Package 'MetabolAnalyze'

August 31, 2019

Title Probabilistic Latent Variable Models for Metabolomic Data

Type Package

Version 1.3.1
Date 2010-05-12
Author Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.
Maintainer Claire Gormley <claire.gormley@ucd.ie></claire.gormley@ucd.ie>
Description Fits probabilistic principal components analysis, probabilistic principal components and covariates analysis and mixtures of probabilistic principal components models to metabolomic spectral data.
Depends mclust, mvtnorm, ellipse, gtools, gplots
License GPL-2
LazyLoad yes
Repository CRAN
Date/Publication 2019-08-31 10:24:07 UTC
NeedsCompilation no
R topics documented:
MetabolAnalyze-package
BrainSpectra
loadings.jack.plot
loadings.plot
mppca.loadings.plot
mppca.metabol
mppca.scores.plot
ppca.metabol
ppca.metabol.jack

ppca.scores.plot12ppcca.metabol13ppcca.metabol.jack14ppcca.scores.plot16UrineSpectra17

2 BrainSpectra

Index 19

MetabolAnalyze-package

Probabilistic latent variable models for metabolomic data.

Description

Fits probabilistic principal components analysis (PPCA), probabilistic principal components and covariates analysis (PPCCA) and mixtures of probabilistic principal component analysis (MPPCA) models to metabolomic spectral data. Estimates of the uncertainty associated with the model parameter estimates are provided.

Details

Package: MetabolAnalyze

Type: Package Version: 1.0

Date: 2010-05-12 License: GPL-2 LazyLoad: yes

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.

Claire Gormley <claire.gormley@ucd.ie>

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical Report. University College Dublin.

BrainSpectra

NMR spectral data from brain tissue samples.

Description

NMR spectral data from brain tissue samples of 33 rats, where each tissue sample originates in one of four known brain regions. Each spectrum has 164 spectral bins, measured in parts per million (ppm).

loadings.jack.plot 3

Usage

```
data(BrainSpectra)
```

Format

A list containing

- 1. a matrix with 33 rows and 164 columns
- 2. a vector indicating the brain region of origin of each sample where:
 - 1 = Brain stem
 - 2 = Cerebellum
 - 3 = Hippocampus
 - 4 = Pre-frontal cortex

Details

This is simulated data, based on parameter estimates from a mixture of PPCA models with 4 groups and 7 principal components fitted to a similar real data set.

Source

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

loadings.jack.plot

Plot loadings and their associated confidence intervals.

Description

A function to plot the loadings and confidence intervals resulting from fitting a PPCA model or a PPCCA model to metabolomic data.

Usage

```
loadings.jack.plot(output)
```

Arguments

output

An object resulting from fitting a PPCA model or a PPCCA model.

Details

The function produces a plot of those loadings on the first principal component which are significantly different from zero, and higher than a user specified cutoff point. Error bars associated with the estimates, derived using the jackknife, are also plotted.

4 loadings.plot

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

See Also

```
ppca.metabol.jack, ppcca.metabol.jack
```

loadings.plot

Plot loadings.

Description

A function to plot the loadings resulting from fitting a PPCA model or a PPCCA model to metabolomic data. A barplot or a scatterplot can be produced.

Usage

```
loadings.plot(output, barplot = FALSE, labelsize = 0.3)
```

Arguments

output An object resulting from fitting a PPCA model or a PPCCA model.

barplot Logical indicating whether a barplot of the loadings is required rather than a

scatter plot. By default a scatter plot is produced.

labelsize Size of the text of the spectral bin labels on the resulting plot.

Details

A function to plot the loadings resulting from fitting a PPCA model or a PPCCA model to metabolomic data. A barplot or a scatterplot can be produced. The size of the text of the spectral bin labels on the bar plot can also be adjusted if the number of bins plotted is large.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

See Also

```
ppca.metabol, ppcca.metabol
```

mppca.loadings.plot 5

mppca.loadings.plot Plot loadings resulting from fitting a MPPCA model.

Description

A function to plot the loadings resulting from fitting a MPPCA model to metabolomic data. A barplot or a scatterplot can be produced.

Usage

```
mppca.loadings.plot(output, Y, barplot = FALSE, labelsize = 0.3)
```

Arguments

output An object resulting from fitting a MPPCA model.

Y The N x p matrix of observations to which the MPPCA model is fitted.

barplot Logical indicating whether a barplot of the loadings is required rather than a

scatter plot. By default a scatter plot is produced.

labelsize Size of the text of the spectral bin labels on the resulting plot.

Details

A function which produces a series of plots illustrating the loadings resulting from fitting a MPPCA model to metabolomic data. A barplot or a scatterplot can be produced. The size of the text of the spectral bin labels on the bar plot can also be adjusted if the number of bins plotted is large.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

See Also

mppca.metabol

6 mppca.metabol

	The state of the s
mppca.metabol	Fit a mixture of probabilistic principal components analysis (MPPCA)
	model to a metabolomic data set via the EM algorithm to perform
	simultaneous dimension reduction and clustering.

Description

This function fits a mixture of probabilistic principal components analysis model to metabolomic spectral data via the EM algorithm.

Usage

```
mppca.metabol(Y, minq=1, maxq=2, ming, maxg, scale = "none",
epsilon = 0.1, plot.BIC = FALSE)
```

Arguments

Υ	An N x p data matrix where each row is a spectrum.
minq	The minimum number of principal components to be fit. By default minq is 1.
maxq	The maximum number of principal components to be fit. By default maxq is 2.
ming	The minimum number of groups to be fit.
maxg	The maximum number of groups to be fit.
scale	Type of scaling of the data which is required. The default is "none". Options include "pareto' and "unit" scaling. See scaling for further details.
epsilon	Value on which the convergence assessment criterion is based. Set by default to 0.1.
plot.BIC	Logical indicating whether or not a plot of the BIC values for the different models fitted should be provided. By default, the plot is not produced.

Details

This function fits a mixture of probabilistic principal components analysis models to metabolomic spectral data via the EM algorithm. A range of models with different numbers of groups and different numbers of principal components can be fitted. The model performs simultaneous clustering of observations into unknown groups and dimension reduction simultaneously.

Value

A list containing:

q	The number of principal components in the optimal MPPCA model, selected by the BIC. $$
g	The number of groups in the optimal MPPCA model, selected by the BIC.
sig	The posterior mode estimate of the variance of the error terms.

mppca.scores.plot 7

scores	A list of length g, each entry of which is a n_g x q matrix of estimates of the latent locations of each observation in group g in the principal subspace.
loadings	An array of dimension $p \times q \times g$, each sheet of which contains the maximum likelihood estimate of the $p \times q$ loadings matrix for a group.
Pi	The vector indicating the probability of belonging to each group.
mean	A p x g matrix, each column of which contains a group mean.
tau	An N $\mathrm{x}\mathrm{g}$ matrix, each row of which contains the posterior group membership probabilities for an observation.
clustering	A vector of length N indicating the group to which each observation belongs.
BIC	A matrix containing the BIC values for the fitted models.
AIC	A matrix containing the AIC values for the fitted models.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.

References

Nyamundanda G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report, University College Dublin.

See Also

```
mppca.scores.plot, mppca.loadings.plot
```

Examples

```
data(BrainSpectra)
## Not run:
mdlfit<-mppca.metabol(BrainSpectra[[1]], minq=7, maxq=7, ming=4, maxg=4,
plot.BIC = TRUE)
mppca.scores.plot(mdlfit)
mppca.loadings.plot(mdlfit, BrainSpectra[[1]])
## End(Not run)</pre>
```

mppca.scores.plot

Plot scores from a fitted MPPCA model

Description

A function to plot the scores resulting from fitting a MPPCA model to metabolomic data.

```
mppca.scores.plot(output, group = FALSE, gplegend = TRUE)
```

8 ppca.metabol

Arguments

output An object resulting from fitting a MPPCA model.

group Should it be relevant, a vector indicating the known treatment group membership

of each observation prior to clustering.

gplegend Logical indicating whether a legend should be plotted.

Details

This function produces a series of scatterplots, for each group uncovered. For group g, each scatterplot illustrates the estimated score for each observation allocated to that group within the reduced q dimensional space. The uncertainty associated with the score estimate is also illustrated through its 95

It is often the case that observations are known to belong to treatment groups, for example, and the MPPCA model is employed to uncover any underlying subgroups, possibly related to disease subtypes. The treatment group membership of each observation can be illustrated on the plots produced by utilizing the 'group' argument.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

See Also

mppca.metabol

ppca.metabol	Fit a probabilistic principal components analysis (PPCA) model to a
	metabolomic data set via the EM algorithm.

Description

This function fits a probabilistic principal components analysis model to metabolomic spectral data via the EM algorithm.

```
ppca.metabol(Y, minq=1, maxq=2, scale = "none", epsilon = 0.1,
plot.BIC = FALSE, printout=TRUE)
```

ppca.metabol 9

Arguments

Υ	An N x p data matrix where each row is a spectrum.
minq	The minimum number of principal components to be fit. By default minq is 1.
maxq	The maximum number of principal components to be fit. By default maxq is 2.
scale	Type of scaling of the data which is required. The default is "none". Options include "pareto' and "unit" scaling. See scaling for further details.
epsilon	Value on which the convergence assessment criterion is based. Set by default to 0.1.
plot.BIC	Logical indicating whether or not a plot of the BIC values for the different models fitted should be provided. By default, the plot is not produced.
printout	Logical indicating whether or not a statement is printed on screen detailing the progress of the algorithm.

Details

This function fits a probabilistic principal components analysis model to metabolomic spectral data via the EM algorithm. A range of models with different numbers of principal components can be fitted.

Value

A list containing:

q	The number of principal components in the optimal PPCA model, selected by the BIC.
sig	The posterior mode estimate of the variance of the error terms.
scores	An N x q matrix of estimates of the latent locations of each observation in the principal subspace.
loadings	The maximum likelihood estimate of the p x q loadings matrix.
BIC	A vector containing the BIC values for the fitted models.
AIC	A vector containing the AIC values for the fitted models.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.

References

Nyamundanda G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report, University College Dublin.

See Also

```
ppca.metabol.jack, loadings.plot, ppca.scores.plot
```

10 ppca.metabol.jack

Examples

```
data(UrineSpectra)
## Not run:
mdlfit<-ppca.metabol(UrineSpectra[[1]], minq=2, maxq=2, scale="none")
loadings.plot(mdlfit)
ppca.scores.plot(mdlfit, group=UrineSpectra[[2]][,1])
## End(Not run)</pre>
```

ppca.metabol.jack

Fit a probabilistic principal components analysis model to a metabolomic data set, and assess uncertainty via the jackknife.

Description

Fit a probabilistic principal components analysis (PPCA) model to a metabolomic data set via the EM algorithm, and assess uncertainty in the obtained loadings estimates via the jackknife.

Usage

```
ppca.metabol.jack(Y, minq=1, maxq=2, scale ="none",
epsilon = 0.1, conflevel = 0.95)
```

Arguments

Υ	An N x p data matrix where each row is a spectrum.
minq	The minimum number of principal components to be fit. By default minq is 1.
maxq	The maximum number of principal components to be fit. By default maxq is 2.
scale	Type of scaling of the data which is required. The default is "none". Options include "pareto' and "unit" scaling. See scaling for further details.
epsilon	Value on which the convergence assessment criterion is based. Set by default to 0.1.
conflevel	Level of confidence required for the loadings confidence intervals. By default 95% confidence intervals are computed.

Details

A (range of) PPCA model(s) are fitted and an optimal model (i.e. number of principal components, q) is selected. Confidence intervals for the obtained loadings are then obtained via the jackknife i.e. a model with q principal components is fitted to the dataset N times, where an observation is removed from the dataset each time.

On convergence of the algorithm, the number of loadings significantly different from zero is printed on screen. The user may then further examine the significant loadings when prompted by selecting a cutoff value from the table printed on screen. Bar plots detailing the resulting significantly high loadings are provided.

ppca.metabol.jack 11

Value

^	1101	cont	OIP	ina.
$\overline{}$	1191	cont	an	mne.

q	The number of principal components in the optimal PPCA model, selected by the BIC.
sig	The posterior mode estimate of the variance of the error terms.
scores	An N x q matrix of estimates of the latent locations of each observation in the principal subspace.
loadings	The maximum likelihood estimate of the p x q loadings matrix.
SignifW	The maximum likelihood estimate of the loadings matrix for those loadings significantly different from zero.
SignifHighW	The maximum likelihood estimate of the loadings matrix for those loadings significantly different from zero and higher than a user selected cutoff point.
Lower	The lower limit of the confidence interval for those loadings significantly different from zero.
Upper	The upper limit of the confidence interval for those loadings significantly different from zero.
Cutoffs	A table detailing a range of cutoff points and the associated number of selected spectral bins.
number	The number of spectral bins selected by the user.
cutoff	The cutoff value selected by the user.
	A DIG I G I G I I

Author(s)

BIC

AIC

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.

References

Nyamundanda G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report, University College Dublin.

A vector containing the BIC values for the fitted models.

A vector containing the AIC values for the fitted models.

See Also

```
ppca.metabol, loadings.jack.plot, ppca.scores.plot
```

Examples

```
data(UrineSpectra)
## Not run:
mdlfit<-ppca.metabol.jack(UrineSpectra[[1]], minq=2, maxq=2, scale="none")
loadings.jack.plot(mdlfit)
ppca.scores.plot(mdlfit, group=UrineSpectra[[2]][,1])
## End(Not run)</pre>
```

12 ppca.scores.plot

ppca.scores.plot

Plot scores from a fitted PPCA model

Description

A function to plot the scores resulting from fitting a PPCA model to metabolomic data.

Usage

```
ppca.scores.plot(output, group = FALSE)
```

Arguments

output An object resulting from fitting a PPCA model.

group Should it be relevant, a vector indicating the known treatment group membership

of each observation.

Details

This function produces a series of scatterplots each illustrating the estimated score for each observation within the reduced q dimensional space. The uncertainty associated with the score estimate is also illustrated through its 95

It is often the case that observations are known to belong to treatment groups; the treatment group membership of each observation can be illustrated on the plots produced by utilizing the 'group' argument.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

See Also

```
ppca.metabol, ppca.metabol.jack
```

ppcca.metabol 13

ppcca.metabol	Fit a probabilistic principal components and covariates analysis (PPCCA) model to a metabolomic data set via the EM algorithm.
	(FFCCA) model to a metabolomic data set via the EM algorithm.

Description

This function fits a probabilistic principal components and covariates analysis model to metabolomic spectral data via the EM algorithm.

Usage

```
ppcca.metabol(Y, Covars, minq=1, maxq=2, scale = "none", epsilon = 0.1,
plot.BIC = FALSE, printout=TRUE)
```

Arguments

Υ	An N x p data matrix in which each row is a spectrum.
Covars	An N x L covariate data matrix in which each row is a set of covariates.
minq	The minimum number of principal components to be fit.
maxq	The maximum number of principal components to be fit.
scale	Type of scaling of the data which is required. The default is "none". Options include "pareto' and "unit" scaling. See scaling for further details.
epsilon	Value on which the convergence assessment criterion is based. Set by default to 0.1 .
plot.BIC	Logical indicating whether or not a plot of the BIC values for the different models fitted should be provided. By default, the plot is not produced.
printout	Logical indicating whether or not a statement is printed on screen detailing the progress of the algorithm.

Details

This function fits a probabilistic principal components and covariates analysis model to metabolomic spectral data via the EM algorithm. A range of models with different numbers of principal components can be fitted.

Care should be taken with the form of covariates supplied. All covariates are standardized (to lie in [0,1]) within the ppcca.metabol function for stability reasons. Hence continuous covariates and binary valued categorical covariates are easily handled. For a categorical covariate with V levels, the equivalent V-1 dummy variables representation should be passed as an argument to ppcca.metabol.

Value

A list containing:

The number of principal components in the optimal PPCCA model, selected by the BIC.

14 ppcca.metabol.jack

S1g	The posterior mod		

scores An N x q matrix of estimates of the latent locations of each observation in the

principal subspace.

loadings The maximum likelihood estimate of the p x q loadings matrix.

coefficients The maximum likelihood estimates of the regression coefficients associated with

the covariates in the PPCCA model.

BIC A vector containing the BIC values for the fitted models.

AIC A vector containing the AIC values for the fitted models.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.

References

Nyamundanda G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report, University College Dublin.

See Also

```
ppcca.metabol.jack, ppcca.scores.plotloadings.plot
```

Examples

```
data(UrineSpectra)
## Not run:
mdlfit<-ppcca.metabol(UrineSpectra[[1]], UrineSpectra[[2]][,2], minq=2, maxq=2)
loadings.plot(mdlfit)
ppcca.scores.plot(mdlfit, UrineSpectra[[2]][,2], group=UrineSpectra[[2]][,1], covarnames="Weight")
## End(Not run)</pre>
```

ppcca.metabol.jack

Fit a probabilistic principal components and covariates analysis model to a metabolomic data set, and assess uncertainty via the jack-knife.

Description

Fit a probabilistic principal components and covariates analysis (PPCCA) model to a metabolomic data set via the EM algorithm, and assess uncertainty in the obtained loadings estimates and the regression coefficients via the jackknife.

```
ppcca.metabol.jack(Y, Covars, minq=1, maxq=2, scale="none", epsilon=0.1,
conflevel=0.95)
```

ppcca.metabol.jack 15

Arguments

Υ	An N x p data matrix in which each row is a spectrum.
Covars	An N x L covariate data matrix where each row is a set of covariates.
minq	The minimum number of principal components to be fit. By default minq is 1.
maxq	The maximum number of principal components to be fit. By default maxq is 2.
scale	Type of scaling of the data which is required. The default is "none". Options include "pareto' and "unit" scaling. See scaling for further details.
epsilon	Value on which the convergence assessment criterion is based. Set by default to 0.1.
conflevel	Level of confidence required for the loadings and regression coefficients confidence intervals. By default 95% confidence intervals are computed.

Details

A (range of) PPCCA model(s) are fitted and an optimal model (i.e. number of principal components, q) is selected. Confidence intervals for the obtained loadings and regression coefficients are then obtained via the jackknife i.e. a model with q principal components is fitted to the data N times, where an observation is removed from the dataset each time.

Care should be taken with the form of covariates supplied. All covariates are standardized (to lie in [0,1]) within the ppcca.metabol.jack function for stability reasons. Hence continuous covariates and binary valued categorical covariates are easily handled. For a categorical covariate with V levels, the equivalent V-1 dummy variables representation should be passed as an argument to ppcca.metabol.jack.

On convergence of the algorithm, the number of loadings significantly different from zero is printed on screen. The user may then further examine the significant loadings when prompted by selecting a cutoff value from the table printed on screen. Bar plots detailing the resulting significantly high loadings are provided.

Value

A list containing:

q	The number of principal components in the optimal PPCCA model, selected by the BIC.
sig	The posterior mode estimate of the variance of the error terms.
scores	An N x q matrix of estimates of the latent locations of each observation in the principal subspace.
loadings	The maximum likelihood estimate of the p x q loadings matrix.
SignifW	The maximum likelihood estimate of the loadings matrix for those loadings significantly different from zero.
SignifHighW	The maximum likelihood estimate of the loadings matrix for those loadings significantly different from zero and above the user selected cutoff point.
LowerCI_W	The lower limit of the confidence interval for those loadings significantly different from zero.

ppcca.scores.plot

UpperCI_W The upper limit of the confidence interval for those loadings significantly differ-

ent from zero.

coefficients The maximum likelihood estimates of the regression coefficients.

coeffCI A matrix detailing the upper and lower limits of the confidence intervals for the

regression parameters.

Cutoffs A table detailing a range of cutoff points and the associated number of selected

spectral bins.

number The number of spectral bins selected by the user.

cutoff The cutoff value selected by the user.

A vector containing the BIC values for the fitted models.

AIC A vector containing the AIC values for the fitted models.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.

References

Nyamundanda G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report, University College Dublin.

See Also

```
ppcca.metabol, ppcca.scores.plot,loadings.jack.plot
```

Examples

```
data(UrineSpectra)
## Not run:
mdlfit<-ppcca.metabol.jack(UrineSpectra[[1]], UrineSpectra[[2]][,2], minq=2, maxq=2)
loadings.jack.plot(mdlfit)
ppcca.scores.plot(mdlfit, UrineSpectra[[2]][,2], group=UrineSpectra[[2]][,1], covarnames="Weight")
## End(Not run)</pre>
```

ppcca.scores.plot Plot scores from a fitted PPCCA model.

Description

A function to plot the scores resulting from fitting a PPCCA model to metabolomic data.

```
ppcca.scores.plot(output, Covars, group = FALSE, covarnames=NULL)
```

UrineSpectra 17

Arguments

output An object resulting from fitting a PPCCA model.

Covars An N x L covariate data matrix where each row is a set of covariates.

group Should it be relevant, a vector indicating the known treatment group membership

of each observation.

covarnames Should it be relevant, a vector string indicating the names of the covariates.

Details

This function produces a series of scatterplots each illustrating the estimated score for each observation within the reduced q dimensional space. The uncertainty associated with the score estimate is also illustrated through its 95

It is often the case that observations are known to belong to treatment groups; the treatment group membership of each observation can be illustrated on the plots produced by utilizing the 'group' argument.

Author(s)

Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan

References

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

See Also

ppcca.metabol, ppcca.metabol.jack

Description

NMR metabolomic spectra from urine samples of 18 mice, each belonging to one of two treatment groups. Each spectrum has 189 spectral bins, measured in parts per million (ppm).

Covariates associated with the mice were also recorded: the weight of each mouse is provided.

Usage

data(UrineSpectra)

Format

A list containing

- 1. a matrix with 18 rows and 189 columns
- 2. a data frame with 18 observations on 2 variables:
 - Treatment group membership of each animal.
 - Weight (in grammes) of each animal.

Details

This is simulated data, based on parameter estimates from a PPCA model with two prinicipal components fitted to a similar real data set.

Source

Nyamundanda, G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report. University College Dublin, Ireland.

Index

```
*Topic datasets
    BrainSpectra, 2
    UrineSpectra, 17
*Topic methods
    loadings.jack.plot, 3
    loadings.plot, 4
    mppca.loadings.plot, 5
    mppca.metabol, 6
    mppca.scores.plot, 7
    ppca.metabol, 8
    ppca.metabol.jack, 10
    ppca.scores.plot, 12
    ppcca.metabol, 13
    ppcca.metabol.jack, 14
    ppcca.scores.plot, 16
BrainSpectra, 2
loadings.jack.plot, 3, 11, 16
loadings.plot, 4, 9, 14
MetabolAnalyze
        (MetabolAnalyze-package), 2
MetabolAnalyze-package, 2
mppca.loadings.plot, 5, 7
mppca.metabol, 5, 6, 8
mppca.scores.plot, 7, 7
ppca.metabol, 4, 8, 11, 12
ppca.metabol.jack, 4, 9, 10, 12
ppca.scores.plot, 9, 11, 12
ppcca.metabol, 4, 13, 16, 17
ppcca.metabol.jack, 4, 14, 14, 17
ppcca.scores.plot, 14, 16, 16
scaling, 6, 9, 10, 13, 15
UrineSpectra, 17
```