \\
Sigma & Residual series \\
aic, bic & Residual covariance matrix \\
regPhi & Information criteria of the fitted model \\
seaPhi & Seasonal AR coefficients \\
regTheta & Regular MA coefficients \\
seaTheta & Seasonal MA coefficients \\
Ph0 & The constant vector, if any \\
switch & The logical switch to change the ordering of matrix product
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
sVARMACpp Seasonal VARMA Model Estimation (Cpp)

\section*{Description}

Performs conditional maximum likelihood estimation of a seasonal VARMA model. This is the same function as sVARMA, with the likelihood function implemented in C++ for efficiency.

\section*{Usage}
sVARMACpp(da, order, sorder, s, include.mean \(=\) T, fixed \(=\) NULL, details \(=F\), switch \(=\) F)

\section*{Arguments}
\begin{tabular}{ll} 
da & A T-by-k data matrix of a k-dimensional seasonal time series \\
order & Regular order \((\mathrm{p}, \mathrm{d}, \mathrm{q})\) of the model \\
sorder & Seasonal order (P,D,Q) of the model \\
s & Seasonality. \(\mathrm{s}=4\) for quarterly data and \(\mathrm{s}=12\) for monthly series \\
include.mean & A logical switch to include the mean vector. Default is to include the mean \\
fixed & A logical matrix to set zero parameter constraints \\
details & A logical switch for output \\
switch & \begin{tabular}{l} 
A logical switch to exchange the ordering of the regular and seasonal VMA \\
factors. Default is theta(B)*Theta(B).
\end{tabular}
\end{tabular}

\section*{Details}

Estimation of a seasonal VARMA model

\section*{Value}
\begin{tabular}{ll} 
data & The data matrix of the observed k-dimensional time series \\
order \\
sorder \\
period & The regular order (p,d,q) \\
cnst & The seasonal order (P,D,Q) \\
ceof & Seasonality \\
secoef & A logical switch for the constant term \\
residuals & Parameter estimates for use in model simplification \\
Sigma & Standard errors of the parameter estimates \\
aic, bic & Residual covariance matrix \\
regPhi & Information criteria of the fitted model \\
seaPhi & Regular AR coefficients, if any \\
regTheta & Seasonal AR coefficients \\
seaTheta & Regular MA coefficients \\
Ph0 & Seasonal MA coefficients \\
switch & The constant vector, if any \\
& The logical switch to change the ordering of matrix product
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}
sVARMA

\section*{Description}

Perform prediction of a seasonal VARMA model

\section*{Usage}
sVARMApred(model, orig, h=1)

\section*{Arguments}
\[
\begin{array}{ll}
\text { model } & \text { An output of the sVARMA command } \\
\text { orig } & \text { The forecast origin. } \\
\mathrm{h} & \text { The forecast horizon. For a given } h, \text { it computes 1-step to h-step ahead forecasts. } \\
& \text { Default is } 1 .
\end{array}
\]

\section*{Details}

Perform prediction of a fitted sVARMA model

\section*{Value}
\begin{tabular}{ll} 
data & The original data matrix \\
pred & Forecasts \\
se.err & Standard errors of forecasts \\
orig & Return the forecast origin
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Description}

Uses the diffusion index approach of Stock and Watson to compute out-of-sample forecasts

\section*{Usage}

SWfore(y, x, orig, m)

\section*{Arguments}
\(y \quad\) The scalar variable of interest
\(x \quad\) The data matrix (T-by-k) of the observed explanatory variables
orig Forecast origin
m The number of diffusion index used

\section*{Details}

Performs PCA on X at the forecast origin. Then, fit a linear regression model to obtain the coefficients of prediction equation. Use the prediction equation to produce forecasts and compute forecast errors, if any. No recursive estimation is used.
\begin{tabular}{ll} 
Value & \\
coef & Regression coefficients of the prediction equation \\
yhat & Predictions at the forecast origin \\
MSE & Mean squared errors, if available \\
loadings & Loading matrix \\
DFindex & Diffusion indices
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Description}

Monthly simple returns of ten U.S. stocks. The sample period is from January 2001 to December 2011. Tick symbols of the ten stocks are used as column names for the returns.

\section*{Format}

A 2-d list containing \(132 \times 11\) observations.

\section*{Source}

The original data were from Center for Research in Security Prices (CRSP) of the University of Chicago. The first column denotes the dates.
tfm Transfer Function Model

\section*{Description}

Estimates a transform function model. This program does not allow rational transfer function model. It is a special case of tfm 1 and tfm 2 .

\section*{Usage}
\(\operatorname{tfm}(y, x, b=0, s=1, p=0, q=0)\)

\section*{Arguments}
y
x
b deadtime or delay
s The order of the transfer function polynomial
\(\mathrm{p} \quad\) AR order of the disturbance
q MA order of the disturbance

\section*{Details}

The model entertained is \(y_{-} t=c \_0+v(B) x \_t+n \_t . v(B)=1-v 1 * B-\ldots-v s * B^{\wedge} s\), and \(n_{-} t\) is an ARMA(p,q) process.

\section*{Value}
\begin{tabular}{ll} 
coef & Coefficient estimates of the transfer function \\
se.coef & Standard errors of the transfer function coefficients \\
coef.arma & Coefficient estimates of ARMA models \\
se.arma & Standard errors of ARMA coefficients \\
nt & The disturbance series \\
residuals & The residual series
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd edition, Prentice Hall, Englewood Cliffs, NJ.
```

tfm1 Transfer Function Model with One Input

```

\section*{Description}

Estimation of a general transfer function model. The model can only handle one input and one output.

\section*{Usage}
tfm1 (y, \(x\), orderN, order \(X)\)

\section*{Arguments}
y
Data vector of dependent variable
x
Data vector of input (or independent) variable
orderN
Order ( \(\mathrm{p}, \mathrm{d}, \mathrm{q}\) ) of the disturbance component
orderX
Order ( \(\mathrm{r}, \mathrm{s}, \mathrm{b}\) ) of the transfer function model, where r and s are the degrees of denominator and numerator polynomials and \(b\) is the delay

\section*{Details}

Perform estimation of a general transfer function model

\section*{Value}
\begin{tabular}{ll} 
estimate & Coefficient estimates \\
sigma2 & Residual variance sigma-square \\
residuals & Residual series \\
varcoef & Variance of the estimates \\
Nt & The disturbance series
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd edition, Prentice Hall, Englewood Cliffs, NJ.

\section*{See Also}
tfm

\section*{Examples}
\#\#da=read.table("gasfur.txt")
\#\#y=da[,2]; x=da[,1]
\(\# \# m 1=\operatorname{tfm} 1(y, x, \operatorname{order} X=c(1,2,3), \operatorname{orderN}=c(2,0,0))\)
tfm2 Transfer Function Model with Two Input Variables

\section*{Description}

Estimation of a general transfer function model with two input variables. The model can handle one output and up-to 2 input variables. The time series noise can assume multiplicative seasonal ARMA models.

\section*{Usage}
\(\operatorname{tfm2}(y, x, x 2=N U L L, c t=N U L L, w t=N U L L, \operatorname{orderN}=c(1,0,0), \operatorname{orderS}=c(0,0,0)\), sea \(=12\), order \(1=c(0,1,0), \operatorname{order} 2=c(0,-1,0))\)

\section*{Arguments}
\begin{tabular}{ll}
y & Data vector of dependent variable \\
x & Data vector of the first input (or independent) variable \\
x 2 & Data vector of the second input variable if any \\
ct & Data vector of a given deterministic variable such as time trend, if any \\
wt & Data vector of co-integrated series between input and output variables if any \\
orderN & \begin{tabular}{l} 
Order (p,d,q) of the regular ARMA part of the disturbance component
\end{tabular} \\
orders & \begin{tabular}{l} 
Order (P,D,Q) of the seasonal ARMA part of the disturbance component
\end{tabular} \\
sea & \begin{tabular}{l} 
Seasonality, default is 12 for monthly data \\
order1
\end{tabular} \\
\begin{tabular}{l} 
Order (r,s,b) of the transfer function model of the first input variable, where r \\
and s are the degrees of denominator and numerator polynomials and b is the \\
delay
\end{tabular} \\
order2 & \begin{tabular}{l} 
Order (r2,s2,b2) of the transfer function model of the second input variable, \\
where \(2 \mathrm{rand} s 2\) are the degrees of denominator and numerator polynomials and \\
b 2 is the delay
\end{tabular}
\end{tabular}

\section*{Details}

Perform estimation of a general transfer function model with two input variables

\section*{Value}
\begin{tabular}{ll} 
estimate & Coefficient estimates \\
sigma2 & Residual variance sigma-square \\
residuals & Residual series \\
varcoef & Variance of the estimates \\
Nt & The disturbance series \\
rAR & Regular AR coefficients \\
rMA & Regular MA coefficients \\
sAR & Seasonal AR coefficients \\
sMA & Seasonal MA coefficients \\
omega & Numerator coefficients of the first transfer function \\
delta & Denominator coefficients of the first transfer function \\
omega2 & Numerator coefficients of the 2nd transfer function \\
delta2 & Denominator coefficients of the 2nd transfer function
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd edition, Prentice Hall, Englewood Cliffs, NJ.

\section*{See Also}
tfm, tfm1
VAR Vector Autoregressive Model

\section*{Description}

Perform least squares estimation of a VAR model

\section*{Usage}
\(\operatorname{VAR}(x, p=1\), output \(=T\), include.mean \(=T\), fixed \(=\) NULL)

\section*{Arguments}

X
\(\mathrm{p} \quad\) Order of VAR model. Default is 1.
output
include.mean A logical switch. It is true if mean vector is estimated.
fixed A logical matrix used in constrained estimation. It is used mainly in model simplification, e.g., removing insignificant estimates.

\section*{Details}

To remove insignificant estimates, one specifies a threshold for individual t-ratio. The fixed matrix is then defined automatically to identify those parameters for removal.

Value
\begin{tabular}{ll} 
data & Observed data \\
cnst & A logical switch to include the mean constant vector \\
order & VAR order \\
coef & Coefficient matrix \\
aic, bic, hq & Information criteria of the fitted model \\
residuals & Residuals \\
secoef & Standard errors of the coefficients to be used in model refinement \\
Sigma & Residual covariance matrix \\
Phi & AR coefficient polynomial \\
Ph0 & The constant vector
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}
refVAR command

\section*{Examples}
```

data("mts-examples",package="MTS")
gdp=log(qgdp[,3:5])
zt=diffM(gdp)
m1=VAR(zt,p=2)

```
VARMA Vector Autoregressive Moving-Average Models

\section*{Description}

Performs conditional maximum likelihood estimation of a VARMA model. Multivariate Gaussian likelihood function is used.

\section*{Usage}

VARMA(da, \(p=0, q=0\), include.mean \(=T\), fixed \(=\) NULL, beta=NULL, sebeta=NULL, prelim \(=F\), details \(=F\), thres \(=2\) )

\section*{Arguments}
\begin{tabular}{ll} 
da & Data matrix (T-by-k) of a k-dimensional time series with sample size T. \\
p & AR order \\
q & MA order \\
include.mean & \begin{tabular}{l} 
A logical switch to control estimation of the mean vector. Default is to include \\
the mean in estimation.
\end{tabular} \\
fixed & \begin{tabular}{l} 
A logical matrix to control zero coefficients in estimation. It is mainly used by \\
the command refVARMA.
\end{tabular} \\
beta & \begin{tabular}{l} 
Parameter estimates to be used in model simplification, if needed
\end{tabular} \\
sebeta & \begin{tabular}{l} 
Standard errors of parameter estimates for use in model simplification
\end{tabular} \\
prelim & \begin{tabular}{l} 
A logical switch to control preliminary estimation. Default is none.
\end{tabular} \\
details & \begin{tabular}{l} 
A logical switch to control the amount of output.
\end{tabular} \\
thres & \begin{tabular}{l} 
A threshold used to set zero parameter constraints based on individual t-ratio. \\
Default is 2.
\end{tabular}
\end{tabular}

\section*{Details}

The fixed command is used for model refinement

\section*{Value}
\begin{tabular}{ll} 
data & Observed data matrix \\
ARorder & VAR order \\
MAorder & VMA order \\
cnst & A logical switch to include the mean vector \\
coef & Parameter estimates \\
secoef & Standard errors of the estimates \\
residuals & Residual matrix \\
Sigma & Residual covariance matrix \\
aic, bic & Information criteria of the fitted model \\
Phi & VAR coefficients \\
Theta & VMA coefficients \\
Ph0 & The constant vector
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}
refVARMA

\section*{Examples}
```

phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); theta=matrix(c(-0.5,0,0,-0.5),2,2)
sigma=diag(2)
m1=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi, theta=theta, sigma=sigma)
zt=m1\$series
m2=VARMA(zt, p=1,q=1,include.mean=FALSE)

```

\section*{Description}

Uses psi-weights to compute the autocovariance matrices of a VARMA model

\section*{Usage}
```

VARMAcov(Phi = NULL, Theta = NULL, Sigma = NULL, lag = 12, trun = 120)

```

\section*{Arguments}

Phi A k-by-kp matrix consisting of VAR coefficient matrices, Phi \(=[\) Phi1, Phi2,\(\ldots\), Phip].
Theta A k-by-kq matrix consisting of VMA coefficient matrices, Theta \(=[\) Theta1, Theta2, ..., Thetaq]
Sigma Covariance matrix of the innovations (k-by-k).
lag \(\quad\) Number of cross-covariance matrices to be computed. Default is 12 .
trun The lags of pis-weights used in calculation. Default is 120.

\section*{Details}

Use psi-weight matrices to compute approximate autocovariance matrices of a VARMA model.

\section*{Value}
autocov Autocovariance matrices
ccm Auto correlation matrices

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
```

Phi=matrix(c(0.2,-0.6,0.3,1.1),2,2)
Sig=matrix(c(4,1,1,1),2,2)
VARMAcov(Phi=Phi,Sigma=Sig)

```

\section*{Description}

Performs conditional maximum likelihood estimation of a VARMA model. Multivariate Gaussian likelihood function is used. This is the same function as VARMA, with the likelihood function implemented in C++ for efficiency.

\section*{Usage}
```

VARMACpp(da, p = 0, q = 0, include.mean = T,
fixed = NULL, beta=NULL, sebeta=NULL,
prelim = F, details = F, thres = 2)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline da & Data matrix (T-by-k) of a k-dimensional time series with sample size T. \\
\hline p & AR order \\
\hline q & MA order \\
\hline include.mean & A logical switch to control estimation of the mean vector. Default is to include the mean in estimation. \\
\hline fixed & A logical matrix to control zero coefficients in estimation. It is mainly used by the command refVARMA. \\
\hline beta & Parameter estimates to be used in model simplification, if needed \\
\hline sebeta & Standard errors of parameter estimates for use in model simplification \\
\hline prelim & A logical switch to control preliminary estimation. Default is none. \\
\hline details & A logical switch to control the amount of output. \\
\hline thres & A threshold used to set zero parameter constraints based on individual t-ratio. Default is 2 . \\
\hline
\end{tabular}

\section*{Details}

The fixed command is used for model refinement
\begin{tabular}{ll} 
Value \\
data & Observed data matrix \\
ARorder & VAR order \\
MAorder & VMA order \\
cnst & A logical switch to include the mean vector \\
coef & Parameter estimates \\
secoef & Standard errors of the estimates
\end{tabular}
\begin{tabular}{ll} 
residuals & Residual matrix \\
Sigma & Residual covariance matrix \\
aic, bic & Information criteria of the fitted model \\
Phi & VAR coefficients \\
Theta & VMA coefficients \\
Ph0 & The constant vector
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VARMA

\section*{Examples}
```

phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); theta=matrix(c(-0.5,0,0,-0.5),2,2)
sigma=diag(2)
m1=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi,theta=theta,sigma=sigma)
zt=m1\$series
m2=VARMA(zt,p=1,q=1,include.mean=FALSE)

```
```

VARMAirf
Impulse Response Functions of a VARMA Model

```

\section*{Description}

Compute and plot the impulse response function of a given VARMA model

\section*{Usage}

VARMAirf(Phi \(=\) NULL, Theta \(=\) NULL, Sigma \(=\) NULL, lag \(=12\), orth \(=\) TRUE \()\)

\section*{Arguments}
\begin{tabular}{ll} 
Phi & A k-by-kp matrix of VAR coefficients in the form Phi \(=[\) Phi1, Phi2, ... Phip]. \\
Theta & A k-by-kq matrix of VMA coefficients in the form Theta=[Theta1, Theta2, ..., \\
Thetaq]
\end{tabular}\(\quad\)\begin{tabular}{l} 
Covariance matrix (k-by-k) of the innovations. \\
Sigma \\
lag \\
orth
\end{tabular} \begin{tabular}{l} 
Number of lags of impulse response functions to be computed \\
A logical switch to use orthogonal innovations. Deafult is to perform orthogo- \\
nalization of the innovations.
\end{tabular}

Value
psi The Psi-weight matrices
irf Impulse response functions

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VARMApsi command

\section*{Examples}
p1=matrix (c(0.2,-0.6,0.3,1.1), 2, 2)
th1 \(=\) matrix \((c(-0.5,0.2,0.0,-0.6), 2,2)\)
Sig=matrix \((c(4,1,1,1), 2,2)\)
m1=VARMAirf(Phi=p1, Theta=th1, Sigma=Sig)
VARMApred VARMA Prediction

\section*{Description}

Compute forecasts and their associate forecast error covariances of a VARMA model

\section*{Usage}

VARMApred(model, \(\mathrm{h}=1\), orig = 0)

\section*{Arguments}
\begin{tabular}{ll} 
model & A fitted VARMA model \\
h & Number of steps of forecasts, i.e., forecast horizon. \\
orig & Forecast origin. Default is the end of the sample.
\end{tabular}

\section*{Value}
pred Predictions
se.err Standard errors of forecasts
orig Forecast origin

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
```

VARMAsim Generating a VARMA Process

```

\section*{Description}

Performs simulation of a given VARMA model

\section*{Usage}

VARMAsim(nobs, arlags \(=\) NULL, malags \(=\) NULL, cnst \(=\) NULL, phi \(=\) NULL, theta \(=\) NULL, skip \(=200\), sigma)

\section*{Arguments}
\begin{tabular}{ll} 
nobs & Sample size \\
arlags & The exact lags of the VAR matrix polynomial. \\
malags & The exact lags of the VMA matrix polynomial. \\
cnst & Constant vector, Phi0 \\
phi & Matrix of VAR coefficient matrices in the order of the given arlags. \\
theta & Matrix of VMA coefficient matrices in the order of the given malags. \\
skip & The number of initial data to be omitted. Default is 200. \\
sigma & Covariance matrix (k-by-k, positive definite) of the innovations
\end{tabular}

\section*{Details}

Use multivariate Gaussian distribution to generate random shocks. Then, generate a given VARMA model. The first skip data points were discarded.

\section*{Value}
\begin{tabular}{ll} 
series & Generated series \\
noises & The noise series
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
```

p1=matrix(c(0.2,-0.6,0.3,1.1),2,2)
sig=matrix(c(4,0.8,0.8,1),2,2)
th1=matrix(c(-0.5,0,0,-0.6),2,2)
m1=VARMAsim(300,arlags=c(1),malags=c(1),phi=p1, theta=th1, sigma=sig)
zt=m1\$series

```
VARorder VAR Order Specification

\section*{Description}

Computes information criteria and the sequential Chi-square statistics for a vector autoregressive process

\section*{Usage}

VARorder (x, maxp \(=13\), output \(=T\) )

\section*{Arguments}
x
\(\operatorname{maxp} \quad\) The maximum VAR order entertained. Default is 13 .
output A logical switch to control the output. Default is to provide output

\section*{Details}

For a given maxp, the command computes Akaike, Bayesian and Hannan-Quinn information criteria for various VAR models using the data from \(\mathrm{t}=\operatorname{maxp}+1\) to T . It also computes the Tiao-Box sequential Chi-square statistics and their p-values.

\section*{Value}
aic Akaike information criterion
bic Bayesian information criterion
hq Hannan and Quinn information criterion
aicor, bicor, hqor
Orders selected by various criteria
Mstat Chi-square test statistics
Mpv \(\quad \mathrm{p}\)-values of the Mstat

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VARorderI

\section*{Examples}
```

data("mts-examples",package="MTS")
zt=diffM(log(qgdp[,3:5]))
VARorder(zt,maxp=8)

```
VARorderI VAR order specification I

\section*{Description}

This program is similar to VARorder, but it uses observations from \(t=p+1\) to \(T\) to compute the information criteria for a given \(\operatorname{VAR}(p)\) model.

\section*{Usage}

VARorderI \((x, \operatorname{maxp}=13\), output \(=T)\)

\section*{Arguments}
x
\(\operatorname{maxp}\)
output

A T-by-k data matrix of vector time series
The maximum VAR order entertained
A logical switch to control output

\section*{Details}

For a given \(\operatorname{VAR}(\mathrm{p})\) model, the program uses observations from \(\mathrm{t}=\mathrm{p}+1\) to T to compute the information criteria. Therefore, different numbers of data points are used to estimate different VAR models.

Value
\begin{tabular}{ll} 
aic & Akaike information criterion \\
aicor & Order selected by AIC \\
bic & Bayesian information criterion \\
bicor & Order selected by BIC \\
hq & Hannan and Quinn information criterion \\
hqor & Order selected by hq \\
Mstat & Step-wise Chi-square statistics \\
Mpv & p-values of the M-statistics
\end{tabular}

\section*{Author(s)}

Ruey S Tsay

\section*{References}

Tsay (2014)

See Also
VARorder
VARpred VAR Prediction

\section*{Description}

Computes the forecasts of a VAR model, the associated standard errors of forecasts and the mean squared errors of forecasts

\section*{Usage}

VARpred(model, \(\mathrm{h}=1\), orig \(=0\), Out.level \(=\) FALSE, output \(=\) TRUE)

\section*{Arguments}
\begin{tabular}{ll} 
model & An output object of a VAR or refVAR command \\
\(h\) & Forecast horizon, a positive integer \\
orig & Forecast origin. Default is zero meaning the forecast origin is the last data point \\
Out.level & Boolean control for details of output \\
output & Boolean control for printing forecast results
\end{tabular}

\section*{Details}

Computes point forecasts and the associated variances of forecast errors

\section*{VARpsi}

\section*{Value}
pred Point predictions
se.err Standard errors of the predictions
mse Mean-square errors of the predictions

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 2). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
```

data("mts-examples",package="MTS")
gdp=log(qgdp[,3:5])
zt=diffM(gdp)
m1=VAR(zt,p=2)
VARpred(m1,4)

```
VARpsi VAR Psi-weights

\section*{Description}

Computes the psi-weight matrices of a VAR model

\section*{Usage}

VARpsi(Phi, lag = 5)

\section*{Arguments}

Phi A k-by-kp matrix of VAR coefficients in the form Phi=[Phi1, Phi2, ..., Phip]
lag Number of psi-weight lags

\section*{Value}

Psi-weights of a VAR model

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 2). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
```

p1=matrix(c(0.2,-0.6,0.3,1.1),2,2)
m1=VARpsi(p1,4)
names(m1)

```
VARs VAR Model with Selected Lags

\section*{Description}

This is a modified version of VAR command by allowing the users to specify which AR lags to be included in the model.

\section*{Usage}

VARs(x, lags, include.mean \(=\mathrm{T}\), output \(=\mathrm{T}\), fixed \(=\) NULL)

\section*{Arguments}
\(x \quad\) A T-by-k data matrix of \(k\)-dimensional time series with T observations
lags A vector of non-zero AR lags. For instance, lags=c(1,3) denotes a VAR(3) model with Phi2 \(=0\).
include.mean A logical switch to include the mean vector
output
A logical switch to control output
fixed A logical matrix to fix parameters to zero.

\section*{Details}

Performs VAR estimation by allowing certain lag coefficient matrices being zero.
\begin{tabular}{ll} 
Value & \\
data & Observed time series data \\
lags & The selected VAR lags \\
order & The VAR order \\
cnst & A logical switch to include the mean vector \\
coef & Parameter estimates \\
aic, bic & Information criteria of the fitted model \\
residuals & Residual series
\end{tabular}
\begin{tabular}{ll} 
secoef & Standard errors of the estimates \\
Sigma & Residual covariance matrix \\
Phi & VAR coefficient matrix \\
Ph0 & A constant vector
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 2). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VAR command

\section*{Examples}
```

data("mts-examples",package="MTS")
zt=log(qgdp[,3:5])
m1=VARs(zt,lags=c(1,2,4))

```
VARX VAR Model with Exogenous Variables

\section*{Description}

Estimation of a VARX model

\section*{Usage}
\(\operatorname{VARX}(z t, p, x t=N U L L, m=0\), include.mean \(=T\), fixed \(=\) NULL, output \(=T)\)

\section*{Arguments}
zt A T-by-k data matrix of a k-dimensional time series
\(\mathrm{p} \quad\) The VAR order
\(x t \quad\) A T-by-kx data matrix of kx exogenous variables
\(m \quad\) The number of lags of exogenous variables
include.mean A logical switch to include the constant vector. Default is to include the constant.
fixed
A logical matrix for setting parameters to zero.
output A logical switch to control output

\section*{Details}

Performs least squares estimation of a VARX \((\mathrm{p}, \mathrm{s})\) model
\begin{tabular}{ll} 
Value & \\
data & The observed time series \\
xt & The data matrix of explanatory variables \\
aror & VAR order \\
\(m\) & The number of lags of explanatory variables used \\
Ph0 & The constant vector \\
Phi & VAR coefficient matrix \\
beta & The regression coefficient matrix \\
residuals & Residual series \\
coef & The parameter estimates to be used in model simplification \\
se.coef & Standard errors of the parameter estimates \\
include.mean & A logical switch to include the mean vector
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
VARXirf Impluse response function of a fitted VARX model

\section*{Description}

Compute the impulse response functions and cumulative impulse response functions of a fitted VARX model

\section*{Usage}

VARXirf(model,lag=12,orth=TRUE)

\section*{Arguments}
model An output of the VARX (or refVARX) command for a vector time series with exogeneous variables
lag The number of lags of the impulse response function to be computed. Default is 12.
orth The control variable for using orthogonal innovations. This command applies to the impulse response functions of the VAR part only.

\section*{Details}

Compute the impulse response functions and cumulative impulse response functions of a fitted VARX model. The impulse response function of the exogeneous variables are also given. The plots of impulse response functions are shown.

\section*{Value}
irf Impulse response functions of the VAR part, original innovations used
orthirf Impulse response functions of the VAR part using orthogonal innovations
irfX Impulse response function of the exogenous variables

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
```

VARXorder VARX Order Specification

```

\section*{Description}

Specifies the orders of a VARX model, including AR order and the number of lags of exogenous variables

\section*{Usage}

VARXorder \((x\), exog, \(\operatorname{maxp}=13, \operatorname{maxm}=3\), output \(=T\) )

\section*{Arguments}
x
exog
\(\operatorname{maxp} \quad\) The maximum VAR order entertained
maxm The maximum lags of exogenous variables entertained
output A logical switch to control output
A T-by-k data matrix of a k-dimensional time series
A T-by-v data matrix of exogenous variables

\section*{Details}

Computes the information criteria of a VARX process

\section*{Value}
\begin{tabular}{ll} 
aic & Akaike information criterion \\
aicor & Order selected by AIC \\
bic & Bayesian information criterion \\
bicor & Order selected by BIC \\
hq & Hannan and Quinn information criterion \\
hqor & Order selected by hq
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
```

VARXpred VARX Model Prediction

```

\section*{Description}

Computes point forecasts of a VARX model. The values of exogenous variables must be given.

\section*{Usage}

VARXpred(m1, newxt \(=\) NULL, hstep \(=1\), orig = 0)

\section*{Arguments}
\begin{tabular}{ll} 
m1 & An output object of VARX or refVARX command \\
newxt & The data matrix of exogenous variables needed in forecasts. \\
hstep & Forecast horizon \\
orig & Forecast origin. Default is 0, meaning the last data point.
\end{tabular}

\section*{Details}

Uses the provided exogenous variables and the model to compute forecasts

\section*{Value}

Point forecasts and their standard errors

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
\begin{tabular}{l} 
Vech \(\quad\) Half-Stacking Vector of a Symmetric Matrix \\
\hline
\end{tabular}

\section*{Description}

Obtain the half-stacking vector of a symmetric matrix

\section*{Usage}
\(\operatorname{Vech}(m t x)\)

\section*{Arguments}
\(m t x \quad\) A symmetric matrix

\section*{Details}

Stacking a matrix into a vector using data on and below the diagonal.

\section*{Value}
a vector consisting of stacked elements of a symmetric matrix

\section*{Author(s)}

Ruey S. Tsay

\section*{Examples}
```

m1=matrix(c(1:9),3,3)
m2=(m1+t(m1))/2
v1=Vech(m2)

```

VechM
Matrix constructed from output of the Vech Command. In other words, restore the original symmetric matrix from its half-stacking vector.

\section*{Description}

Restores the symmetric matrix from the Vech command

\section*{Usage}

VechM(vec)

\section*{Arguments}
vec A vector representing the half-stacking of a symmetric matrix

\section*{Details}

This command re-construct a symmetric matrix from output of the Vech command

\section*{Value}

A symmetric matrix

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Appendix A)

\section*{See Also}

Vech

\section*{Examples}
```

v1=c(2,1,3)
m1=VechM(v1)
m1

```

\section*{Description}

Performs VMA estimation using the conditional multivariate Gaussian likelihood function

\section*{Usage}
```

VMA(da, q = 1, include.mean = T, fixed = NULL,
beta=NULL, sebeta=NULL, prelim = F,
details = F, thres = 2)

```

\section*{Arguments}
da Data matrix of a k-dimensional VMA process with each column containing one time series
q
The order of VMA model
include.mean A logical switch to include the mean vector. The default is to include the mean vector in estimation.
fixed A logical matrix used to fix parameter to zero
beta Parameter estimates for use in model simplification
sebeta Standard errors of parameter estimates for use in model simplification
prelim A logical switch to select parameters to be included in estimation
details A logical switch to control the amount of output
thres \(\quad\) Threshold for t -ratio used to fix parameter to zero. Default is 2 .

\section*{Value}
dat
MAorder
cnst
coef Parameter estimates
secoef Standard errors of the parameter estimates
residuals Residual series
Sigma Residual covariance matrix
Theta The VAR coefficient matrix
mu The constant vector
aic,bic The information criteria of the fitted model

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3).

\section*{Examples}
```

theta=matrix(c(0.5,0.4,0,0.6),2,2); sigma=diag(2)
m1=VARMAsim(200,malags=c(1), theta=theta,sigma=sigma)
zt=m1\$series
m2=VMA(zt,q=1,include.mean=FALSE)

```
VMACpp Vector Moving Average Model (Cpp)

\section*{Description}

Performs VMA estimation using the conditional multivariate Gaussian likelihood function. This is the same function as VMA, with the likelihood function implemented in \(\mathrm{C}++\) for efficiency.

\section*{Usage}

VMACpp(da, q = 1, include.mean \(=\mathrm{T}\), fixed \(=\) NULL, beta=NULL, sebeta=NULL, prelim = F, details = F, thres = 2)

\section*{Arguments}
da Data matrix of a k-dimensional VMA process with each column containing one time series
q The order of VMA model
include.mean A logical switch to include the mean vector. The default is to include the mean vector in estimation.
fixed A logical matrix used to fix parameter to zero
beta Parameter estimates for use in model simplification
sebeta Standard errors of parameter estimates for use in model simplification
prelim A logical switch to select parameters to be included in estimation
details A logical switch to control the amount of output
thres \(\quad\) Threshold for t -ratio used to fix parameter to zero. Default is 2.

Value
\begin{tabular}{ll} 
data & The data of the observed time series \\
MAorder & The VMA order \\
cnst & A logical switch to include the mean vector \\
coef & Parameter estimates \\
secoef & Standard errors of the parameter estimates \\
residuals & Residual series \\
Sigma & Residual covariance matrix \\
Theta & The VAR coefficient matrix \\
mu & The constant vector \\
aic, bic & The information criteria of the fitted model
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3).

\section*{See Also}

VMA

\section*{Examples}
theta=matrix(c(0.5,0.4,0,0.6),2,2); sigma=diag(2)
\(\mathrm{m} 1=\) VARMAsim(200, malags=c(1), theta=theta, sigma=sigma)
zt=m1\$series
m2=VMACpp(zt, q=1, include.mean=FALSE)
```

VMAe VMA Estimation with Exact likelihood

```

\section*{Description}

Estimation of a VMA(q) model using the exact likelihood method. Multivariate Gaussian likelihood function is used.

\section*{Usage}

VMAe(da, \(q=1\), include.mean \(=T\), coef0 \(=\) NULL, secoef0 \(=\) NULL, fixed \(=\) NULL, prelim \(=\) F, details = F, thres = 2)

\section*{Arguments}
da Data matrix (T-by-k) for a k-dimensional VMA process
q
include.mean
coef0
secoef0
fixed
prelim
details
thres

Value
\begin{tabular}{ll} 
data & The observed time series \\
MAorder & The VMA order \\
cnst & A logical switch to include the mean vector \\
coef & Parameter estimates \\
secoef & Standard errors of parameter estimates \\
residuals & Residual series \\
Sigma & Residual covariance matrix \\
Theta & VMA coefficient matrix \\
mu & The mean vector \\
aic, bic & The information criteria of the fitted model
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VMA

VMAorder VMA Order Specification

\section*{Description}

Performs multivariate Ljung-Box tests to specify the order of a VMA process

\section*{Usage}
\(\operatorname{VMAorder}(x\), lag \(=20)\)

\section*{Arguments}
\(x \quad\) Data matrix of the observed k-dimensional time series. Each column represents a time series.
lag The maximum VMA order entertained. Default is 20.

\section*{Details}

For a given lag, the command computes the Ljung-Box statistic for testing rho_j = ... = rho_lag = 0 , where \(\mathrm{j}=1,2, \ldots\), lag. For a VMA(q) process, the Ljung-Box statistics should be significant for the first q lags, and insignificant thereafter.

\section*{Value}

The Q-statistics and p-value plot

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{Examples}
zt=matrix(rnorm(600),200,3)
VMAorder (zt)
VMAs VMA Model with Selected Lags

\section*{Description}

Performs the conditional maximum likelihood estimation of a VMA model with selected lags in the model

\section*{Usage}

VMAs(da, malags, include.mean \(=T\), fixed \(=\) NULL, prelim \(=F\), details \(=F\), thres \(=2\) )

\section*{Arguments}
da A T-by-k matrix of a k-dimensional time series with T observations
malags A vector consisting of non-zero MA lags
include.mean A logical switch to include the mean vector
fixed A logical matrix to fix coefficients to zero
prelim A logical switch concerning initial estimation
details A logical switch to control output level
thres A threshold value for setting coefficient estimates to zero

\section*{Details}

A modified version of VMA model by allowing the user to select non-zero MA lags
\begin{tabular}{ll} 
Value & \\
data & The observed time series \\
MAlags & The VMA lags \\
cnst & A logical switch to include the mean vector \\
coef & The parameter estimates \\
secoef & The standard errors of the estimates \\
residuals & Residual series \\
aic, bic & The information criteria of the fitted model \\
Sigma & Residual covariance matrix \\
Theta & The VMA matrix polynomial \\
mu & The mean vector \\
MAorder & The VMA order
\end{tabular}

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

VMA
Vmiss VARMA Model with Missing Value

\section*{Description}

Assuming that the model is known, this program estimates the value of a missing data point. The whole data point is missing.

\section*{Usage}

Vmiss(zt, piwgt, sigma, tmiss, cnst = NULL, output = T)

\section*{Arguments}
\begin{tabular}{ll} 
zt & A T-by-k data matrix of a k-dimensional time series \\
piwgt & The pi-weights of a VARMA model defined as piwgt=[pi0, pi1, pi2, ,...] \\
sigma & Positive definite covariance matrix of the innovations \\
tmiss & Time index of the missing data point \\
cnst & Constant term of the model \\
output & A logical switch to control output
\end{tabular}

\section*{Details}

Use the least squares method to estimate a missing data point. The missing is random.

\section*{Value}

Estimates of the missing values

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

Vpmiss

\section*{Examples}
```

data("mts-examples",package="MTS")
gdp=log(qgdp[,3:5])
m1=VAR(gdp,3)
piwgt=m1$Phi; Sig=m1$Sigma; cnst=m1\$Ph0
m2=Vmiss(gdp,piwgt,Sig,50,cnst)

```
```

Vpmiss Partial Missing Value of a VARMA Series

```

\section*{Description}

Assuming that the data is only partially missing, this program estimates those missing values. The model is assumed to be known.

\section*{Usage}

Vpmiss(zt, piwgt, sigma, tmiss, mdx, cnst = NULL, output = T)

\section*{Arguments}
\begin{tabular}{ll} 
zt & A T-by-k data matrix of a k-dimensional time series \\
piwgt & pi-weights of the model in the form piwgt[pi0, pi1, pi2, ,..] \\
sigma & Residual covariance matrix \\
tmiss & Time index of the partially missing data point \\
\(m d x\) & \begin{tabular}{l} 
A k-dimensional indicator with "0" denoting missing component and ""1" de- \\
noting observed value.
\end{tabular} \\
cnst & \begin{tabular}{l} 
Constant term of the model \\
output
\end{tabular} \\
& values of the partially missing data
\end{tabular}

\section*{Value}

Estimates of the missing values

\section*{Author(s)}

Ruey S. Tsay

\section*{References}

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

\section*{See Also}

Vmiss

\section*{Examples}
```

\#data("mts-examples", package="MTS")
\#gdp=log(qgdp[, 3:5])
\#m1=VAR(gdp,1)
\#piwgt=m1$Phi; cnst=m1$Ph0; Sig=m1\$Sigma
\#mdx=c(0, 1, 1)
\#m2=Vpmiss(gdp,piwgt,Sig,50,mdx,cnst)

```

\section*{Index}
```

* datasets
ibmspko, 24
qgdp,41
tenstocks,64
apca,5
archTest, 6
backtest,7
BEKK11,8
Btfm2,9
BVAR,10
ccm, 11
comVol, 12
Corner,13
dccFit,14
dccPre, 15
diffM, 16
Eccm, 17
ECMvar,18
ECMvar1,19
EWMAvol, 20
FEVdec, 21
GrangerTest, 22
hfactor, 23
ibmspko, 24
Kronfit,25
Kronid,26
Kronpred,27
Kronspec,28
Lminv (MTS-internal), 36
MarchTest,29

```

MCHdiag, 31
MCholV, 32
mFilter (MTS-internal), 36
Mlm, 33
mq, 33
msqrt, 34
mtCopula, 35
MTS (MTS-package), 4
MTS-internal, 36
MTS-package, 4
MTSdiag, 36
MTSplot, 37
Mtxprod, 38
Mtxprod1, 38
PIwgt, 39
PSIwgt, 40
qgdp, 41
refECMvar, 41
refECMvar1, 42
refKronfit, 43
refREGts, 44
refSCMfit, 44
refsVARMA, 45
refVAR, 46
refVARMA, 47
refVARs (MTS-internal), 36
refVARX, 48
refVMA, 49
refVMAe, 50
refVMAs (MTS-internal), 36
REGts, 51
REGtspred, 52
revmq (MTS-internal), 36
RLS, 53
SCCor, 54
SCMfit, 55
```

SCMid, 56
SCMid2,57
SCMmod, 58
sVARMA, 59
sVARMACpp,60
sVARMApred, }6
SWfore, }6
tenstocks,64
tfm,64
tfm1,65
tfm2,66
VAR,68
VARchi (MTS-internal), 36
VARecm (MTS-internal), 36
VARfore (MTS-internal), 36
VARirf (MTS-internal), 36
VARMA,}6
VARMAcov, }7
VARMACpp, }7
VARMAirf,73
VARMApred, }7
VARMAsim,75
VARorder,76
VARorderI, }7
VARpred, }7
VARpsi,}7
VARs, }8
VARX, }8
VARXirf, }8
VARXorder, }8
VARXpred, }8
Vech, }8
VechM, }8
VMA, }8
VMACpp, }8
VMAe, }8
VMAorder, }9
VMApred (MTS-internal), 36
VMAs, }9
Vmiss, }9
Vpmiss,94

```
```

