Package 'MagmaClustR'

June 6, 2022

Title Clustering and Prediction using Multi-Task Gaussian Processes with Common Mean

Version 1.0.0

Description An implementation for the multi-task Gaussian processes with common mean framework. Two main algorithms, called 'Magma' and 'MagmaClust', are available to perform predictions for supervised learning problems, in particular for time series or any functional/continuous data applications. The corresponding articles has been respectively proposed by Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2022) <doi:10.1007/s10994-022-06172-1>, and Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2020) <arXiv:2011.07866>. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). 'MagmaClust' is a generalisation of 'Magma' where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features (classic kernels, training, prediction) of standard Gaussian processes are also implemented.

License MIT + file LICENSE

URL https://github.com/ArthurLeroy/MagmaClustR,
 https://arthurleroy.github.io/MagmaClustR/

BugReports https://github.com/ArthurLeroy/MagmaClustR/issues

Imports broom, dplyr, ggplot2, magrittr, methods, mvtnorm, optimr, Rcpp, rlang, stats, tibble, tidyr, tidyselect

Suggests gganimate, gifski, knitr, plotly, png, rmarkdown, testthat (>= 3.0.0), transformr

LinkingTo Rcpp **Encoding** UTF-8 **RoxygenNote** 7.1.2 **NeedsCompilation** yes Author Arthur Leroy [aut, cre] (https://orcid.org/0000-0003-0806-8934),
Pierre Pathé [ctb],
Pierre Latouche [aut]

Maintainer Arthur Leroy <arthur.leroy.pro@gmail.com>

Repository CRAN

Date/Publication 2022-06-06 09:00:10 UTC

R topics documented:

chol_inv_jitter
data_allocate_cluster
dmnorm
draw
elbo_clust_multi_GP
elbo_clust_multi_GP_common_hp_i
$elbo_GP_mod_common_hp_k \ \dots \ $
elbo_monitoring_VEM
e_step
gr_clust_multi_GP
gr_clust_multi_GP_common_hp_i
gr_GP
gr_GP_mod
gr_GP_mod_common_hp
$gr_GP_mod_common_hp_k$
gr_sum_logL_GP_clust
hp
hyperposterior
hyperposterior_clust
ini_kmeans
ini_mixture
kern_to_cov
kern_to_inv
lin_kernel
list_kern_to_cov
list_kern_to_inv
logL_GP
$log L_GP_mod \dots \dots$
logL_GP_mod_common_hp
logL_monitoring
MagmaClustR
m_step
perio_kernel
plot_db
plot_gif
plot_gp
plot_magmaclust
pred_gif

chol	inv	jitter	3
CHOI	1111	IIIICI	J

Index		67
	vm_step	65
	ve_step	64
	update_mixture	64
	train_magmaclust	61
	train_magma	
	train_gp_clust	
	train_gp	
	sum_logL_GP_clust	
	simu_indiv_se	
	simu_db	
	se_kernel	
	select_nb_cluster	
	sample_gp	
	rq_kernel	
	pred_magmaclust	
	pred_magma	
	pred_gp	

Description

chol_inv_jitter

Inverse a matrix from its Choleski decomposition. If (nearly-)singular, increase the order of magnitude of the jitter term added to the diagonal until the matrix becomes non-singular.

Inverse a matrix using an adaptive jitter term

Usage

```
chol_inv_jitter(mat, pen_diag)
```

Arguments

mat A matrix, possibly singular.
pen_diag A number, a jitter term to add on the diagonal.

Value

A matrix, inverse of mat plus an adaptive jitter term added on the diagonal.

Examples

4 dmnorm

data_allocate_cluster Allocate training data into the most probable cluster

Description

Allocate training data into the most probable cluster

Usage

```
data_allocate_cluster(trained_model)
```

Arguments

trained_model Al

A list, containing the information coming from a MagmaClust model, previously trained using the train_magmaclust function.

Value

The original dataset used to train the MagmaClust model, with additional 'Cluster' and associated 'Proba' columns, indicating the most probable cluster for each individual/task at the end of the training procedure.

Examples

TRUE

dmnorm

Compute the Multivariate Gaussian likelihood

Description

Modification of the function dmvnorm() from the package mvtnorm, providing an implementation of the Multivariate Gaussian likelihood. This version uses inverse of the covariance function as argument instead of the traditional covariance.

Usage

```
dmnorm(x, mu, inv_Sigma, log = FALSE)
```

Arguments

x A vector, containing values the likelihood is evaluated on.

mu A vector or matrix, specifying the mean parameter.

inv_Sigma A matrix, specifying the inverse of covariance parameter.

log A logical value, indicating whether we return the log-likelihood.

draw 5

Value

A number, corresponding to the Multivariate Gaussian log-likelihood.

Examples

TRUE

draw

Draw a number

Description

Draw uniformly a number within a specified interval

Usage

draw(int)

Arguments

int

An interval of values we want to draw uniformly in.

Value

A 2-decimals-rounded random number

Examples

TRUE

elbo_clust_multi_GP

Evidence Lower Bound for a mixture of GPs

Description

Evidence Lower Bound for a mixture of GPs

Usage

```
elbo_clust_multi_GP(hp, db, hyperpost, kern, pen_diag)
```

Arguments

hp A tibble, data frame or named vector containing hyper-parameters.

db A tibble containing the values we want to compute the elbo on. Required

columns: Input, Output. Additional covariate columns are allowed.

hyperpost List of parameters for the K mean GPs.

kern A kernel function used to compute the covariance matrix at corresponding times-

tamps.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

The value of the penalised Gaussian elbo for a mixture of GPs

Examples

TRUE

```
elbo_clust_multi_GP_common_hp_i
```

Penalised elbo for multiple individual GPs with common HPs

Description

Penalised elbo for multiple individual GPs with common HPs

Usage

```
elbo_clust_multi_GP_common_hp_i(hp, db, hyperpost, kern, pen_diag)
```

Arguments

hp A tibble, data frame or named vector containing hyper-parameters.

db A tibble containing values we want to compute elbo on. Required columns:

Input, Output. Additional covariate columns are allowed.

hyperpost List of parameters for the K mean Gaussian processes.

kern A kernel function used to compute the covariance matrix at corresponding times-

tamps.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

The value of the penalised Gaussian elbo for the sum of the M individual GPs with common HPs.

Examples

TRUE

 $elbo_GP_mod_common_hp_k$

Penalised elbo for multiple mean GPs with common HPs

Description

Penalised elbo for multiple mean GPs with common HPs

Usage

```
elbo_GP_mod_common_hp_k(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

hp	A tibble, data frame or named vector containing hyper-parameters.
db	A tibble containing values we want to compute elbo on. Required columns: Input, Output. Additional covariate columns are allowed.
mean	A list of the K mean GPs at union of observed timestamps.
kern	A kernel function used to compute the covariance matrix at corresponding timestamps.
post_cov	A List of the K posterior covariance of the mean GP (mu_k). Used to compute correction term (cor_term).
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues when inverting, in cases of nearly singular matrices.

Value

The value of the penalised Gaussian elbo for the sum of the k mean GPs with common HPs.

Examples

Description

Evidence Lower Bound maximised in MagmaClust

Usage

```
elbo_monitoring_VEM(hp_k, hp_i, db, kern_i, kern_k, hyperpost, m_k, pen_diag)
```

Arguments

hp_k	A tibble, data frame or named vector of hyper-parameters for each clusters.
hp_i	A tibble, data frame or named vector of hyper-parameters for each individuals.
db	A tibble containing values we want to compute elbo on. Required columns: Input, Output. Additional covariate columns are allowed.
kern_i	Kernel used to compute the covariance matrix of individuals GPs at corresponding inputs.
kern_k	Kernel used to compute the covariance matrix of the mean GPs at corresponding inputs.
hyperpost	A list of parameters for the variational distributions of the K mean GPs.
m_k	Prior value of the mean parameter of the mean GPs (mu_k) . Length = 1 or $nrow(db)$.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues when inverting, in cases of nearly singular matrices.

Value

Value of the elbo that is maximised during the VEM algorithm used for training in MagmaClust.

Examples

e_step 9

e_step	E-Step of the EM algorithm

Description

Expectation step of the EM algorithm to compute the parameters of the hyper-posterior Gaussian distribution of the mean process in Magma.

Usage

```
e_step(db, m_0, kern_0, kern_i, hp_0, hp_i, pen_diag)
```

Arguments

db	A tibble or data frame. Columns required: ID, Input, Output. Additional columns for covariates can be specified.
m_0	A vector, corresponding to the prior mean of the mean GP.
kern_0	A kernel function, associated with the mean GP.
kern_i	A kernel function, associated with the individual GPs.
hp_0	A named vector, tibble or data frame of hyper-parameters associated with kern_0.
hp_i	A tibble or data frame of hyper-parameters associated with kern_i.
pen_diag	A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A named list, containing the elements mean, a tibble containing the Input and associated Output of the hyper-posterior's mean parameter, and cov, the hyper-posterior's covariance matrix.

Examples

TRUE

gr_clust_multi_GP	Gradient of the elbo for a mixture of GPs	

Description

Gradient of the elbo for a mixture of GPs

Usage

```
gr_clust_multi_GP(hp, db, hyperpost, kern, pen_diag)
```

Arguments

hp A tibble, data frame or named vector containing hyper-parameters.

db A tibble containing the values we want to compute the elbo on. Required

columns: Input, Output. Additional covariate columns are allowed.

hyperpost List of parameters for the K mean Gaussian processes.

kern A kernel function.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

The gradient of the penalised Gaussian elbo for a mixture of GPs

Examples

TRUE

```
gr_clust_multi_GP_common_hp_i
```

Gradient of the penalised elbo for multiple individual GPs with common HPs

Description

Gradient of the penalised elbo for multiple individual GPs with common HPs

Usage

```
gr_clust_multi_GP_common_hp_i(hp, db, hyperpost, kern, pen_diag = NULL)
```

Arguments

hp A tibble, data frame or name vector of hyper-parameters.

db A tibble containing values we want to compute elbo on. Required columns:

Input, Output. Additional covariate columns are allowed.

hyperpost List of parameters for the K mean Gaussian processes.

kern A kernel function used to compute the covariance matrix at corresponding times-

tamps.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

The gradient of the penalised Gaussian elbo for the sum of the M individual GPs with common HPs.

gr_GP 11

Examples

TRUE

gr_GP	Gradient of the logLikelihood of a Gaussian Process

Description

Gradient of the logLikelihood of a Gaussian Process

Usage

```
gr_GP(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

hp

•		
db	A tibble containing the values we want to compute the logL on. R columns: Input, Output. Additional covariate columns are allowed.	equired
mean	A vector, specifying the mean of the GP at the reference inputs.	
korn	A karnal function	

A tibble, data frame or named vector containing hyper-parameters.

kern A kernel function.

post_cov (optional) A matrix, corresponding to covariance parameter of the hyper-posterior. Used to compute the hyper-prior distribution of a new individual in Magma.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

A named vector, corresponding to the value of the hyper-parameters gradients for the Gaussian log-Likelihood (where the covariance can be the sum of the individual and the hyper-posterior's mean process covariances).

Examples

gr_GP_mod	Gradient of the modified logLikelihood for GPs in Magma
3 – –	

Description

Gradient of the modified logLikelihood for GPs in Magma

Usage

```
gr_GP_mod(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

hp	A tibble, data frame or named vector containing hyper-parameters.
db	A tibble containing the values we want to compute the logL on. Required columns: Input, Output. Additional covariate columns are allowed.
mean	A vector, specifying the mean of the GPs at the reference inputs.
kern	A kernel function.
post_cov	A matrix, covariance parameter of the hyper-posterior. Used to compute the correction term.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues when inverting, in cases of nearly singular matrices.

Value

A named vector, corresponding to the value of the hyper-parameters gradients for the modified Gaussian log-Likelihood involved in Magma.

Examples

TRUE

gr_GP_mod_common_hp	Gradient of the modified logLikelihood with common HPs for GPs in Magma
---------------------	---

Description

Gradient of the modified logLikelihood with common HPs for GPs in Magma

Usage

```
gr_GP_mod_common_hp(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

hp	A tibble or data frame containing hyper-parameters for all individuals.
----	---

db A tibble containing the values we want to compute the logL on. Required

columns: ID, Input, Output. Additional covariate columns are allowed.

mean A vector, specifying the mean of the GPs at the reference inputs.

kern A kernel function.

post_cov A matrix, covariance parameter of the hyper-posterior. Used to compute the

correction term.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

A named vector, corresponding to the value of the hyper-parameters' gradients for the modified Gaussian log-Likelihood involved in Magma with the 'common HP' setting.

Examples

TRUE

 $\begin{tabular}{ll} $\tt gr_GP_mod_common_hp_k$ & $\it Gradient of the penalised elbo for multiple mean $\it GPs$ with common \\ &\it HPs \end{tabular}$

Description

Gradient of the penalised elbo for multiple mean GPs with common HPs

Usage

```
gr_GP_mod_common_hp_k(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

pen_diag

hp	A tibble, data frame or named vector containing hyper-parameters.
db	A tibble containing the values we want to compute the elbo on. Required columns: Input, Output. Additional covariate columns are allowed.
mean	A list of the k means of the GPs at union of observed timestamps.
kern	A kernel function
post_cov	A list of the k posterior covariance of the mean GP (mu_k). Used to compute correction term (cor_term)

A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

The gradient of the penalised Gaussian elbo for the sum of the k mean GPs with common HPs.

Examples

TRUE

gr_sum_logL_GP_clust Gradient of the mixture of Gaussian likelihoods

Description

Compute the gradient of a sum of Gaussian log-likelihoods, weighted by their mixture probabilities.

Usage

```
gr_sum_logL_GP_clust(hp, db, mixture, mean, kern, post_cov, pen_diag)
```

Arguments

hp	A tibble, data frame or named vector of hyper-parameters.
db	A tibble containing data we want to evaluate the logL on. Required columns: Input, Output. Additional covariate columns are allowed.
mixture	A tibble or data frame, indicating the mixture probabilities of each cluster for the new individual/task.
mean	A list of hyper-posterior mean parameters for all clusters.
kern	A kernel function.
post_cov	A list of hyper-posterior covariance parameters for all clusters.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues

Value

A named vector, corresponding to the value of the hyper-parameters' gradients for the mixture of Gaussian log-likelihoods involved in the prediction step of MagmaClust.

when inverting, in cases of nearly singular matrices.

Examples

15 hp

hp

Generate random hyper-parameters

Description

Generate a set of random hyper-parameters, specific to the chosen type of kernel, under the format that is used in Magma.

Usage

```
hp(
  kern = "SE",
  list_ID = NULL,
  list_hp = NULL,
  noise = FALSE,
  common_hp = FALSE
)
```

Arguments

kern

A function, or a character string indicating the chosen type of kernel among:

- "SE": the Squared Exponential kernel,
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

In case of a custom kernel function, the argument list_hp has to be provided as well, for designing a tibble with the correct names of hyper-parameters.

list ID

A vector, associating an ID value with each individual for whom hyper-parameters are generated. If NULL (default) only one set of hyper-parameters is return without the ID column.

list_hp

A vector of characters, providing the name of each hyper-parameter, in case where kern is a custom kernel function.

noise

A logical value, indicating whether a 'noise' hyper-parameter should be in-

common_hp

A logical value, indicating whether the set of hyper-parameters is assumed to be common to all indiviuals.

16 hyperposterior

Value

A tibble, providing a set of random hyper-parameters associated with the kernel specified through the argument kern.

Examples

TRUE

hyperposterior

Compute the hyper-posterior distribution in Magma

Description

Compute the parameters of the hyper-posterior Gaussian distribution of the mean process in Magma (similarly to the expectation step of the EM algorithm used for learning). This hyper-posterior distribution, evaluated on a grid of inputs provided through the grid_inputs argument, is a key component for making prediction in Magma, and is required in the function pred_magma.

Usage

```
hyperposterior(
  data,
  hp_0,
  hp_i,
  kern_0,
  kern_i,
  prior_mean = NULL,
  grid_inputs = NULL,
  pen_diag = 1e-10
)
```

Arguments

kern_0

data	A tibble or data frame. Required columns: 'Input', 'Output'. Additional columns
	for covariates can be specified. The 'Input' column should define the variable
	that is used as reference for the observations (e.g. time for longitudinal data).
	The 'Output' column specifies the observed values (the response variable). The
	data frame can also provide as many covariates as desired, with no constraints
	on the column names. These covariates are additional inputs (explanatory vari-
	ables) of the models that are also observed at each reference 'Input'.

hp_0 A named vector, tibble or data frame of hyper-parameters associated with kern_0.

hp_i A tibble or data frame of hyper-parameters associated with kern_i.

A kernel function, associated with the mean GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

hyperposterior 17

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

kern_i

A kernel function, associated with the individual GPs. ("SE", "PERIO" and "RO" are aso available here)

prior_mean

Hyper-prior mean parameter of the mean GP. This argument, can be specified under various formats, such as:

- NULL (default). The hyper-prior mean would be set to 0 everywhere.
- A number. The hyper-prior mean would be a constant function.
- A vector of the same length as all the distinct Input values in the data argument. This vector would be considered as the evaluation of the hyperprior mean function at the training Inputs.
- A function. This function is defined as the hyper-prior mean.
- A tibble or data frame. Required columns: Input, Output. The Input values should include at least the same values as in the data argument.

grid_inputs

A vector, indicating the grid of additional reference inputs on which the mean process' hyper-posterior should be evaluated.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A list gathering the parameters of the mean processes' hyper-posterior distributions, namely:

- mean: A tibble, the hyper-posterior mean parameter evaluated at each training Input.
- cov: A matrix, the covariance parameter for the hyper-posterior distribution of the mean process.
- pred: A tibble, the predicted mean and variance at Input for the mean process' hyper-posterior distribution under a format that allows the direct visualisation as a GP prediction.

Examples

18 hyperposterior_clust

hyperposterior_clust Compute the hyper-posterior distribution for each cluster in MagmaClust

Description

Recompute the E-step of the VEM algorithm in MagmaClust for a new set of reference Input. Once training is completed, it can be necessary to evaluate the hyper-posterior distributions of the mean processes at specific locations, for which we want to make predictions. This process is directly implemented in the pred_magmaclust function but for the user might want to use hyperpost_clust for a tailored control 'by hand' of the prediction procedure.

Usage

```
hyperposterior_clust(
  data,
  mixture,
  hp_k,
  hp_i,
  kern_k,
  kern_i,
  prior_mean_k = NULL,
  grid_inputs = NULL,
  pen_diag = 1e-10
)
```

Arguments

data

A tibble or data frame. Required columns: ID, Input , Output. Additional columns for covariates can be specified. The ID column contains the unique names/codes used to identify each individual/task (or batch of data). The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference Input.

mixture

A tibble or data frame, indicating the mixture probabilities of each cluster for each individual. Required column: ID.

hp_k

A tibble or data frame of hyper-parameters associated with kern_k.

hp_i

A tibble or data frame of hyper-parameters associated with kern_i.

kern_k

A kernel function, associated with the mean GPs. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

• "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),

hyperposterior_clust 19

- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,

• "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

kern_i

A kernel function, associated with the individual GPs. ("SE", "LIN", PERIO" and "RQ" are also available here)

prior_mean_k

The set of hyper-prior mean parameters (m_k) for the K mean GPs, one value for each cluster. This argument can be specified under various formats, such as:

- NULL (default). All hyper-prior means would be set to 0 everywhere.
- A numerical vector of the same length as the number of clusters. Each number is associated with one cluster, and considered to be the hyper-prior mean parameter of the cluster (i.e. a constant function at all Input).
- A list of functions. Each function is associated with one cluster. These
 functions are all evaluated at all Input values, to provide specific hyperprior mean vectors for each cluster.

grid_inputs

A vector, indicating the grid of additional reference inputs on which the mean process' hyper-posterior should be evaluated.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A list containing the parameters of the mean processes' hyper-posterior distribution, namely:

- mean: A list of tibbles containing, for each cluster, the hyper-posterior mean parameters evaluated at each Input.
- cov: A list of matrices containing, for each cluster, the hyper-posterior covariance parameter of the mean process.
- mixture: A tibble, indicating the mixture probabilities in each cluster for each individual.

Examples

20 ini_mixture

1n1_kmeans Run a k-means algoithm to initialise clusters' allocation	ini_kmeans	Run a k-means algoithm to initialise clusters' allocation	
--	------------	---	--

Description

Run a k-means algoithm to initialise clusters' allocation

Usage

```
ini_kmeans(data, k, nstart = 50, summary = FALSE)
```

Arguments

data A tibble containing common Input and associated Output values to cluster.

k A number of clusters assumed for running the kmeans algorithm.

nstart A number, indicating how many re-starts of kmeans are set.

summary A boolean, indicating whether we want an outcome summary

Value

A tibble containing the initial clustering obtained through kmeans.

Examples

TRUE

ini_mixture	Mixture initialisation with kmeans	

Description

Provide an initial kmeans allocation of the individuals/tasks in a dataset into a definite number of clusters, and return the associated mixture probabilities.

Usage

```
ini_mixture(data, k, name_clust = NULL, nstart = 50)
```

Arguments

data A tibble or data frame. Required columns: ID, Input, Output.

k A number, indicating the number of clusters.

name_clust A vector of characters. Each element should correspond to the name of one

cluster.

nstart A number of restart used in the underlying kmeans algorithm

kern_to_cov 21

Value

A tibble indicating for each ID in which cluster it belongs after a kmeans initialisation.

Examples

TRUE

kern_to_cov

Create covariance matrix from a kernel

Description

kern_to_cov() creates a covariance matrix between input values (that could be either scalars or vectors) evaluated within a kernel function, which is characterised by specified hyper-parameters. This matrix is a finite-dimensional evaluation of the infinite-dimensional covariance structure of a GP, defined thanks to this kernel.

Usage

```
kern_to_cov(input, kern = "SE", hp, deriv = NULL, input_2 = NULL)
```

Arguments

input

A vector, matrix, data frame or tibble containing all inputs for one individual. If a vector, the elements are used as reference, otherwise, one column should be named 'Input' to indicate that it represents the reference (e.g. 'Input' would contain the timestamps in time-series applications). The other columns are considered as being covariates. If no column is named 'Input', the first one is used by default.

kern

A kernel function. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

hp

A list, data frame or tibble containing the hyper-parameters used in the kernel. The name of the elements (or columns) should correspond exactly to those used in the kernel definition. If hp contains an element or a column 'Noise', its value will be added on the diagonal of the covariance matrix.

kern_to_inv

deriv A character, indicating according to which hyper-parameter the derivative should

be computed. If NULL (default), the function simply returns the covariance ma-

trix.

input_2 (optional) A vector, matrix, data frame or tibble under the same format as input.

This argument should be used only when the kernel needs to be evaluated between two different sets of inputs, typically resulting in a non-square matrix.

Value

A covariance matrix, where elements are evaluations of the associated kernel for each pair of reference inputs.

Examples

TRUE

kern_to_inv

Create inverse of a covariance matrix from a kernel

Description

kern_to_inv() creates the inverse of a covariance matrix between input values (that could be either scalars or vectors) evaluated within a kernel function, which is characterised by specified hyperparameters. This matrix is a finite-dimensional evaluation of the infinite-dimensional covariance structure of a GP, defined thanks to this kernel.

Usage

```
kern_to_inv(input, kern, hp, pen_diag = 1e-10, deriv = NULL)
```

Arguments

input

A vector, matrix, data frame or tibble containing all inputs for one individual. If a vector, the elements are used as reference, otherwise ,one column should be named 'Input' to indicate that it represents the reference (e.g. 'Input' would contain the timestamps in time-series applications). The other columns are considered as being covariates. If no column is named 'Input', the first one is used by default.

kern

A kernel function. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel.
- "PERIO": the Periodic kernel,

lin_kernel 23

• "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

hp A list, data frame or tibble containing the hyper-parameters used in the kernel.

The name of the elements (or columns) should correspond exactly to those used

in the kernel definition.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

deriv A character, indicating according to which hyper-parameter the derivative should

be computed. If NULL (default), the function simply returns the inverse covari-

ance matrix.

Value

The inverse of a covariance matrix, which elements are evaluations of the associated kernel for each pair of reference inputs.

Examples

TRUE

|--|

Description

Linear Kernel

Usage

```
lin_kernel(x, y, hp, deriv = NULL, vectorized = FALSE)
```

Arguments

x	A vector (or matrix if vectorized = T) of inputs.
У	A vector (or matrix if vectorized = T) of inputs.
hp	A tibble, data frame or named vector, containing the kernel's hyperparameters. Required columns: 'lin_slope' and 'lin_offset'.
deriv	A character, indicating according to which hyper-parameter the derivative should be computed. If NULL (default), the function simply returns the evaluation of the kernel.

24 list_kern_to_cov

vectorized

A logical value, indicating whether the function provides a vectorized version for speeded-up calculations. If TRUE, the x and y arguments should be the vector or matrix containing all inputs for which the kernel is evaluated on all pairs of elements. If FALSE, the x and y arguments are simply two inputs.

Value

A scalar, corresponding to the evaluation of the kernel.

Examples

TRUE

list_kern_to_cov

Compute a covariance matrix for multiple individuals

Description

Compute the covariance matrices associated with all individuals in the database, taking into account their specific inputs and hyper-parameters.

Usage

```
list_kern_to_cov(data, kern, hp, deriv = NULL)
```

Arguments

data A tibble or data frame of input data. Required column: 'ID'. Suggested column:

'Input' (for indicating the reference input).

kern A kernel function.

hp A tibble or data frame, containing the hyper-parameters associated with each

individual.

deriv A character, indicating according to which hyper-parameter the derivative should

be computed. If NULL (default), the function simply returns the list of covari-

ance matrices.

Value

A named list containing all of the inverse covariance matrices.

Examples

list_kern_to_inv 25

list_kern_to_inv	Compute an inverse covariance matrix for multiple individuals	

Description

Compute the inverse covariance matrices associated with all individuals in the database, taking into account their specific inputs and hyper-parameters.

Usage

```
list_kern_to_inv(db, kern, hp, pen_diag, deriv = NULL)
```

Arguments

Ti tibble of data frame of input data. Required column. 1D. Suggested column.	db	A tibble or data frame of input data. Required column: 'ID'. Suggested column:
---	----	--

'Input' (for indicating the reference input).

kern A kernel function.

hp A tibble or data frame, containing the hyper-parameters associated with each

individual.

pen_diag A number. A jitter term, added on the diagonal to prevent numerical issues when

inverting nearly singular matrices.

deriv A character, indicating according to which hyper-parameter the derivative should

be computed. If NULL (default), the function simply returns the list of covari-

ance matrices.

Value

A named list containing all of the inverse covariance matrices.

Examples

TRUE

logL_GP Log-Likelihood function of a Gaussian Process	S
---	---

Description

Log-Likelihood function of a Gaussian Process

Usage

```
logL_GP(hp, db, mean, kern, post_cov, pen_diag)
```

logL_GP_mod

Arguments

hp	A tibble, data frame or named vector containing hyper-parameters.
db	A tibble containing the values we want to compute the logL on. Required columns: Input, Output. Additional covariate columns are allowed.
mean	A vector, specifying the mean of the GP at the reference inputs.
kern	A kernel function.
post_cov	(optional) A matrix, corresponding to covariance parameter of the hyper-posterior. Used to compute the hyper-prior distribution of a new individual in Magma.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues

Value

A number, corresponding to the value of Gaussian log-Likelihood (where the covariance can be the sum of the individual and the hyper-posterior's mean process covariances).

when inverting, in cases of nearly singular matrices.

Examples

TRUE

logL_GP_mod Modified log-Likelihood function for GPs
--

Description

Log-Likelihood function involved in Magma during the maximisation step of the training. The log-Likelihood is defined as a simple Gaussian likelihood added with correction trace term.

Usage

```
logL_GP_mod(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

hp	A tibble, data frame or named vector of hyper-parameters.
db	A tibble containing values we want to compute logL on. Required columns: Input, Output. Additional covariate columns are allowed.
mean	A vector, specifying the mean of the GP at the reference inputs.
kern	A kernel function.
post_cov	A matrix, covariance parameter of the hyper-posterior. Used to compute the correction term.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues when inverting, in cases of nearly singular matrices.

Value

A number, corresponding to the value of the modified Gaussian log-Likelihood defined in Magma.

Examples

TRUE

logL_GP_mod_common_hp Modified log-Likelihood function with common HPs for GPs

Description

Log-Likelihood function involved in Magma during the maximisation step of the training, in the particular case where the hyper-parameters are shared by all individuals. The log-Likelihood is defined as a sum over all individuals of Gaussian likelihoods added with correction trace terms.

Usage

```
logL_GP_mod_common_hp(hp, db, mean, kern, post_cov, pen_diag)
```

Arguments

hp	A tibble, data frame of hyper-parameters.
db	A tibble containing the values we want to compute the logL on. Required columns: ID, Input, Output. Additional covariate columns are allowed.
mean	A vector, specifying the mean of the GP at the reference inputs.
kern	A kernel function.
post_cov	A matrix, covariance parameter of the hyper-posterior. Used to compute the correction term.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues when inverting, in cases of nearly singular matrices.

Value

A number, corresponding to the value of the modified Gaussian log-Likelihood with common hyperparameters defined in Magma.

Examples

28 logL_monitoring

logL_monitoring

Log-Likelihood for monitoring the EM algorithm in Magma

Description

Log-Likelihood for monitoring the EM algorithm in Magma

Usage

```
logL_monitoring(
  hp_0,
  hp_i,
  db,
  m_0,
  kern_0,
  kern_i,
  post_mean,
  post_cov,
  pen_diag
)
```

Arguments

hp_0	A named vector, tibble or data frame, containing the hyper-parameters associated with the mean GP.
hp_i	A tibble or data frame, containing the hyper-parameters with the individual GPs.
db	A tibble or data frame. Columns required: ID, Input, Output. Additional columns for covariates can be specified.
m_0	A vector, corresponding to the prior mean of the mean GP.
kern_0	A kernel function, associated with the mean GP.
kern_i	A kernel function, associated with the individual GPs.
post_mean	A tibble, coming out of the E step, containing the Input and associated Output of the hyper-posterior mean parameter.
post_cov	A matrix, coming out of the E step, being the hyper-posterior covariance parameter.
pen_diag	A jitter term that is added to the covariance matrix to avoid numerical issues when inverting, in cases of nearly singular matrices.

Value

A number, expectation of joint log-likelihood of the model. This quantity is supposed to increase at each step of the EM algorithm, and thus used for monitoring the procedure.

Examples

MagmaClustR 29

MagmaClustR : Clustering and Prediction using Multi-Task Gaussian Processes
1 rocesses

Description

The **MagmaClustR** package implements two main algorithms, called *Magma* and *MagmaClust*, using a multi-task GPs model to perform predictions for supervised learning problems. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). *MagmaClust* is a generalisation of *Magma* where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features of standard GPs are also implemented.

Details

For a quick introduction to **MagmaClustR**, please refer to the README at https://github.com/ArthurLeroy/MagmaClustR

Author(s)

```
Arthur Leroy, Pierre Pathe and Pierre Latouche
Maintainer: Arthur Leroy - <arthur.leroy.pro@gmail.com>
```

References

```
Arthur Leroy, Pierre Latouche, Benjamin Guedj, and Servane Gey.

MAGMA: Inference and Prediction with Multi-Task Gaussian Processes. Machine Learning, 2022, https://link.springer.com/article/10.1007/s10994-022-06172-1

Arthur Leroy, Pierre Latouche, Benjamin Guedj, and Servane Gey.

Cluster-Specific Predictions with Multi-Task Gaussian Processes. PREPRINT, Nov. 2020, https://arxiv.org/abs/2011.07866
```

Examples

Simulate a dataset, train and predict with Magma

```
set.seed(42)
data_magma <- simu_db(M = 11, N = 10, K = 1)
magma_train <- data_magma %>% subset(ID %in% 1:10)
magma_test <- data_magma %>% subset(ID == 11) %>% head(5)

magma_model <- train_magma(data = magma_train)
magma_pred <- pred_magma(data = magma_test, trained_model = magma_model, grid_inputs = seq(0, 10, 0.01))
```

30 m_step

Simulate a dataset, train and predict with MagmaClust

```
set.seed(42)
data_magmaclust <- simu_db(M = 4, N = 10, K = 3)
list_ID = unique(data_magmaclust$ID)
magmaclust_train <- data_magmaclust %>% subset(ID %in% list_ID[1:11])
magmaclust_test <- data_magmaclust %>% subset(ID == list_ID[12]) %>% head(5)
magmaclust_model <- train_magmaclust(data = magmaclust_train)
magmaclust_pred <- pred_magmaclust(data = magmaclust_test,
trained_model = magmaclust_model, grid_inputs = seq(0, 10, 0.01))
```

m_step

M-Step of the EM algorithm

Description

Maximisation step of the EM algorithm to compute hyper-parameters of all the kernels involved in Magma.

Usage

```
m_step(
  db,
  m_0,
  kern_0,
  kern_i,
  old_hp_0,
  old_hp_i,
  post_mean,
  post_cov,
  common_hp,
  pen_diag
)
```

Arguments

db	A tibble or data frame. Columns required: ID, Input, Output. Additional columns for covariates can be specified.
m_0	A vector, corresponding to the prior mean of the mean GP.
kern_0	A kernel function, associated with the mean GP.
kern_i	A kernel function, associated with the individual GPs.
old_hp_0	A named vector, tibble or data frame, containing the hyper-parameters from the previous M-step (or initialisation) associated with the mean GP.

perio_kernel 31

old_hp_i	A tibble or data frame, containing the hyper-parameters from the previous M-step (or initialisation) associated with the individual GPs.
post_mean	A tibble, coming out of the E step, containing the Input and associated Output of the hyper-posterior mean parameter.
post_cov	A matrix, coming out of the E step, being the hyper-posterior covariance parameter.
common_hp	A logical value, indicating whether the set of hyper-parameters is assumed to be common to all indiviuals.
pen_diag	A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A named list, containing the elements hp_0, a tibble containing the hyper-parameters associated with the mean GP, hp_i, a tibble containing the hyper-parameters associated with the individual GPs.

Examples

TRUE

|--|

Description

Periodic Kernel

Usage

```
perio_kernel(x, y, hp, deriv = NULL, vectorized = FALSE)
```

Arguments

X	A vector (or matrix if vectorized = T) of inputs.
у	A vector (or matrix if vectorized = T) of inputs.
hp	A tibble, data frame or named vector, containing the kernel's hyperparameters. Required columns: 'perio_variance', 'perio_lengthscale', and 'period'.
deriv	A character, indicating according to which hyper-parameter the derivative should be computed. If NULL (default), the function simply returns the evaluation of the kernel.
vectorized	A logical value, indicating whether the function provides a vectorized version for speeded-up calculations. If TRUE, the x and y arguments should be the vector or matrix containing all inputs for which the kernel is evaluated on all pairs of elements. If FALSE, the x and y arguments are simply two inputs.

plot_gif

Value

A scalar, corresponding to the evaluation of the kernel.

Examples

TRUE

plot_db

Plot smoothed curves of raw data

Description

Display raw data under the Magma format as smoothed curves.

Usage

```
plot_db(data, cluster = FALSE, legend = FALSE)
```

Arguments

data A data frame or tibble with format: ID, Input, Output.

cluster A boolean indicating whether data should be coloured by cluster. Requires a

column named 'Cluster'.

legend A boolean indicating whether the legend should be displayed.

Value

Graph of smoothed curves of raw data.

Examples

TRUE

plot_gif

Create a GIF of Magma or GP predictions

Description

Create a GIF animation displaying how Magma or classic GP predictions evolve and improve when the number of data points increase.

plot_gif 33

Usage

```
plot_gif(
  pred_gp,
  x_{input} = NULL
  data = NULL,
  data_train = NULL,
  prior_mean = NULL,
  y_grid = NULL,
  heatmap = FALSE,
  prob_CI = 0.95,
  size_data = 3,
  size_data_train = 1,
  alpha_data_train = 0.5,
  export_gif = FALSE,
  path = "gif_gp.gif",
)
```

Arguments

pred_gp

A tibble, typically coming from the pred_gif function. Required columns: 'Input', 'Mean', 'Var' and 'Index'.

x_input

A vector of character strings, indicating which input should be displayed. If NULL(default) the 'Input' column is used for the x-axis. If providing a 2dimensional vector, the corresponding columns are used for the x-axis and yaxis.

data

(Optional) A tibble or data frame. Required columns: 'Input', 'Output'. Additional columns for covariates can be specified. The 'Input' column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The 'Output' column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference 'Input'.

data_train

(Optional) A tibble or data frame, containing the training data of the Magma model. The data set should have the same format as the data argument with an additional column 'ID' for identifying the different individuals/tasks. If provided, those data are displayed as backward colourful points (each colour corresponding to one individual/task).

prior_mean

(Optional) A tibble or a data frame, containing the 'Input' and associated 'Output' prior mean parameter of the GP prediction.

y_grid

A vector, indicating the grid of values on the y-axis for which probabilities should be computed for heatmaps of 1-dimensional predictions. If NULL (default), a vector of length 50 is defined, ranging between the min and max 'Output' values contained in pred_gp.

plot_gp

a n
e
S.
if

Value

Visualisation of a Magma or GP prediction (optional: display data points, training data points and the prior mean function), where data points are added sequentially for visualising changes in prediction as information increases.

Examples

TRUE

plot_gp

Plot Magma or GP predictions

from the gganimate package.

Description

Display Magma or classic GP predictions. According to the dimension of the inputs, the graph may be a mean curve + Credible Interval or a heatmap of probabilities.

Usage

```
plot_gp(
  pred_gp,
  x_input = NULL,
  data = NULL,
  data_train = NULL,
  prior_mean = NULL,
  y_grid = NULL,
  heatmap = FALSE,
  prob_CI = 0.95,
```

plot_gp 35

```
size_data = 3,
size_data_train = 1,
alpha_data_train = 0.5
)
```

Arguments

S	
pred_gp	A tibble or data frame, typically coming from pred_magma or pred_gp functions. Required columns: 'Input', 'Mean', 'Var'. Additional covariate columns may be present in case of multi-dimensional inputs.
x_input	A vector of character strings, indicating which input should be displayed. If NULL (default) the 'Input' column is used for the x-axis. If providing a 2-dimensional vector, the corresponding columns are used for the x-axis and y-axis.
data	(Optional) A tibble or data frame. Required columns: 'Input', 'Output'. Additional columns for covariates can be specified. This argument corresponds to the raw data on which the prediction has been performed.
data_train	(Optional) A tibble or data frame, containing the training data of the Magma model. The data set should have the same format as the data argument with an additional required column 'ID' for identifying the different individuals/tasks. If provided, those data are displayed as backward colourful points (each colour corresponding to one individual/task).
prior_mean	(Optional) A tibble or a data frame, containing the 'Input' and associated 'Output' prior mean parameter of the GP prediction.
y_grid	A vector, indicating the grid of values on the y-axis for which probabilities should be computed for heatmaps of 1-dimensional predictions. If NULL (default), a vector of length 50 is defined, ranging between the min and max 'Output' values contained in pred_gp.
heatmap	A logical value indicating whether the GP prediction should be represented as a heatmap of probabilities for 1-dimensional inputs. If FALSE (default), the mean curve and associated Credible Interval are displayed.
prob_CI	A number between 0 and 1 (default is 0.95), indicating the level of the Credible Interval associated with the posterior mean curve. If this this argument is set to 1, the Credible Interval is not displayed.
size_data	A number, controlling the size of the data points.
size_data_trai	n
	A number, controlling the size of the data_train points.
alpha_data_tra	
	A number, between 0 and 1, controlling transparency of the data_train points.

Value

Visualisation of a Magma or GP prediction (optional: display data points, training data points and the prior mean function). For 1-D inputs, the prediction is represented as a mean curve and its associated 95% Credible Interval, or as a heatmap of probabilities if heatmap = TRUE. For 2-D

36 plot_magmaclust

inputs, the prediction is represented as a heatmap, where each couple of inputs on the x-axis and y-axis are associated with a gradient of colours for the posterior mean values, whereas the uncertainty is indicated by the transparency (the narrower is the Credible Interval, the more opaque is the associated colour, and vice versa)

Examples

TRUE

plot_magmaclust

Plot MagmaClust predictions

Description

Display MagmaClust predictions. According to the dimension of the inputs, the graph may be a mean curve (dim inputs = 1) or a heatmap (dim inputs = 2) of probabilities. Moreover, MagmaClust can provide credible intervals only by visualising cluster-specific predictions (e.g. for the most probable cluster). When visualising the full mixture-of-GPs prediction, which can be multimodal, the user should choose between the simple mean function or the full heatmap of probabilities (more informative but slower).

Usage

```
plot_magmaclust(
   pred_clust,
   cluster = "all",
   x_input = NULL,
   data = NULL,
   data_train = NULL,
   col_clust = FALSE,
   prior_mean = NULL,
   y_grid = NULL,
   heatmap = FALSE,
   prob_CI = 0.95,
   size_data = 3,
   size_data_train = 1,
   alpha_data_train = 0.5
)
```

Arguments

pred_clust

A list of predictions, typically coming from pred_magmaclust. Required elements: pred, mixture, mixture_pred.

cluster

A character string, indicating which cluster to plot from. If 'all' (default) the mixture of GPs prediction is displayed as a mean curve (1-D inputs) or a mean heatmap (2-D inputs). Alternatively, if the name of one cluster is provided, the classic mean curve + credible interval is displayed (1-D inputs), or a heatmap

plot_magmaclust 37

with colour gradient for the mean and transparency gradient for the Credible

Interval (2-D inputs). x_input A vector of character strings, indicating which input should be displayed. If NULL (default) the 'Input' column is used for the x-axis. If providing a 2dimensional vector, the corresponding columns are used for the x-axis and ydata (Optional) A tibble or data frame. Required columns: Input, Output. Additional columns for covariates can be specified. This argument corresponds to the raw data on which the prediction has been performed. data_train (Optional) A tibble or data frame, containing the training data of the MagmaClust model. The data set should have the same format as the data argument with an additional required column ID for identifying the different individuals/tasks. If provided, those data are displayed as backward colourful points (each colour corresponding to one individual or a cluster, see col_clust below). col_clust A boolean indicating whether backward points are coloured according to the individuals or to their most probable cluster. If one wants to colour by clusters, a column Cluster shall be present in data_train. We advise to use data_allocate_cluster for automatically creating a well-formatted dataset from a trained MagmaClust model. (Optional) A list providing, for each cluster, a tibble containing prior mean prior_mean parameters of the prediction. This argument typically comes as an outcome hyperpost\$mean, available through the train_magmaclust, pred_magmaclust functions. y_grid A vector, indicating the grid of values on the y-axis for which probabilities should be computed for heatmaps of 1-dimensional predictions. If NULL (default), a vector of length 50 is defined, ranging between the min and max 'Output' values contained in pred. A logical value indicating whether the GP prediction should be represented as a heatmap heatmap of probabilities for 1-dimensional inputs. If FALSE (default), the mean curve (and associated Credible Interval if available) are displayed. prob_CI A number between 0 and 1 (default is 0.95), indicating the level of the Credible

Interval associated with the posterior mean curve. If this this argument is set to 1, the Credible Interval is not displayed.

A number, controlling the size of the data points.

size_data_train

size_data

A number, controlling the size of the data_train points.

alpha_data_train

A number, between 0 and 1, controlling transparency of the data_train points.

Value

Visualisation of a MagmaClust prediction (optional: display data points, training data points and the prior mean functions). For 1-D inputs, the prediction is represented as a mean curve (and its associated 95% Credible Interval for cluster-specific predictions), or as a heatmap of probabilities if heatmap = TRUE. In the case of MagmaClust, the heatmap representation should be preferred 38 pred_gif

for clarity, although the default display remains mean curve for quicker execution. For 2-D inputs, the prediction is represented as a heatmap, where each couple of inputs on the x-axis and y-axis are associated with a gradient of colours for the posterior mean values, whereas the uncertainty is indicated by the transparency (the narrower is the Credible Interval, the more opaque is the associated colour, and vice versa). As for 1-D inputs, Credible Interval information is only available for cluster-specific predictions.

Examples

TRUE

pred_gif

Magma prediction for ploting GIFs

Description

Generate a Magma or classic GP prediction under a format that is compatible with a further GIF visualisation of the results. For a Magma prediction, either the trained_model or hyperpost argument is required. Otherwise, a classic GP prediction is applied and the prior mean can be specified through the mean argument.

Usage

```
pred_gif(
   data,
   trained_model = NULL,
   hyperpost = NULL,
   mean = NULL,
   hp = NULL,
   kern = "SE",
   grid_inputs = NULL,
   pen_diag = 1e-10
)
```

Arguments

data

A tibble or data frame. Required columns: 'Input', 'Output'. Additional columns for covariates can be specified. The 'Input' column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The 'Output' column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference 'Input'.

trained_model

A list, containing the information coming from a Magma model, previously trained using the train_magma function.

pred_gif 39

hyperpost

A list, containing the elements 'mean' and 'cov', the parameters of the hyperposterior distribution of the mean process. Typically, this argument should from a previous learning using train_magma, or a previous prediction with pred_magma, with the argument get_hyperpost set to TRUE. The 'mean' element should be a data frame with two columns 'Input' and 'Output'. The 'cov' element should be a covariance matrix with colnames and rownames corresponding to the 'Input' in 'mean'. In all cases, the column 'Input' should contain all the values appearing both in the 'Input' column of data and in grid_inputs.

Mean parameter of the GP. This argument can be specified under various formats, such as:

• NULL (default). The mean would be set to 0 everywhere.

- A number. The mean would be a constant function.
- A function. This function is defined as the mean.
- A tibble or data frame. Required columns: Input, Output. The Input values should include at least the same values as in the data argument.

A named vector, tibble or data frame of hyper-parameters associated with kern. The columns/elements should be named according to the hyper-parameters that are used in kern. The function train_gp can be used to learn maximum-likelihood estimators of the hyper-parameters,

A kernel function, defining the covariance structure of the GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel.
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

grid_inputs

The grid of inputs (reference Input and covariates) values on which the GP should be evaluated. Ideally, this argument should be a tibble or a data frame, providing the same columns as data, except 'Output'. Nonetheless, in cases where data provides only one 'Input' column, the grid_inputs argument can be NULL (default) or a vector. This vector would be used as reference input for prediction and if NULL, a vector of length 500 is defined, ranging between the min and max Input values of data.

pen_diag A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A tibble, representing Magma or GP predictions as two column 'Mean' and 'Var', evaluated on the grid_inputs. The column 'Input' and additional covariates columns are associated to each

hp

mean

kern

40 pred_gp

predicted values. An additional 'Index' column is created for the sake of GIF creation using the function plot_gif

Examples

TRUE

pred_gp

Gaussian Process prediction

Description

Compute the posterior distribution of a simple GP, using the formalism of Magma. By providing observed data, the prior mean and covariance matrix (by defining a kernel and its associated hyperparameters), the mean and covariance parameters of the posterior distribution are computed on the grid of inputs that has been specified. This predictive distribution can be evaluated on any arbitrary inputs since a GP is an infinite-dimensional object.

Usage

```
pred_gp(
  data,
  mean = NULL,
  hp = NULL,
  kern = "SE",
  grid_inputs = NULL,
  get_full_cov = FALSE,
  plot = TRUE,
  pen_diag = 1e-10
)
```

Arguments

data

A tibble or data frame. Required columns: 'Input', 'Output'. Additional columns for covariates can be specified. The 'Input' column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The 'Output' column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference 'Input'.

mean

Mean parameter of the GP. This argument can be specified under various formats, such as:

- NULL (default). The mean would be set to 0 everywhere.
- A number. The mean would be a constant function.
- A function. This function is defined as the mean.
- A tibble or data frame. Required columns: Input, Output. The Input values should include at least the same values as in the data argument.

pred_gp 41

hp

A named vector, tibble or data frame of hyper-parameters associated with kern. The columns/elements should be named according to the hyper-parameters that are used in kern. If NULL (default), the function train_gp is called with random initial values for learning maximum-likelihood estimators of the hyper-parameters associated with kern.

kern

A kernel function, defining the covariance structure of the GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel).
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

grid_inputs

The grid of inputs (reference Input and covariates) values on which the GP should be evaluated. Ideally, this argument should be a tibble or a data frame, providing the same columns as data, except 'Output'. Nonetheless, in cases where data provides only one 'Input' column, the grid_inputs argument can be NULL (default) or a vector. This vector would be used as reference input for prediction and if NULL, a vector of length 500 is defined, ranging between the min and max Input values of data.

get_full_cov

A logical value, indicating whether the full posterior covariance matrix should be returned.

plot

A logical value, indicating whether a plot of the results is automatically displayed.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A tibble, representing the GP predictions as two column 'Mean' and 'Var', evaluated on the grid_inputs. The column 'Input' and additional covariates columns are associated to each predicted values. If the get_full_cov argument is TRUE, the function returns a list, in which the tibble described above is defined as 'pred' and the full posterior covariance matrix is defined as 'cov'.

Examples

42 pred_magma

pred_magma

Magma prediction

Description

Compute the posterior predictive distribution in Magma. Providing data of any new individual/task, its trained hyper-parameters and a previously trained Magma model, the predictive distribution is evaluated on any arbitrary inputs that are specified through the 'grid_inputs' argument.

Usage

```
pred_magma(
  data,
  trained_model = NULL,
  hp = NULL,
  kern = "SE",
  grid_inputs = NULL,
  hyperpost = NULL,
  get_hyperpost = FALSE,
  get_full_cov = FALSE,
  plot = TRUE,
  pen_diag = 1e-10
)
```

Arguments

data

A tibble or data frame. Required columns: 'Input', 'Output'. Additional columns for covariates can be specified. The 'Input' column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The 'Output' column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference 'Input'.

trained_model

A list, containing the information coming from a Magma model, previously trained using the train_magma function.

hp

A named vector, tibble or data frame of hyper-parameters associated with kern. The columns/elements should be named according to the hyper-parameters that are used in kern. The function train_gp can be used to learn maximum-likelihood estimators of the hyper-parameters.

kern

A kernel function, defining the covariance structure of the GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,

pred_magma 43

- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

grid_inputs

The grid of inputs (reference Input and covariates) values on which the GP should be evaluated. Ideally, this argument should be a tibble or a data frame, providing the same columns as data, except 'Output'. Nonetheless, in cases where data provides only one 'Input' column, the grid_inputs argument can be NULL (default) or a vector. This vector would be used as reference input for prediction and if NULL, a vector of length 500 is defined, ranging between the min and max Input values of data.

hyperpost

A list, containing the elements 'mean' and 'cov', the parameters of the hyperposterior distribution of the mean process. Typically, this argument should come from a previous learning using train_magma, or a previous prediction with pred_magma, with the argument get_hyperpost set to TRUE. The 'mean' element should be a data frame with two columns 'Input' and 'Output'. The 'cov' element should be a covariance matrix with colnames and rownames corresponding to the 'Input' in 'mean'. In all cases, the column 'Input' should contain all the values appearing both in the 'Input' column of data and in grid_inputs.

get_hyperpost

A logical value, indicating whether the hyper-posterior distribution of the mean process should be returned. This can be useful when planning to perform several predictions on the same grid of inputs, since recomputation of the hyper-posterior can be prohibitive for high dimensional grids.

get_full_cov

A logical value, indicating whether the full posterior covariance matrix should be returned.

plot

A logical value, indicating whether a plot of the results is automatically displayed.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A tibble, representing Magma predictions as two column 'Mean' and 'Var', evaluated on the grid_inputs. The column 'Input' and additional covariates columns are associated to each predicted values. If the get_full_cov or get_hyperpost arguments are TRUE, the function returns a list, in which the tibble described above is defined as 'pred_gp' and the full posterior covariance matrix is defined as 'cov', and the hyper-posterior distribution of the mean process is defined as 'hyperpost'.

Examples

44 pred_magmaclust

pred_magmaclust

MagmaClust prediction

Description

Compute the posterior predictive distribution in MagmaClust. Providing data from any new individual/task, its trained hyper-parameters and a previously trained MagmaClust model, the multi-task posterior distribution is evaluated on any arbitrary inputs that are specified through the 'grid_inputs' argument. Due to the nature of the model, the prediction is defined as a mixture of Gaussian distributions. Therefore the present function computes the parameters of the predictive distribution associated with each cluster, as well as the posterior mixture probabilities for this new individual/task.

Usage

```
pred_magmaclust(
  data,
  trained_model = NULL,
  mixture = NULL,
  hp = NULL,
  kern = "SE",
  grid_inputs = NULL,
  hyperpost = NULL,
  prop_mixture = NULL,
  get_hyperpost = FALSE,
  get_full_cov = FALSE,
  plot = TRUE,
  pen_diag = 1e-10
)
```

Arguments

data

A tibble or data frame. Required columns: Input, Output. Additional columns for covariates can be specified. The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference 'Input'.

trained_model

A list, containing the information coming from a MagmaClust model, previously trained using the train_magmaclust function. If trained_model is set to NULL, the hyperpost and prop_mixture arguments are mandatory to perform required re-computations for the prediction to succeed.

mixture

A tibble or data frame, indicating the mixture probabilities of each cluster for the new individual/task. If NULL, the train_gp_clust function is used to compute these posterior probabilities according to data.

45 pred_magmaclust

hp

A named vector, tibble or data frame of hyper-parameters associated with kern. The columns/elements should be named according to the hyper-parameters that are used in kern. The train_gp_clust function can be used to learn maximumlikelihood estimators of the hyper-parameters.

kern

A kernel function, defining the covariance structure of the GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

The grid of inputs (reference Input and covariates) values on which the GP should be evaluated. Ideally, this argument should be a tibble or a data frame, providing the same columns as data, except 'Output'. Nonetheless, in cases where data provides only one 'Input' column, the grid_inputs argument can be NULL (default) or a vector. This vector would be used as reference input for prediction and if NULL, a vector of length 500 is defined, ranging between the min and max Input values of data.

hyperpost

A list, containing the elements mean, cov and mixture the parameters of the hyper-posterior distributions of the mean processes. Typically, this argument should come from a previous learning using train_magmaclust, or a previous prediction with pred_magmaclust, with the argument get_hyperpost set to TRUE.

prop_mixture

A tibble or a named vector of the mixture proportions. Each name of column or element should refer to a cluster. The value associated with each cluster is a number between 0 and 1. If both mixture and trained_model are set to NULL, this argument allows to recompute mixture probabilities, thanks to the hyperpost argument and the train_gp_clust function.

get_hyperpost

A logical value, indicating whether the hyper-posterior distributions of the mean processes should be returned. This can be useful when planning to perform several predictions on the same grid of inputs, since recomputation of the hyperposterior can be prohibitive for high dimensional grids.

get_full_cov

A logical value, indicating whether the full posterior covariance matrices should be returned.

plot

A logical value, indicating whether a plot of the results is automatically displayed.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

grid_inputs

46 proba_max_cluster

Value

A list of GP prediction results composed of:

- pred: As sub-list containing, for each cluster:
 - pred_gp: A tibble, representing the GP predictions as two column Mean and Var, evaluated on the grid_inputs. The column Input and additional covariates columns are associated with each predicted values.
 - proba: A number, the posterior probability associated with this cluster.
 - cov (if get_full_cov = TRUE): A matrix, the full posterior covariance matrix associated with this cluster.
- mixture: A tibble, indicating the mixture probabilities of each cluster for the predicted individual/task.
- hyperpost (if get_hyperpost = TRUE): A list, containing the hyper-posterior distributions information useful for visualisation purposes.

Examples

TRUE

proba_max_cluster

Indicates the most probable cluster

Description

Indicates the most probable cluster

Usage

```
proba_max_cluster(mixture)
```

Arguments

mixture

A tibble or data frame containing mixture probabilities.

Value

A tibble, retaining only the most probable cluster. The column Cluster indicates the the cluster's name whereas Proba refers to its associated probability. If ID is initially a column of mixture (optional), the function returns the most probable cluster for all the different ID values.

Examples

rq_kernel 47

|--|

Description

Rational Quadratic Kernel

Usage

```
rq_kernel(x, y, hp, deriv = NULL, vectorized = FALSE)
```

Arguments

x	A vector (or matrix if vectorized = T) of inputs.
У	A vector (or matrix if vectorized = T) of inputs.
hp	A tibble, data frame or named vector, containing the kernel's hyperparameters. Required columns: 'rq_variance', 'rq_lengthscale', and 'rq_scale'.
deriv	A character, indicating according to which hyper-parameter the derivative should be computed. If NULL (default), the function simply returns the evaluation of the kernel.
vectorized	A logical value, indicating whether the function provides a vectorized version for speeded-up calculations. If TRUE, the x and y arguments should be the vector or matrix containing all inputs for which the kernel is evaluated on all pairs of elements. If FALSE, the x and y arguments are simply two inputs.

Value

A scalar, corresponding to the evaluation of the kernel.

Examples

TRUE

sample_gp	Display Realisation From Posterior GP	

Description

A realisation of a posterior GP distribution is drawn and displayed. According to the dimension of the inputs, the graph may be a curve or a heatmap.

48 sample_gp

Usage

```
sample_gp(
  pred_gp,
  x_input = NULL,
  data = NULL,
  data_train = NULL,
  prior_mean = NULL,
  size_data = 3,
  size_data_train = 1,
  alpha_data_train = 0.5
)
```

Arguments

pred_gp A tibble or data frame, typically coming from pred_magma or pred_gp func-

tions. Required columns: 'Input', 'Mean', 'Var'. Additional covariate columns

may be present in case of multi-dimensional inputs.

x_input A vector of character strings, indicating which input should be displayed. If

NULL(default) the 'Input' column is used for the x-axis. If providing a 2-dimensional vector, the corresponding columns are used for the x-axis and y-

axis.

data (Optional) A tibble or data frame, containing the data used in the GP prediction.

data_train (Optional) A tibble or data frame, containing the training data of the Magma

model. The data set should have the same format as the data argument with an additional column 'ID' for identifying the different individuals/tasks. If provided, those data are displayed as backward colourful points (each colour corre-

sponding to one individual/task).

prior_mean (Optional) A tibble or a data frame, containing the 'Input' and associated 'Out-

put' prior mean parameter of the GP prediction.

size_data A number, controlling the size of the data points.

size_data_train

A number, controlling the size of the data_train points.

alpha_data_train

A number, between 0 and 1, controlling transparency of the data_train points.

Value

Draw and visualise from a posterior distribution from Magma or GP prediction (optional: display data points, training data points and the prior mean function).

Examples

select_nb_cluster 49

select_nb_cluster

Select the optimal number of clusters

Description

In MagmaClust, as for any clustering method, the number K of clusters has to be provided as an hypothesis of the model. This function implements a model selection procedure, by maximising a variational BIC criterion, computed for different values of K. A heuristic for a fast approximation of the procedure is proposed as well, although the corresponding models would not be properly trained.

Usage

```
select_nb_cluster(
  data,
  fast_approx = TRUE,
  grid_nb_cluster = 1:10,
  ini_hp_k = NULL,
  ini_hp_i = NULL,
  kern_k = "SE",
  kern_i = "SE",
  plot = TRUE,
  ...
)
```

Arguments

data

A tibble or data frame. Columns required: ID, Input , Output. Additional columns for covariates can be specified. The ID column contains the unique names/codes used to identify each individual/task (or batch of data). The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference Input.

fast_approx

A boolean, indicating whether a fast approximation should be used for selecting the number of clusters. If TRUE, each Magma or MagmaClust model will perform only one E-step of the training, using the same fixed values for the hyper-parameters (ini_hp_k and ini_hp_i, or random values if not provided) in all models. The resulting models should not be considered as trained, but this approach provides an convenient heuristic to avoid a cumbersome model selection procedure.

grid_nb_cluster

A vector of integer, corresponding to grid of values that will be tested for the number of clusters.

se_kernel

ini_hp_k	A tibble or data frame of hyper-parameters associated with kern_k.
ini_hp_i	A tibble or data frame of hyper-parameters associated with kern_i.
kern_k	A kernel function associated to the mean processes.
kern_i	A kernel function associated to the individuals/tasks.
plot	A boolean indicating whether the plot of V-BIC values for all numbers of clusters should displayed.
	Any additional argument that could be passed to train_magmaclust.

Value

A list, containing the results of model selection procedure for selecting the optimal number of clusters thanks to a V-BIC criterion maximisation. The elements of the list are:

- best_k: An integer, indicating the resulting optimal number of clusters
- seq_vbic: A vector, corresponding to the sequence of the V-BIC values associated with the models trained for each provided cluster's number in grid_nb_cluster.
- trained_models: A list, named by associated number of clusters, of Magma or MagmaClust models that have been trained (or approximated if fast_approx = T) during the model selection procedure.

Examples

TRUE

	se_kernel	Squared Exponential Kernel	
--	-----------	----------------------------	--

Description

Squared Exponential Kernel

Usage

```
se_kernel(x, y, hp, deriv = NULL, vectorized = FALSE)
```

Arguments

Х	A vector (or matrix if vectorized = T) of inputs.
У	A vector (or matrix if vectorized = T) of inputs.
hp	A tibble, data frame or named vector, containing the kernel's hyperparameters. Required columns: 'se_variance', 'se_lengthscale'.
deriv	A character, indicating according to which hyper-parameter the derivative should be computed. If NULL (default), the function simply returns the evaluation of the kernel.
vectorized	A logical value, indicating whether the function provides a vectorized version for speeded-up calculations. If TRUE, the x and y arguments should be the vector or matrix containing all inputs for which the kernel is evaluated on all pairs of elements. If FALSE, the x and y arguments are simply two inputs.

simu_db 51

Value

A scalar, corresponding to the evaluation of the kernel.

Examples

TRUE

simu_db

Simulate a dataset tailored for MagmaClustR

Description

Simulate a complete training dataset, which may be representative of various applications. Several flexible arguments allow adjustment of the number of individuals, of observed inputs, and the values of many parameters controlling the data generation.

Usage

```
simu_db(
 M = 10,
 N = 10,
 K = 1,
  covariate = FALSE,
 grid = seq(0, 10, 0.05),
  common_input = TRUE,
  common_hp = TRUE,
  add_hp = FALSE,
  add_clust = FALSE,
  int_mu_v = c(0, 2),
  int_mu_1 = c(0, 2),
  int_i_v = c(0, 2),
  int_i_1 = c(0, 2),
  int_i_sigma = c(0, 1),
 m0\_slope = c(-5, 5),
 m0_{intercept} = c(-10, 10),
  int\_covariate = c(-5, 5)
)
```

Arguments

М	An integer. The number of individual per cluster.
N	An integer. The number of observations per individual.
K	An integer. The number of underlying clusters.
covariate	A logical value indicating whether the dataset should include an additional input covariate named 'Covariate'.
grid	A vector of numbers defining a grid of observations (i.e. the reference inputs).

52 simu_db

common_input	A logical value indicating whether the reference inputs are common to all individual.
common_hp	A logical value indicating whether the hyper-parameters are common to all individual. If TRUE and K>1, the hyper-parameters remain different between the clusters.
add_hp	A logical value indicating whether the values of hyper-parameters should be added as columns in the dataset.
add_clust	A logical value indicating whether the name of the clusters should be added as a column in the dataset.
int_mu_v	A vector of 2 numbers, defining an interval of admissible values for the variance hyper-parameter of the mean process' kernel.
int_mu_l	A vector of 2 numbers, defining an interval of admissible values for the length-scale hyper-parameter of the mean process' kernel.
int_i_v	A vector of 2 numbers, defining an interval of admissible values for the variance hyper-parameter of the individual process' kernel.
int_i_l	A vector of 2 numbers, defining an interval of admissible values for the length-scale hyper-parameter of the individual process' kernel.
int_i_sigma	A vector of 2 numbers, defining an interval of admissible values for the noise hyper-parameter.
m0_slope	A vector of 2 numbers, defining an interval of admissible values for the slope of m0.
m0_intercept	A vector of 2 numbers, defining an interval of admissible values for the intercept of $m0$.
int_covariate	A vector of 2 numbers, defining an interval of admissible values for the covariate inputs.

Value

A full dataset of simulated training data.

Examples

```
## Generate a dataset with 3 clusters of 4 individuals, observed at 10 inputs
data = simu_db(M = 4, N = 10, K = 3)

## Generate a 2-D dataset with an additional input 'Covariate'
data = simu_db(covariate = TRUE)

## Generate a dataset where input locations are different among individuals
data = simu_db(common_input = FALSE)

## Generate a dataset with an additional column indicating the true clusters
data = simu_db(K = 3, covariate = TRUE)
```

simu_indiv_se 53

Description

Simulate a batch a output data, corresponding to one individual, coming from a GP with a the Squared Exponential kernel as covariance structure, and specified hyper-parameters and input.

Usage

```
simu_indiv_se(ID, input, covariate, mean, v, 1, sigma)
```

Arguments

ID	An identification code, whether numeric or character.
input	A vector of numbers. The input variable that is used as 'reference' for input and outputs.
covariate	A vector of numbers. An additional input variable, observed along with each reference input.
mean	A vector of numbers. Prior mean values of the GP.
V	A number. The variance hyper-parameter of the SE kernel.
1	A number. The lengthscale hyper-parameter of the SE kernel.
sigma	A number. The noise hyper-parameter.

Value

A tibble containing a batch of output data along with input and additional information for a simulated individual.

Examples

TRUE

sum_logL_GP_clust Compute a mixture of Gaussian log-likelihoods	
sum_logL_GP_clust Compute a mixture of Gaussian log-likelihoods	

Description

During the prediction step of MagmaClust, an EM algorithm is used to compute the maximum likelihood estimator of the hyper-parameters along with mixture probabilities for the new individual/task. This function implements the quantity that is maximised (i.e. a sum of Gaussian log-likelihoods, weighted by their mixture probabilities). It can also be used to monitor the EM algorithm when providing the 'prop_mixture' argument, for proper penalisation of the full log-likelihood.

54 train_gp

Usage

```
sum_logL_GP_clust(
  hp,
  db,
  mixture,
  mean,
  kern,
  post_cov,
  prop_mixture = NULL,
  pen_diag
)
```

Arguments

hp A tibble, data frame or named vector of hyper-parameters.

db A tibble containing data we want to evaluate the logL on. Required columns:

Input, Output. Additional covariate columns are allowed.

mixture A tibble or data frame, indicating the mixture probabilities of each cluster for

the new individual/task.

mean A list of hyper-posterior mean parameters for all clusters.

kern A kernel function.

post_cov A list of hyper-posterior covariance parameters for all clusters.

prop_mixture A tibble or a named vector. Each name of column or element should refer to

a cluster. The value associated with each cluster is a number between 0 and 1,

corresponding to the mixture proportions.

pen_diag A jitter term that is added to the covariance matrix to avoid numerical issues

when inverting, in cases of nearly singular matrices.

Value

A number, expectation of mixture of Gaussian log-likelihoods in the prediction step of MagmaClust. This quantity is supposed to increase at each step of the EM algorithm, and can be used for monitoring the procedure.

Examples

train_gp	Learning hyper-parameters of a Gaussian Process
train_gp	Learning hyper-parameters of a Gaussian Process

train_gp 55

Description

Learning hyper-parameters of any new individual/task in Magma is required in the prediction procedure. This function can also be used to learn hyper-parameters of a simple GP (just let the hyperpost argument set to NULL, and use prior_mean instead). When using within Magma, by providing data for the new individual/task, the hyper-posterior mean and covariance parameters, and initialisation values for the hyper-parameters, the function computes maximum likelihood estimates of the hyper-parameters.

Usage

```
train_gp(
  data,
  prior_mean = NULL,
  ini_hp = NULL,
  kern = "SE",
  hyperpost = NULL,
  pen_diag = 1e-10
)
```

Arguments

data

A tibble or data frame. Required columns: Input, Output. Additional columns for covariates can be specified. The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference Input.

prior_mean

Mean parameter of the GP. This argument can be specified under various formats, such as:

- NULL (default). The hyper-posterior mean would be set to 0 everywhere.
- A number. The hyper-posterior mean would be a constant function.
- A vector of the same length as all the distinct Input values in the data argument. This vector would be considered as the evaluation of the hyperposterior mean function at the training Inputs.
- A function. This function is defined as the hyper-posterior mean.
- A tibble or data frame. Required columns: Input, Output. The Input values should include at least the same values as in the data argument.

ini_hp

A named vector, tibble or data frame of hyper-parameters associated with the kern of the new individual/task. The columns should be named according to the hyper-parameters that are used in kern. In cases where the model includes a noise term, ini_hp should contain an additional 'noise' column. If NULL (default), random values are used as initialisation.

kern

A kernel function, defining the covariance structure of the GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

56 train_gp_clust

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel.
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the² elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

hyperpost

A list, containing the elements 'mean' and 'cov', the parameters of the hyperposterior distribution of the mean process. Typically, this argument should come from a previous learning using train_magma, or from the hyperposterior function. If hyperpost is provided, the likelihood that is maximised is the one involved during Magma's prediction step, and the prior_mean argument is ignored. For classic GP training, leave hyperpost to NULL.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

Value

A tibble, containing the trained hyper-parameters for the kernel of the new individual/task.

Examples

TRUE

train_gp_clust

Prediction in MagmaClust: learning new HPs and mixture probabilities

Description

Learning hyper-parameters and mixture probabilities of any new individual/task is required in MagmaClust in the prediction procedure. By providing data for the new individual/task, the hyper-posterior mean and covariance parameters, the mixture proportions, and initialisation values for the hyper-parameters, train_gp_clust uses an EM algorithm to compute maximum likelihood estimates of the hyper-parameters and hyper-posterior mixture probabilities of the new individual/task.

Usage

```
train_gp_clust(
  data,
  prop_mixture = NULL,
  ini_hp = NULL,
```

train_gp_clust 57

```
kern = "SE",
hyperpost = NULL,
pen_diag = 1e-10,
n_iter_max = 25,
cv_threshold = 0.001
)
```

Arguments

data

A tibble or data frame. Required columns: Input, Output. Additional columns for covariates can be specified. The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference Input.

prop_mixture

A tibble or a named vector. Each name of column or element should refer to a cluster. The value associated with each cluster is a number between 0 and 1, corresponding to the mixture proportions.

ini_hp

A tibble or data frame of hyper-parameters associated with kern, the individual process kernel.

kern

A kernel function, defining the covariance structure of the GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the² elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

hyperpost

A list, containing the elements mean, cov and mixture the parameters of the hyper-posterior distributions of the mean processes. Typically, this argument should come from a previous learning using train_magmaclust, or a previous prediction with pred_magmaclust, with the argument get_hyperpost set to TRUE.

pen_diag

A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.

n_iter_max

A number, indicating the maximum number of iterations of the EM algorithm to proceed while not reaching convergence.

cv_threshold

A number, indicating the threshold of the likelihood gain under which the EM algorithm will stop.

58 train_magma

Value

A list, containing the results of the EM algorithm used during the prediction step of MagmaClust. The elements of the list are:

- hp: A tibble of optimal hyper-parameters for the new individual's GP.
- mixture: A tibble of mixture probabilities for the new individual.

Examples

TRUE

train_magma

Training Magma with an EM algorithm

Description

The hyper-parameters and the hyper-posterior distribution involved in Magma can be learned thanks to an EM algorithm implemented in train_magma. By providing a dataset, the model hypotheses (hyper-prior mean parameter and covariance kernels) and initialisation values for the hyper-parameters, the function computes maximum likelihood estimates of the HPs as well as the mean and covariance parameters of the Gaussian hyper-posterior distribution of the mean process.

Usage

```
train_magma(
  data,
  prior_mean = NULL,
  ini_hp_0 = NULL,
  ini_hp_i = NULL,
  kern_0 = "SE",
  kern_i = "SE",
  common_hp = TRUE,
  grid_inputs = NULL,
  pen_diag = 1e-10,
  n_iter_max = 25,
  cv_threshold = 0.001,
  fast_approx = FALSE
)
```

Arguments

data

A tibble or data frame. Required columns: ID, Input, Output. Additional columns for covariates can be specified. The ID column contains the unique names/codes used to identify each individual/task (or batch of data). The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed

train_magma 59

values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference Input.

prior_mean

Hyper-prior mean parameter (m_0) of the mean GP. This argument can be specified under various formats, such as:

- NULL (default). The hyper-prior mean would be set to 0 everywhere.
- A number. The hyper-prior mean would be a constant function.
- A vector of the same length as all the distinct Input values in the data argument. This vector would be considered as the evaluation of the hyperprior mean function at the training Inputs.
- A function. This function is defined as the hyper prior mean.
- A tibble or data frame. Required columns: Input, Output. The Input values should include at least the same values as in the data argument.

ini_hp_0

A named vector, tibble or data frame of hyper-parameters associated with kern_0, the mean process' kernel. The columns/elements should be named according to the hyper-parameters that are used in kern_0. If NULL (default), random values are used as initialisation.

ini_hp_i

A tibble or data frame of hyper-parameters associated with kern_i, the individual processes' kernel. Required column: ID. The ID column contains the unique names/codes used to identify each individual/task. The other columns should be named according to the hyper-parameters that are used in kern_i. Compared to ini_hp_0 should contain an additional 'noise' column to initialise the noise hyper-parameter of the model. If NULL (default), random values are used as initialisation.

kern_0

A kernel function, associated with the mean GP. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel).
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

kern_i

A kernel function, associated with the individual GPs. ("SE", "PERIO" and "RQ" are also available here).

common_hp

A logical value, indicating whether the set of hyper-parameters is assumed to be common to all individuals.

grid_inputs

A vector, indicating the grid of additional reference inputs on which the mean process' hyper-posterior should be evaluated.

60 train_magma

pen_diag A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices. n_iter_max A number, indicating the maximum number of iterations of the EM algorithm to proceed while not reaching convergence. cv_threshold A number, indicating the threshold of the likelihood gain under which the EM algorithm will stop. The convergence condition is defined as the difference of likelihoods between two consecutive steps, divided by the absolute value of the last one ($(LL_n - LL_n - 1)/|LL_n|$). A boolean, indicating whether the EM algorithm should stop after only one fast_approx iteration of the E-step. This advanced feature is mainly used to provide a faster approximation of the model selection procedure, by preventing any optimisation over the hyper-parameters.

Details

The user can specify custom kernel functions for the argument kern_0 and kern_i. The hyper-parameters used in the kernel should have explicit names, and be contained within the hp argument. hp should typically be defined as a named vector or a data frame. Although it is not mandatory for the train_magma function to run, gradients can be provided within kernel function definition. See for example se_kernel to create a custom kernel function displaying an adequate format to be used in Magma.

Value

A list, gathering the results of the EM algorithm used for training in Magma. The elements of the list are:

- hp_0: A tibble of the trained hyper-parameters for the mean process' kernel.
- hp_i: A tibble of all the trained hyper-parameters for the individual processes' kernels.
- hyperpost: A sub-list gathering the parameters of the mean processes' hyper-posterior distributions, namely:
 - mean: A tibble, the hyper-posterior mean parameter (Output) evaluated at each training reference Input.
 - cov: A matrix, the covariance parameter for the hyper-posterior distribution of the mean process.
 - pred: A tibble, the predicted mean and variance at Input for the mean process' hyperposterior distribution under a format that allows the direct visualisation as a GP prediction.
- ini_args: A list containing the initial function arguments and values for the hyper-prior mean, the hyper-parameters. In particular, if those arguments were set to NULL, ini_args allows us to retrieve the (randomly chosen) initialisations used during training.
- seq_loglikelihood: A vector, containing the sequence of log-likelihood values associated with each iteration.
- converged: A logical value indicated whether the EM algorithm converged or not.
- training_time: Total running time of the complete training.

train_magmaclust 61

Examples

TRUE

train_magmaclust

Training MagmaClust with a Variational EM algorithm

Description

The hyper-parameters and the hyper-posterior distributions involved in MagmaClust can be learned thanks to a VEM algorithm implemented in train_magmaclust. By providing a dataset, the model hypotheses (hyper-prior mean parameters, covariance kernels and number of clusters) and initialisation values for the hyper-parameters, the function computes maximum likelihood estimates of the HPs as well as the mean and covariance parameters of the Gaussian hyper-posterior distributions of the mean processes.

Usage

```
train_magmaclust(
  data,
  nb_cluster = NULL,
  prior_mean_k = NULL,
  ini_hp_k = NULL,
  ini_hp_i = NULL,
  kern_k = "SE",
  kern_i = "SE",
  ini_mixture = NULL,
  common_hp_k = TRUE,
  common_hp_i = TRUE,
  grid_inputs = NULL,
  pen_diag = 1e-10,
  n_{iter_max} = 25,
  cv_threshold = 0.001,
  fast\_approx = FALSE
)
```

Arguments

data

A tibble or data frame. Columns required: ID, Input , Output. Additional columns for covariates can be specified. The ID column contains the unique names/codes used to identify each individual/task (or batch of data). The Input column should define the variable that is used as reference for the observations (e.g. time for longitudinal data). The Output column specifies the observed values (the response variable). The data frame can also provide as many covariates as desired, with no constraints on the column names. These covariates are additional inputs (explanatory variables) of the models that are also observed at each reference Input.

62 train_magmaclust

nb_cluster

A number, indicating the number of clusters of individuals/tasks that are assumed to exist among the dataset.

prior_mean_k

The set of hyper-prior mean parameters (m_k) for the K mean GPs, one value for each cluster. This argument can be specified under various formats, such as:

- NULL (default). All hyper-prior means would be set to 0 everywhere.
- A numerical vector of the same length as the number of clusters. Each number is associated with one cluster, and considered to be the hyper-prior mean parameter of the cluster (i.e. a constant function at all Input).
- A list of functions. Each function is associated with one cluster. These functions are all evaluated at all Input values, to provide specific hyperprior mean vectors for each cluster.

ini_hp_k

A tibble or data frame of hyper-parameters associated with kern_k, the mean process' kernel. Required column: ID. The ID column contains the unique names/codes used to identify each cluster. The other columns should be named according to the hyper-parameters that are used in kern_k.

ini_hp_i

A tibble or data frame of hyper-parameters associated with kern_i, the individual processes' kernel. Required column: ID. The ID column contains the unique names/codes used to identify each individual/task. The other columns should be named according to the hyper-parameters that are used in kern_i.

kern_k

A kernel function, associated with the mean GPs. Several popular kernels (see The Kernel Cookbook) are already implemented and can be selected within the following list:

- "SE": (default value) the Squared Exponential Kernel (also called Radial Basis Function or Gaussian kernel),
- "LIN": the Linear kernel,
- "PERIO": the Periodic kernel,
- "RQ": the Rational Quadratic kernel. Compound kernels can be created as sums or products of the above kernels. For combining kernels, simply provide a formula as a character string where elements are separated by whitespaces (e.g. "SE + PERIO"). As the elements are treated sequentially from the left to the right, the product operator '*' shall always be used before the '+' operators (e.g. 'SE * LIN + RQ' is valid whereas 'RQ + SE * LIN' is not).

kern_i

A kernel function, associated with the individual GPs. (See details above in kern_k).

ini_mixture

Initial values of the probability to belong to each cluster for each individual (ini_mixture can be used for a k-means initialisation. Used by default if NULL).

common_hp_k

A boolean indicating whether hyper-parameters are common among the mean GPs.

common_hp_i

A boolean indicating whether hyper-parameters are common among the individual GPs.

grid_inputs

A vector, indicating the grid of additional reference inputs on which the mean processes' hyper-posteriors should be evaluated.

train_magmaclust 63

pen_diag A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices. A number, indicating the maximum number of iterations of the VEM algorithm n_iter_max to proceed while not reaching convergence. cv_threshold A number, indicating the threshold of the likelihood gain under which the VEM algorithm will stop. The convergence condition is defined as the difference of elbo between two consecutive steps, divided by the absolute value of the last one $((ELBO_n - ELBO_{n-1})/|ELBO_n|).$ A boolean, indicating whether the VEM algorithm should stop after only one fast_approx iteration of the VE-step. This advanced feature is mainly used to provide a faster approximation of the model selection procedure, by preventing any optimisation over the hyper-parameters.

Details

The user can specify custom kernel functions for the argument kern_k and kern_i. The hyper-parameters used in the kernel should have explicit names, and be contained within the hp argument. hp should typically be defined as a named vector or a data frame. Although it is not mandatory for the train_magmaclust function to run, gradients be can provided within kernel function definition. See for example se_kernel to create a custom kernel function displaying an adequate format to be used in MagmaClust.

Value

A list, containing the results of the VEM algorithm used in the training step of MagmaClust. The elements of the list are:

- hp_k: A tibble containing the trained hyper-parameters for the mean process' kernel and the mixture proportions for each cluster.
- hp_i: A tibble containing the trained hyper-parameters for the individual processes' kernels.
- hyperpost: A sub-list containing the parameters of the mean processes' hyper-posterior distribution, namely:
 - mean: A list of tibbles containing, for each cluster, the hyper-posterior mean parameters evaluated at each Input.
 - cov: A list of matrices containing, for each cluster, the hyper-posterior covariance parameter of the mean process.
 - mixture: A tibble, indicating the mixture probabilities in each cluster for each individual.
- ini_args: A list containing the initial function arguments and values for the hyper-prior means, the hyper-parameters. In particular, if those arguments were set to NULL, ini_args allows us to retrieve the (randomly chosen) initialisations used during training.
- seq_elbo: A vector, containing the sequence of ELBO values associated with each iteration.
- converged: A logical value indicated whether the algorithm converged.
- training_time: Total running time of the complete training.

Examples

ve_step

	update_mixture	Update the mixture probabilities for each individual and each cluster
--	----------------	---

Description

Update the mixture probabilities for each individual and each cluster

Usage

```
update_mixture(db, mean_k, cov_k, hp, kern, prop_mixture, pen_diag)
```

Arguments

db	A tibble or data frame. Columns required: ID, Input, Output. Additional columns for covariates can be specified.	
mean_k	A list of the K hyper-posterior mean parameters.	
cov_k	A list of the K hyper-posterior covariance matrices.	
hp	A named vector, tibble or data frame of hyper-parameters associated with kern, the individual process' kernel. The columns/elements should be named according to the hyper-parameters that are used in kern.	
kern	A kernel function, defining the covariance structure of the individual GPs.	
prop_mixture	A tibble containing the hyper-parameters associated with each individual, indicating in which cluster it belongs.	
pen_diag	A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.	

Value

Compute the hyper-posterior multinomial distributions by updating mixture probabilities.

Examples

TRUE

ve_step	E-Step of the VEM algorithm	

Description

Expectation step of the Variational EM algorithm used to compute the parameters of the hyperposteriors distributions for the mean processes and mixture variables involved in MagmaClust.

Usage

```
ve_step(db, m_k, kern_k, kern_i, hp_k, hp_i, old_mixture, pen_diag)
```

vm_step 65

Arguments

db	A tibble or data frame. Columns required: ID, Input, Output. Additional columns for covariates can be specified.	
m_k	A named list of vectors, corresponding to the prior mean parameters of the K mean GPs.	
kern_k	A kernel function, associated with the K mean GPs.	
kern_i	A kernel function, associated with the M individual GPs.	
hp_k	A named vector, tibble or data frame of hyper-parameters associated with kern_k.	
hp_i	A named vector, tibble or data frame of hyper-parameters associated with kern_i.	
old_mixture	A list of mixture values from the previous iteration.	
pen_diag	A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.	

Value

A named list, containing the elements mean, a tibble containing the Input and associated Output of the hyper-posterior mean parameters, cov, the hyper-posterior covariance matrices, and mixture, the probabilities to belong to each cluster for each individual.

Examples

TRUE

Description

Maximization step of the Variational EM algorithm used to compute hyper-parameters of all the kernels involved in MagmaClust.

Usage

```
vm_step(
  db,
  old_hp_k,
  old_hp_i,
  list_mu_param,
  kern_k,
  kern_i,
  m_k,
  common_hp_k,
  common_hp_i,
  pen_diag
)
```

vm_step

Arguments

db	A tibble or data frame. Columns required: ID, Input, Output. Additional columns for covariates can be specified.	
old_hp_k	A named vector, tibble or data frame, containing the hyper-parameters from the previous M-step (or initialisation) associated with the mean GPs.	
old_hp_i	A named vector, tibble or data frame, containing the hyper-parameters from the previous M-step (or initialisation) associated with the individual GPs.	
list_mu_param	List of parameters of the K mean GPs.	
kern_k	A kernel used to compute the covariance matrix of the mean GP at corresponding timestamps.	
kern_i	A kernel used to compute the covariance matrix of individuals GP at corresponding timestamps.	
m_k	A named list of prior mean parameters for the K mean GPs. Length = 1 or $nrow(unique(db\$Input))$	
common_hp_k	A boolean indicating whether hp are common among mean GPs (for each mu_k)	
common_hp_i	A boolean indicating whether hp are common among individual GPs (for each y_i)	
pen_diag	A number. A jitter term, added on the diagonal to prevent numerical issues when inverting nearly singular matrices.	

Value

A named list, containing the elements hp_k, a tibble containing the hyper-parameters associated with each cluster, hp_i, a tibble containing the hyper-parameters associated with the individual GPs, and prop_mixture_k, a tibble containing the hyper-parameters associated with each individual, indicating the probabilities to belong to each cluster.

Examples

Index

<pre>chol_inv_jitter, 3 data_allocate_cluster, 4, 37 dmnorm, 4 draw, 5 e_step, 9 elbo_clust_multi_GP, 5 elbo_clust_multi_GP_common_hp_i, 6 elbo_GP_mod_common_hp_k, 7 elbo_monitoring_VEM, 8</pre>	plot_db, 32 plot_gif, 32, 40 plot_gp, 34 plot_magmaclust, 36 pred_gif, 33, 38 pred_gp, 35, 40, 48 pred_magma, 16, 35, 39, 42, 43, 48 pred_magmaclust, 18, 36, 37, 44, 45, 57 proba_max_cluster, 46 rq_kernel, 47
<pre>gr_clust_multi_GP, 9 gr_clust_multi_GP_common_hp_i, 10 gr_GP, 11 gr_GP_mod, 12 gr_GP_mod_common_hp, 12 gr_GP_mod_common_hp, k, 13 gr_sum_logL_GP_clust, 14</pre>	<pre>sample_gp, 47 se_kernel, 50, 60, 63 select_nb_cluster, 49 simu_db, 51 simu_indiv_se, 53 sum_logL_GP_clust, 53</pre>
hp, 15 hyperposterior, 16, 56 hyperposterior_clust, 18 ini_kmeans, 20 ini_mixture, 20, 62 kern_to_cov, 21 kern_to_inv, 22	train_gp, 39, 41, 42, 54 train_gp_clust, 44, 45, 56 train_magma, 38, 39, 42, 43, 56, 58 train_magmaclust, 4, 37, 44, 45, 50, 57, 61 transition_states, 34 update_mixture, 64 ve_step, 64 vm_step, 65
<pre>lin_kernel, 23 list_kern_to_cov, 24 list_kern_to_inv, 25 logL_GP, 25 logL_GP_mod, 26 logL_GP_mod_common_hp, 27 logL_monitoring, 28</pre>	
m_step, 30 MagmaClustR, 29	
perio_kernel, 31	