
JSS Journal of Statistical Software
September 2017, Volume 80, Issue 7. Reddoi: 10.18637/jss.v000.i00

http://dx.doi.org/10.18637/jss.v000.i00


2 Feature Selection with the R Package MXM

Feature Selection with the R Package MXM: Discovering

Statistically-Equivalent Feature Subsets

Vincenzo Lagani
University of Crete

Giorgos Athineou
University of Crete

Alessio Farcomeni
Sapienza - University of Rome

Michail Tsagris
University of Crete

Ioannis Tsamardinos
University of Crete

Abstract

The statistically equivalent signature (SES) algorithm is a method for feature selection
inspired by the principles of constrained-based learning of Bayesian Networks. Most of
the currently available feature-selection methods return only a single subset of features,
supposedly the one with the highest predictive power. We argue that in several domains
multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily
providing only one has several drawbacks. The SES method attempts to identify multiple,
predictive feature subsets whose performances are statistically equivalent. Under that
respect SES subsumes and extends previous feature selection algorithms, like the max-
min parent children algorithm.

SES is implemented in an homonym function included in the R packageMXM, standing
for mens ex machina, meaning ’mind from the machine’ in Latin. The MXM implemen-
tation of SES handles several data-analysis tasks, namely classification, regression and
survival analysis. In this paper we present the SES algorithm, its implementation, and
provide examples of use of the SES function in R. Furthermore, we analyze three publicly
available data sets to illustrate the equivalence of the signatures retrieved by SES and
to contrast SES against the state-of-the-art feature selection method LASSO. Our results
provide initial evidence that the two methods perform comparably well in terms of pre-
dictive accuracy and that multiple, equally predictive signatures are actually present in
real world data.

Keywords: feature selection, constraint-based algorithms, multiple predictive signatures.

1. Introduction

Feature selection is one of the fundamental tasks in the area of machine learning. Generally
speaking, the process of feature or variable selection aims to identify a subset of features that



Journal of Statistical Software 3

are relevant with respect to a given task; for example, in regression and classification it is
often desirable to select and retain only the subset of variables with the highest predictive
power. The main goals of feature selection usually are (a) to improve the performance of
a predictive model, (b) to avoid the cost associated with measuring all the features and (c)
to provide a better understanding of the predictive model, and by extension of the data, by
eliminating useless or redundant features (?). To date, almost all feature selection algorithms
return a single feature subset.

In our experience, it is often the case that multiple feature subsets are approximately equally
predictive for a given task. Low statistical power due to an insufficient sample size can simply
make it impossible to distinguish the predictive performance of two or more signatures in a
statistically meaningful way. More intriguingly, the physical process that generates the data
could be possibly characterized by a high level of redundancy: several of its components can
have similar or identical behavior/scope. Measurements taken over redundant components
would be equivalent to each other, and there would be no particular reason for preferring one
over the other for inclusion in a predictive subset. This problem is particularly relevant in
biology, where nature uses redundancy for ensuring resilience to shocks or adverse events.

Discovering multiple and statistically equivalent feature subsets has several advantages in our
opinion. First, knowing that multiple equally-predictive subsets actually exist increases the
understanding of the specific problem at hand. In contrast, identifying a single subset of rel-
evant features can lead to ignore factors that may play an important role for understanding
the dynamics of the problem under study. On more practical terms, equally-predictive sub-
sets may differ in terms of the cost/effort needed for measuring their respective components.
Thus, providing multiple, alternative subsets can have a great impact in contexts where some
factors may be technically difficult or excessively expensive to measure.
Recently, algorithms that generate multiple, equivalent feature sets have been developed (??),
including the Statistically Equivalent Signatures (SES) method (?), which is implemented in
the R (?) MXM package. SES is a constraint-based, feature selection algorithm that attempts
to identify multiple, equally-predictive signatures, where for signatures we indicate minimal-
size sets of features with maximal predictive power. SES subsumes and extends previous
work on future selection, particularly the max-min parent children (MMPC) algorithm (?)
and related extensions (??), by implementing a heuristic method for identifying equivalences
among predictors.
Other statistical approaches producing several models for the same task exist, for example
model averaging (?). In this approach several competitive models are first generated and then
combined together for producing a single, global model. The key difference with SES is that
model-averaging models can have different predictive capabilities, while SES-retrieved signa-
tures are assumed to be equally predictive. Model averaging methods are already available
in several R packages, like MuMIn (?), glmulti (?), AICcmodavg (?), BMA (?).
Finally, to the best of our knowledge, the MXM package is one of the few open-source code
providing implementations of constraint-based feature selection algorithms. The MMPC al-
gorithm has been previously implemented in the bnlearn package (?) along with several Bayes
Network learning methods, and the TETRAD software (?) provides implementations of nu-
merous casual-discovery oriented constraint-based methods. The MATLAB library Causal
Explorer (?) has been the first software offering feature-selection oriented constraint-based
methods, but the code is not open-source.
In the rest of the paper we present the SES algorithm and detail its characteristics. Moreover,



4 Feature Selection with the R Package MXM

we introduce the MXM package and provide some practical examples for illustrating its use.
Finally, we empirically evaluate the results of the SES algorithm on three different data sets,
and we contrast our results against the widely used LASSO selection algorithm (?). Our
results support claims that SES is able to return signatures that are statistically equivalent,
and whose predictive performances are comparable with the ones of a state-of-the-art feature
selection method.

2. Multiple signature selection with SES algorithm

The SES algorithm (?) belongs to the class of constraint-based, feature selection algorithms
(?), a class of algorithms that ground their root in the theory of Causal Analysis (?). Princi-
ples borrowed from this theory allow for an important result: under some broadly-accepted
assumptions, the optimal set of predictors for a given target variable consists in the Markov
Blanket (MB) of the variable in the Bayesian Network (BN) representing the data distribution
at hand (?). Bayesian Networks (?) are graphical models that allow compact representations
of multivariate distributions under the form of a Direct Acyclic Graph (DAG) and an appro-
priate parameterization. Nodes in the DAG represent random variables, while edges represent
conditional associations. When two nodes are directly connected by an edge, then the asso-
ciation between the two corresponding variables holds in the context of all other variables.
Node A is a parent for node B (and B is a child of A) if an edge from A is incident to B. The
MB of a given target T in composed by the set of Parent and Children (PC) of T plus any
additional parent of T children (spouses). MMPC was one of the first feature selection meth-
ods specifically designed in order to identify the PC set of a given variable. It is interesting
to note that PC and BN predictive capabilities are often equivalent in practical applications,
while PC is easier to identify (?). Finally, constraint-based algorithms have recently proven
to be able to retrieve highly predictive signatures (?).
From an algorithmic point of view, given a data set D defined over a set of n variables /
predictors V and a target variable T (a.k.a. outcome), constraint-based feature selection
methods repetitively apply a statistical test of conditional independence in order to identify
the subset of variables that can not be made independent by the outcome given any other
subset of variables in V . We denote with ind(X,T |W ) any statistical test able to provide a
p value pXT.W for assessing the null hypothesis that the variables X and T are conditionally
independent given a set of variables W . Depending on the nature of the variables involved
in the test (e.g., categorical, continuous, censored) the most appropriate conditional indepen-
dence test must be chosen (see Section ?? for further discussion). Finally, it is worthwhile to
note that under some additional assumptions, constraint-based methods have the interesting
property of uncovering (part of) the causal mechanism that produced the data at hand.
The SES algorithm also retrieves the PC set of target variables, and it subsumes the MMPC
algorithm by implementing an additional heuristic in order to retrieve multiple subsets that
are possible PC candidates. The iTIE∗ algorithm (?) is based on similar principles, but it
adopts a different heuristic for identifying equivalence of features. SES is summarized in Algo-
rithm ?? through pseudo code. The proposed method accepts as input a data set D, a target
variable T , a two hyper-parameters1: The threshold a for assessing conditional independence

1we define as “hyper-parameter” any parameter that is not estimated from the data but that must be
provided a priori from the user.



Journal of Statistical Software 5

and an upper bound k on the number of variables that can be included in any conditional set.
This latter parameter limits the complexity and the computational requirements of the algo-
rithm. The output of the method consists in a set E of variables sets (queues) Qi, i = 1 . . . n,
such that each queue Qi contains variables that are ’equivalent’ to each other.
At initialization, an empty set S of selected variables is created, all variables V are considered
for inclusion in S (R ← V , where R is the set of variable considered for inclusion) and each
variable is considered equivalent only to itself (Qi ← i). During the main loop the algorithm
alternatively attempts to (a) include in S the variable maximally associated with T condi-
tioned on any possible subset of the variables already selected and (b) exclude from S any
variable X that is not any more associated with T given any subset Z of other variables in
S. Once a variable X is excluded from S, it cannot be inserted any more.
However, before eliminating X from S, the algorithm tries to identify any variable Y in Z
that is equivalent to X, by verifying whether pY T.Z′ > a when Z ′ ← (Z ∪ {X}) \ {Y }. If
such a variable exists, the list of X-equivalent variables QX is added to QY (in contrast, the
iTIE∗ algorithm tests whether pZT.Y > a, i.e., it checks if the whole set Z is equivalent to Y ).
Finally, all equivalence lists Qi, i ∈ S, are returned as output.
One can then build a predictive signature by choosing one and only one variable from each
variable set Qi. To fix the ideas, let’s assume that E contains three queues, namely Q1 =
{X1, X4}, Q3 = {X3} and Q7 = {X7, X2}. Then there are a total of 2 · 1 · 2 = 4 possible sig-
natures, i.e., Sa = {X1, X3, X7}, Sb = {X1, X3, X2}, Sc = {X4, X3, X7}, Sd = {X4, X3, X2}.
In contrast, the sets {X1, X2} and {X1, X4, X3, X7} are not valid equivalent signatures, since
the first does not select any variable from Q3 and the latter includes two variables from the
same queue (Q1).

3. Package implementation

The MXM package for R currently implements the algorithm SES along with a variety of
different conditional independence test. Conditional independence tests ind(X,T |W ) are
the cornerstones upon which constraint-based algorithms, including SES, are built. Interest-
ingly, constraint-based algorithms can be applied to different types of data as far as they are
equipped with a conditional independence test suitable for the data at hand. Similarly, the
SES function can be applied on different types of outcome (continuous, time-to-event, categor-
ical) and predictors (continuous, categorical, mixed) if the appropriate test is provided. We
have implemented a number of these tests in order to grant the user a wide flexibility in terms
of the data analysis tasks that can be addressed with the MXM package. The SES function
even allows the users to provide their custom function for assessing conditional independence.
The following subsections further illustrate and elaborate upon the implemented functions.

3.1. Conditional independence tests

Assessing dependence among two random variables is one of the oldest problems in statistics,
yet it is far from being solved (??). Evaluating the conditional independence ind(X,T |W ) is
further complicated by the presence of the conditioning set W . Moreover, one may desire to
deal with cases when X, T and W are all continuous, categorical, or mixed. Two methods
often used in the area of constraint-based algorithms are the Fisher’s (?) and the G2 tests



6 Feature Selection with the R Package MXM

Algorithm 1 SES

1: Input:
2: Data set on n predictive variables V
3: Target variable T
4: Significance threshold a
5: Max conditioning set k
6:

7: Output:
8: A set E of size n of variables sets Qi, i = 1, . . . , n such that one can construct
9: a signature by selecting one and only one variable from each set Qi

10:

11: //Remaining variables
12: R← V
13: //Currently selected variables
14: S ← ⊘
15: //Sets of equivalences
16: Qi ← i , for i = 1, . . . , n
17:

18: while R ̸= ⊘ do
19: for all Xϵ{R ∪ S} do
20: if ∃Z ⊆ S \ {X}, |Z| ≤ k, s.t., pXT.Z > a then
21: R← R \ {X}
22: S ← S \ {X}
23:

24: //Identify statistical equivalences, i.e., X and Y seem interchangeable
25: if ∃Y ϵZ, s.t., Z ′ ← (Z ∪ {X}) \ {Y }, pY T.Z′ > a then
26: QY ← QY ∪QX

27:

28: end ifendif
29:

30: end ifendif
31:

32: end forendfor
33:

34: M = argmax{XϵR}min{Z⊆S,[Z]≤k} − pXT.Z

35: R← R \ {M}
36: S ← S ∪ {M}
37:

38: end whileendwhile
39:

40: Repeat the for-loop one last time
41: //Pack all the identified equivalences in one data structure
42: E ← ⊘
43: for all iϵS do
44: E ← E ∪ {Qi}
45:

46: end forendfor
47:

48: return E



Journal of Statistical Software 7

(?). The former is based on partial correlations and assumes continuous measurements and
multivariate normality, while the latter is based on contingency tables and can be applied on
categorical data. Both tests are implemented in MXM in the functions testIndFisher and
gSquare, respectively.
Beside these two functions, we have devised and implemented a number of different conditional
independence tests following an approach presented by ?. Briefly, ind(X,T |W ) can be assessed
by comparing two nested-models, mod0 and mod, obtained by regressing the target variable T
on the conditioning set W alone and on the conditioning set along with the candidate variable
X, respectively. In R language formulas, mod0 = T ∼W and mod = T ∼ X+W . The p value
pXT.W can be computed through a log-likelihood ratio or χ2 test, depending on the nature
of the two models. Table ?? summarizes the conditional independence tests implemented in
MXM. Each test is characterized by (a) the type of outcome and predictors it can deal with
and (b) the regression method used (if the test is derived according to the approach from
?). Some of the tests have the option of employing a robust version of the original regression
method.

3.2. SES implementation

The SES function has been implemented with the aim of making its usage as intuitive as
possible for the user. Only two inputs are required, the matrix of predictor variables dataset
and the outcome variable target. The first can be either a numeric matrix, a data frame or
an object of the class ExpressionSet from the Bioconductor package affy (?). The outcome
can be encoded either as a numerical vector, a (ordered) factor, or an object of the Surv class
defined in package survival (?).
Depending on the dataset and target specified by the user, the SES function is able to
automatically select the data analysis task to perform and the conditional independence test
to use:

1. Binary classification: in a binary classification task the objective of the analysis is to
find the model that better discriminates between two classes. An example of binary
classification is discerning among Alzheimer and healthy patients on the basis of clinical
data. If the target variable is a factor with two levels, the SES function automati-
cally assumes that the problem is a binary classification task. The default conditional
independence test used is testIndLogistic.

2. Multi-class classification: this tasks is similar to the binary classification task, but
more than two classes are present. These classes may have an intrinsic order, e.g.,
they represent progressively more severe stages of the same cancer, or they may be
independent by each other, as for totally different types of diseases. In the first case an
ordered factor should be provided as target variable, while a non-ordered factor should
be provided in the second case. In both cases the default conditional independence
test is testIndLogistic, which automatically switches between multinomial logistic
(nominal outcome) or ordered logit (ordinal outcome) regression (?).

3. Regression: In this case the scope of the analysis is to predict the values of a continuous
target, for example the expression of a given gene. For regression tasks the target vari-
able should be encoded as a numeric vector, and depending whether dataset contains



8 Feature Selection with the R Package MXM

Name Outcome Predictors Regression Robust
option

testIndFisher Continuous Continuous Linear regression Yes

testIndSpearman Continuous Continuous Linear regression No

gSquare Categorical Categorical Contingency tables No

testIndReg Continuous Mixed Linear regression Yes

testIndRQ Continuous Mixed Quantile regression No

testIndBeta Proportions Mixed Beta regression No

testIndPois Count variable Mixed Poisson regression No

testIndNB Overdispersed
count variable

Mixed Negative binomial
regression

No

testIndZIP Zero inflated
count data

Mixed Zero inflated poisson
regression

No

censIndCR Survival outcome Mixed Cox regression No

censIndWR Survival outcome Mixed Weibull regression No

testIndClogit Case-control Mixed Conditional logistic
regression

No

testIndLogistic Categorical Mixed Logistic regression No

testIndLogistic Categorical Mixed Logistic regression No

testIndSpeedglm Continuous, bi-
nary or counts

Mixed Linear, logistic and
poisson regression

No

Table 1: Conditional independence tests implemented in MXM. For each test the type of
outcome, predictors, and regression method is specified in the respective columns. Some of
the tests can also employ a robust version of their respective regression method.

solely continuous or mixed (categorical/continuous) predictors the SES function uses the
testIndFisher or the testIndReg as conditional independence test, respectively.

4. Time-to-event / Survival analysis: the scope of this type of analysis is to estimate the
incidence of an event over time. Survival analysis is conceptually similar to regression,
but differs for the presence of censorship, i.e., the exact time-to-event may be unknown
for part of the samples. Time-to-event analysis requires a Surv object (package survival)
as target variable, and the default conditional independence test is the testIndCR.



Journal of Statistical Software 9

The user can override the default behavior of the SES function by directly specifying a test to
use or by providing a custom function for assessing conditional independence. For example,
the user can decide to use the testIndPois instead of the testIndFisher if target contains
count values. The user can furthermore control the operation of the SES algorithm by speci-
fying the values for the hyper-parameters a and k. The signature of the method along with
a short explanation of its arguments now follows:

R> SES(target, dataset, max_k = 3, threshold = 0.05, test = NULL,

+ user_test = NULL, hash = FALSE, hashObject = NULL, robust = FALSE,

+ ncores = 1)

� target: the class variable, encoded as a vector, factor, an ordered factor or a Surv
object. If a character or an integer is provided, then the corresponding column in
dataset is used as target.

� dataset: either a data frame or a matrix (columns = variables , rows = samples).
Alternatively, an ExpressionSet object from the package BioBase (?).

� max_k: the maximum size for the conditioning set to use in the conditional indepedence
test.

� threshold: cut-off value for assessing p values significance.

� test: the conditional independence test to use. If NULL, the SES function automatically
determines a suitable test depending on target and dataset.

� user_test: a user-defined conditional independence test (provided as a closure type
object). If user_test is provided, the test argument is ignored.

� hash: logical variable which indicates whether to store (TRUE) or not (FALSE) the statis-
tics calculated during SES execution in a hash-type object. Default value is FALSE. If
TRUE the hash Object is produced and returned in the SES output.

� hashObject: a list with the hash objects generated in a previous run of SES. Each time
SES runs with hash=TRUE it produces a list of hash objects that can be re-used in order
to speed up next runs of SES.

� robust: A boolean variable which indicates whether (TRUE) or not (FALSE) to use a
robust version of the statistical test if it is available. It takes more time than a non-
robust version but it is suggested in case of outliers. Default value is FALSE.

� ncores: An integer value indicating the number of CPUs to be used in parallel during
the first step of the SES algorithm, where univariate associations are examined.

Internally, the SES function has been optimized in order to improve computational perfor-
mances. Particularly, the code has been optimized at three different levels:

� Algorithmic level: constraint-based algorithms' computational time is mainly spent for
assessing conditional independence. We adopted an algorithmic optimization already
presented in ? in order to avoid performing twice the same conditional independence



10 Feature Selection with the R Package MXM

test. Assuming variable Y enters in S at iteration n, so that Sn+1 = Sn ∪ Y , then
the minimum association (maximum p value) between any eligible variable X and the
target T conditioned on any subset of Sn+1 can be written as:

max

(
max

Z⊂Sn\X
pXT.Z , max

Z⊂Sn\X
pXT.Z∪Y

)
That means that at each iteration only the conditioning sets including the new variable
Y should be taken in consideration for assessing pXT.Z , if the quantity maxZ⊂Sn\X pXT.Z

has been previously stored.

� Caching intermediate results: The SES function can re-use the results of conditional
independence tests calculated in a previous run in order to speed-up successive compu-
tations. This feature is specifically devised for cases when the method must be run on
the same data with different configuration of the hyper-parameters a and k.

� Parallel computing: the first step of the SES algorithm separately assesses the univari-
ate association of each variable with the target T ; this is a prototypical example of
embarrassingly parallel task, that can be executed on multiple CPUs, by setting the
ncores argument of the SES function equal to 2 or more.

4. Using SES

In this section, we provide examples of the use of the SES function on simulated, continuous
data. All examples were run with MXM version 0.8.

4.1. Installing and loading the package

MXM and its dependencies are available from the Comprehensive RArchive Network (CRAN).
The package does not require any external dependency for data analyses tasks that can be
addressed with the testIndFisher conditional independence test (i.e., both predictors and
outcome are continuous variables). A number of external packages are required for using the
other conditional independence tests: ordinal (?) and nnet (?) for the testIndLogistic with
ordinal and multinomial outcome, respectively. Package survival is needed for the censIndCR,
censIndWR and testIndClogit, while quantreg (?) and betareg (?) are necessary for the
testIndRQ and testIndBeta respectively. Test testIndZIP is based on package pscl (?).
Package MASS (?) is required for performing some of the log-likelihood ratio tests, for the
robust version of the Fisher’s test and for testIndNB. Packages gRbase2 (?) and hash (?)
are suggested for faster computations, while foreach (?) and doParallel (?) allow for paral-
lel computing during the first step of the algorithm. Finally, SES supports ExpressionSet

objects as input if the Bioconductor package Biobase is present and loaded.

R> install.packages("MXM")

R> library("MXM")

2Some dependencies of gRbase package are not available on CRAN, however the users can install them
directly from the Bioconductor repository.



Journal of Statistical Software 11

4.2. Discovering multiple feature signatures

In the following example we simulate a simple continuous data set where the target variable is
associated with a subset of the predictors. Collinear variables are then included in the data set
in order to create equivalent signatures. SES is then run with fixed threshold a and maximum
conditioning set k. Successively, we re-run the SES function with a different configuration
on the same data, but this time we re-use the p values previously computed and stored as a
hash object. The results show both the capability of SES in retrieving the correct equivalent
signatures and the gain in computational time ensured by the hash-based mechanism.

First run of SES on simulate data:

R> set.seed(12345678)

R> install.packages("hash")

R> require(hash)

R> dataset <- matrix(runif(1000 * 300, 1, 100), nrow = 1000, ncol = 300)

R> target = 3 * dataset[ , 10] + 2 * dataset[ , 200] +

+ 3 * dataset[, 20] + runif(1000, 0, 10)

R> dataset[ , 15] <- dataset[ , 10]

R> dataset[ , 250] <- dataset[ , 200]

R> dataset[ , 230] <- dataset[ , 200]

R> system.time(sesObject <- SES(target, dataset, max_k = 5,

+ threshold = 0.2, test = "testIndFisher", hash = TRUE,

+ hashObject = NULL))

The output of the SES function is an object of the class SESoutput with fields:

� selectedVars: The selected variables, i.e., the signature of the target variable.

� selectedVarsOrder: The order of the selected variables according to increasing p val-
ues.

� queues: A list containing lists (queues) of equivalent features, one for each variable
included in selectedVars. A signature equivalent to selectedVars can be built by
selecting a single feature from each queue.

� signatures: A matrix reporting all equivalent signatures (one signature for each row).

� hashObject: The hashObject caching the statistic calculated in the current run.

� pvalues: This vector reports the strength of the association of each predictor with the
target, in the context of all other variables. Specifically, for each variable X the maximal
p value found over all ind(X,T |Z) executed during the algorithm is reported. Lower
values indicate higher association.

� stats: the statistics corresponding to the reported pvalues.

� max_k: The max_k option used in the current run.

� threshold: The threshold option used in the current run.



12 Feature Selection with the R Package MXM

� runtime: The run time of the algorithm. A numeric vector. The first element is the
user time, the second element is the system time and the third element is the elapsed
time.

� test: The name of the statistical test used in the current run.

� rob: The value of the robust option, either TRUE or FALSE.

Generic functions implemented for the SESoutput object are:

� summary(x = SESoutput): Summary view of the SESoutput object.

� plot(object = SESoutput, mode = "all"): Bar plots of the p values for the current
SESoutput object in comparison to the threshold. Argument mode can be either ”all”
or ”partial”, using only the first 500 p values of the object.

R> summary(sesObject)

Selected Variables: [1] 10 20 200

Selected Variables ordered by pvalue: [1] 10 20 200

Queues' summary (# of equivalences for each selectedVar):

10 20 200

#of equivalences 2 1 3

Number of signatures: [1] 6

hashObject summary:

Length Class Mode

stat_hash 180 hash S4

pvalue_hash 180 hash S4

Summary of the generated pvalues matrix:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.3115 0.5062 0.5142 0.7223 1.0000

Summary of the generated stats matrix:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2237 0.5300 0.5626 0.8646 1.2740

max_k option: [1] 5

threshold option: [1] 0.2

Test: testIndFisher

Total Runtime:



Journal of Statistical Software 13

user system elapsed

0.12 0.00 0.12

Robust:

[1] FALSE

Variable 20 must be included in the final model. The user can then choose one predictor
between variable 10 and another, and one between variable 200 and another two. The resulting
six equivalent model have approximately the same predictive performance and are all based
on three predictors.

We now re-apply the SES function on the same data by using the cached statistics used in the
previous run. The results are identical, and the computational time significantly decreases.

R> hashObj <- sesObject@hashObject

R> sesObject2 <- SES(target, dataset, max_k = 2, threshold = 0.01,

+ test = "testIndFisher", hash = TRUE, hashObject = hashObj)

R> summary(sesObject2)

Selected Variables: [1] 10 20 200

Selected Variables ordered by pvalue: [1] 10 20 200

Queues' summary (# of equivalences for each selectedVar):

10 20 200

#of equivalences 2 1 3

Number of signatures: [1] 6

hashObject summary:

Length Class Mode

stat_hash 180 hash S4

pvalue_hash 180 hash S4

Summary of the generated pvalues matrix:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2399 0.4598 0.4780 0.6985 1.0000

Summary of the generated stats matrix:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.3815 0.7222 0.7960 1.1600 2.3590

max_k option: [1] 2

threshold option: [1] 0.01

Total Runtime:



14 Feature Selection with the R Package MXM

user system elapsed

0.01 0.00 0.01

Robust:

[1] FALSE

4.3. Identifying the best combination of SES hyper-parameter

Selecting the best configuration of hyper-parameters is an important step in any data analy-
sis task; finely tuning a statistical method often allows to achieve significantly better perfor-
mances than naively using the default configuration. The package MXM provides a dedicate
function, namely cv.ses, for automatically identify the optimal configuration for the SES al-
gorithm hyper-parameters a and k. This function internally applies a model selection schema
based on stratified cross-validation (?).

More in detail, cv.ses partitions the available data in a given number of folds, each containing
approximately the same number of samples. Each fold is used in turn as test set, while the
remaining data form the training set. The latter is used for training a predictive model on
the features selected by SES, model that is successively applied on the test set for obtaining
testable predictions. Performances are computed for each fold and then averaged. This whole
procedure is repeated for each combination of a and k over their respective, user-specified
ranges, and the optimal configuration {a∗, k∗} correspond to the values that produced the
best average performances. The users can either provide their own pre-specified folds, or have
them generated internally within cv.ses by the function generateCVRuns of the package
TunePareto (?).

The type of predictive model to fit on the training data, as well as the performance metric to
use depends on the data analysis task at hand. For classification tasks, logistic regression and
the receiver operator characteristic (ROC) area under the curve (AUC, ?) are the default
choice. The AUC is computed with the ROCR (?). Regression problems are addressed with
standard linear regression and the mean square error (MSE) metric, the latter defined as∑

i(yi − ŷi)
2/n, where n is the number of test instances and yi, ŷi are the actual target value

and the prediction for instance i, respectively. Survival analysis tasks require specialized
methods, namely the Cox proportional-hazards model (?) and the concordance index (CI, ?)
performance metric. The CI has an interpretation similar to the AUC, ranging in [0, 1] with
0.5 indicating random predictions and 1 corresponding to a perfect rank of the test instances.
Package Hmisc (?) is required for the computation of the CI metric. The user has also
the possibility of providing customized functions for predictive modeling and performance
evaluation. The signature of the cv.ses function is the following:

R> cv.ses(target, dataset, kfolds = 10, folds = NULL, alphas = NULL,

+ max_ks = NULL, task = NULL, metric = NULL, modeler = NULL,

+ ses_test = NULL)

The argument target and dataset are as in the SES function. Other arguments are specified
below.

� kFolds: The number of folds to partition the data in.



Journal of Statistical Software 15

� folds: A list specifying the folds to use. If provided than kFolds is ignored.

� alphas and max_ks: The ranges of values to be evaluated for the hyper-parameters a
and k, respectively.

� task: A character specifying the type of task to perform:“C” for classification, “R” for
regression and “S” for survival analysis.

� metric, modeler, ses_test: user-specified functions for the performance metric, pre-
dictive modeling and conditional independence test to use, respectively.

We now apply the cv.ses function to the simulated data presented in Section ??:

R> cv.ses.object = cv.ses(target, dataset, kfolds = 10, task = "R")

The best SES configuration and its respective performance can be easily retrieved:

R> cv.ses.object$best_performance

[1] -8.794793

R> cv.ses.object$best_configuration

$id

[1] 2

$a

[1] 0.1

$max_k

[1] 2

5. Experimental validation

We further evaluate the capabilities of the SES algorithm and MXM package on real data.
Particularly, we aim at investigating (a) if the signatures retrieved by the algorithm provide
statistically-equivalent predictive performances, and (b) whether these performances are com-
parable with the ones provided by the state-of-the-art feature selection algorithm LASSO, as
implemented in the R package glmnet (?). All data and scripts for replicating the results of
this comparison are freely available as supplementary material.

5.1. Data sets description

We use three different data sets for our experiments. All data sets are formed by continuous
predictors, but largely differ in the number of samples / variables and in the type of outcome
(see Table ??). Moreover, each data set comes from a different application domain. The



16 Feature Selection with the R Package MXM

first, Breast Cancer, is targeted at the discrimination of estrogen-receptor positive (ER+)
or estrogen-receptor negative (ER-) tumors using gene expression measures. This data set
is publicly available in the package breastCancerVDX (?). The AcquaticTox data set leads
to a Quantitative Structure-Activity Relationship (QSAR) regression problem. Data are
freely available from the package QSARdata (?). The task here is to predict the toxicity
of 322 different compounds on the basis of a set of 6652 molecular descriptors produced
by the software DRAGON (Talete Srl, Milano Italy). The Vijver-2002 data (?) contains the
expression measures of breast cancer patients and the aim is to relate them with their survival
time.

Name # samples # variables Task Outcome

Breast Cancer 17816 286 Classification
analysis

Binary, rarest
class frequency:
36%

AquaticTox 322 6652 Regression
analysis

Continuous

Vijver-2002 295 70 Survival
analysis

Right-censored,
number of events:
88

Table 2: Data sets used for the experiments. For each data set the table reports the
number of samples, the number of variables/predictors, task to accomplish (classifica-
tion/regression/survival analysis) and the type of outcome. References for each data set
are reported in the text.

5.2. Experimentation protocol

Derivation and assessment of predictive models

In order to empirically evaluate the performance of the proposed method we have repeated
the following experimentation procedure 500 times, each time using different data splits.
First, data are split in a training set Dtrain and in a hold-out set Dholdout, each containing
50% of all samples. The best hyper-parameter configuration for SES is identified on the
training set through a ten-fold cross-validation model selection procedure, where the SES

hyper-parameters are varied within a ∈ [0.01, 0.05, 0.1] and k ∈ [3, 5]. SES is then run on
the whole Dtrain with the best hyper-parameters for identifying the optimal signatures. A
predictive model for each signature is finally estimated based onDtrain and applied onDholdout

for estimation of the performance. Logistic, linear and Cox regression procedures are used for
obtaining the predictive models, depending on whether the outcome is binary, continuous or
time-to-event, respectively. Appropriate performance metrics are used accordingly: AUC is
used for binary classification, continuous outcomes are evaluated through the MSE, while CI is
used for evaluating the performance of Cox regression models. MSE quantifies the prediction
error, thus lower values indicate better performances, while the reverse holds for AUC and
CI. Data splitting is stratified for classification and survival tasks, i.e., an equal proportion of



Journal of Statistical Software 17

Number of signatures

1 2 3 4 5 6 7 8 9 10+

Breast Cancer 301 136 7 40 1 2 0 3 1 9

AquaticTox 17 17 15 12 9 16 4 18 13 379

Vijver-2002 31 181 13 94 3 55 1 37 3 82

Table 3: Frequency of signature multiplicity. Each cell reports how many times j equivalent
signatures are retrieved for its corresponding data set (row), where j is the number reported
on top of the cell’s column. The notation 10+ indicates 10 or more signatures.

instances of each class (or of censored/non-censored cases) is kept in each data split.

5.3. Contrasting against LASSO

SES and LASSO are used in turn as feature selection algorithm in the experimentation proto-
col described in Section ??, and they are compared on the basis of the performances obtained
on all Dholdout. In each repetition the same data split is used for both algorithms, in or-
der to ensure a fair comparison. Recall that LASSO selects only a single subset of relevant
variables, while SES potentially retrieves multiple signatures. Thus we arbitrarily select the
first signature retrieved by SES for comparison with LASSO. This is not necessarily the best
one, and can be deemed to be chosen with a systematic random sampling. In the cross-
validation step of the experimentation protocol, the range of values over which we optimize
the hyper-parameter λ for the LASSO algorithm is automatically determined by the least
angle regression (LARS, ?) fitting procedure.

5.4. Results

Assessing the equivalence of SES signatures

Table ?? reports the distribution over 500 repetitions of the number of signatures identified
by SES for each dataset. Each row refers to one dataset, while each column to a given number
of signatures. The results indicate that the number of retrieved signature is highly dependent
upon the specific dataset. Particularly, both AquaticTox and Vijver-2002 tend to produce a
large number of equivalent signatures, while a single signature is found for the Breast Cancer
dataset 301 times in 500 repetitions. Interestingly, the number of retrieved signatures is highly
variable across repetitions: for the AquaticTox dataset, simply splitting the data in different
Dtrain and Dholdout sets lets the number of signatures range from 1 to 292032. This shows
that the detection of equivalent features is strongly influenced by the specific sample at hand.

We now investigate whether the retrieved signatures achieve performances that are actually
equivalent. For each data set and for each repetition where at least two signatures are re-
trieved, we compute the SES performances’ coefficient of variation (CV). The CV is defined
as the ratio between standard deviation and mean value, and it measures the dispersion of a



18 Feature Selection with the R Package MXM

AquaticTox BreastCancer Vijver−2002

0.
00

0.
10

0.
20

0.
30

Coefficient of Variation for SES performances

Figure 1: Boxplot of the SES performances’ coefficient of variation across the 500 iterations
for each dataset.

distribution standardized with respect to the magnitude of its measurements. Figure ?? and
Table ?? show that in all data sets the median CV value is well below 5%, indicating that
within each repetition the performances of the retrieved signatures are extremely close to each
other. The AquaticTox data set produces the highest CV values, marked as circles/outliers
in Figure ?? (two extreme CV values, reaching 1.19 and 0.97 respectively, were removed for
the sake of figure readability). We also observe that the higher the number of signatures, the
higher the coefficient of variation (Spearman correlation: 0.69 Vijver, 0.25 Breast Cancer, 0.45
AquaticTox data set, p value < 0.001 in all cases). This result is not unexpected. When few
signatures are retrieved, each signature differs from the other for only one or two features, and
thus their predictive performances are expected to be similar. When thousands of signatures
are produced, their heterogeneity increases, as well as the deviation of their performances. It
can be concluded though that the algorithm is generally stable, with very rare exceptions,
and leads in general to signatures with very close predictive performance. It could be argued
that the variation in the estimated predictive performance is often an order of magnitude
lower than the performance estimates themselves.

Contrasting SES and LASSO

Table ?? shows the 95% confidence intervals of the paired differences in performance between
SES and LASSO, computed over 500 repetitions. For each data set, the differences are com-
puted in such a way that positive values indicate SES outperforming LASSO, and vice versa.
The table shows that for both the Vijver-2002 and AquaticTox data sets the confidence inter-



Journal of Statistical Software 19

vals cross zero, thus on these two data sets the SES and LASSO methods are not statistically
different at 0.05 significance level. LASSO performs slightly better in the Breast Cancer data
set though. Figure ?? reports the distribution for the differences in performances between
the two methods. Here the equivalence between the two methods on the Vijver-2002 is even
more evident, while differences in performances for the AquaticTox dataset show quite a large
variability.
Table ?? shows the distribution of the number of selected variables over the 500 repetitions.
SES is generally quite parsimonious, and it usually selects the same number of variables,
independently by the data split, as demonstrated by the low standard deviations over the
500 repetitions. In contrast, the number of variables selected by LASSO widely varies across
repetitions. SES also selects much fewer variables than LASSO for both the AquaticTox and
Vijver-2002 data sets, while for the Breast Cancer dataset LASSO produces only slightly more
parsimonious models but again with larger variability.

6. Discussion and conclusions

In the present work we introduced the R package MXM, which implements the SES algo-
rithm for selecting statistically-equivalent sets of predictive signatures. The package further
implements a number of conditional independence tests able to cope with a variety of data
types. These tests can be used alone (for inference or causal discovery) or in conjunction with
the SES function, in order to deal with several data-analysis tasks, including (multi-class)
classification, regression and survival analysis.
We used three real-world, publicly available data sets from different application areas for eval-
uating the capabilities of the software. Multiple signatures were actually identified for all data
sets, indicating that equivalences among predictors are frequently present in real applications.
Deviation among the signatures’ performances proved to be particularly low, indicating that
the signatures have almost equal predictive power.
We further contrasted the performance of the SES algorithm against the LASSO method. We
attempted to have a comparison as fair as possible, so we always compared the LASSO signa-
ture against the first one retrieved by SES. In the context of our experiments, SES was more
stable in terms of number of variables selected across different data splits, while LASSO in
general selects a higher number of variables. The two methods had quite comparable perfor-
mance, with LASSO performing slightly better in the Breast Cancer example. These results
are in agreement with previous theoretical results (?): under some quite general conditions,

2.5% Median 97.5%

Breast Cancer 0.06% 2.17% 8.36%

AquaticTox 0.06% 4.20% 12.80%

Vijver-2002 0.04% 2.18% 6.44%

Table 4: Quantiles of the coefficient of variation (CV) of the SES performances. Results are
reported separately for each data set (rows).



20 Feature Selection with the R Package MXM

2.5% Mean 97.5%

Breast Cancer -0.222833 -0.104123 -0.001349

AquaticTox -0.228774 -0.115798 0.027270

Vijver-2002 -0.096756 -0.016740 0.033616

Table 5: Quantiles of the difference in performance between SES and LASSO. Positive values
indicate SES outperforming LASSO.

AquaticTox BreastCancer Vijver−2002

−
0.

4
−

0.
2

0.
0

0.
2

Difference in performances between SES and Lasso

Figure 2: Boxplot of the difference among SES and LASSO performances across the 500
iterations for each dataset.

LASSO retrieves a super set of the Markov-Blanket of the target variable, meaning that all
variables needed for optimal prediction plus some noisy variables are selected. In contrast,
SES is devised for retrieving the Parent-Children set of the target variable, i.e., a subset of
the Markov-Blanket. Thus, it is not surprising that in our experimentation SES selects fewer
variables and does not outperform LASSO. We also note that these results may be influenced
by the restricted range of values over which SES hyper-parameters a and k have been opti-
mized.
The aim of this paper is not an assessment of SES, of course; and results in Section ?? are
not conclusive. A more extensive comparison study is currently under preparation in order to
exhaustively evaluate SES capabilities and contrast its performance against a range of feature



Journal of Statistical Software 21

Average
SES

Average
LASSO

StD. SES StD.
LASSO

Breast Cancer 13.29 10.62 5.91 15.43

AquaticTox 5.68 160.75 1.80 66.34

Vijver-2002 3.24 10.50 0.98 3.64

Table 6: Distribution of the number of variables selected by SES and LASSO. For each method
and data set both the average number and the standard deviation (St.D.) of selected variables
is reported.

selection methods.

In conclusion, our limited experiments indicate that:

� Multiple, equally-performing signatures naturally occur in real-world data sets, either
due to equivalence among predictors or to impossibility to distinguish them due to
limited sample size. In either case, this phenomenon should be duly taken into account
while retrieving predictive feature subsets.

� The signatures retrieved by the SES algorithm provide predictive performances ex-
tremely close to each other in all data sets included in our analyses, demonstrating in
fact to be equally-predictive.

� SES and LASSO provide comparable results, and SES is generally more parsimonious
and sheds light on the characteristics of the problem at hand by identifying equivalences
hidden into the data.

We keep developing MXM by adding new conditional independence tests, as well as new
functionalities. For example. the MMPC algorithm, which performs feature selection with-
out providing multiple solutions, and the PC and MMHC algorithms, two methods for con-
structing the skeleton of a Bayesian network. Future work will focus on both algorithmic and
implementation improvements. In future extensions SES will attempt to retrieve the Markov
Blanket of the target variable, i.e., the variables set with theoretically the highest predictive
power. The aggregation of models trained on equivalent signatures for improving predictive
performances is also under consideration. In addition, we aim at extending MXM in the areas
of model selection and performance estimation (?), two fields closely related to the problem
of feature selection.

7. Acknowledgments

The work was co-funded by the STATegra EU FP7 project, No 306000, by the EPILOGEAS
GSRT ARISTEIA II project, No 3446, and by the European Research Council (ERC) project
No 617393, ”CAUSALPATH - Next Generation Causal Analysis”. We sincerely thank Damjan
Krstajic and Giorgos Borboudakis for their invaluable comments, suggestions and critical
reading of the manuscript.



22 Feature Selection with the R Package MXM

Affiliation:

Ioannis Tsamardinos
Computer Science Department
University of Crete
Voutes Campus
GR-70013 Heraklion, Crete, Greece
Telephone: +30 2810 39 3575
Fax: +30 2810 39 1428
E-mail: tsamard@csd.uoc.gr
URL: http://www.mensxmachina.org/

Journal of Statistical Software http://www.jstatsoft.org/

published by the Foundation for Open Access Statistics http://www.foastat.org/

September 2017, Volume 80, Issue 7 Submitted: 2015-10-01
doi:10.18637/jss.v000.i00 Accepted: 2017-09-05

mailto:tsamard@csd.uoc.gr
http://www.mensxmachina.org/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v000.i00

