
Package ‘MicSim’
January 31, 2022

Type Package

Title Performing Continuous-Time Microsimulation

Version 1.1.0

Date 2022-01-28

Author Sabine Zinn

Maintainer Sabine Zinn <szinn@diw.de>

Description This entry-level toolkit allows performing continuous-time microsimula-
tion for a wide range of life science (demography, social sciences, epidemiology) applica-
tions. Individual life-courses are specified by a continuous-time multi-state model.

Depends R (>= 3.0.1), chron, snowfall, rlecuyer

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-01-31 11:50:02 UTC

R topics documented:

MicSim-package . 2
buildTransitionMatrix . 3
convertToLongFormat . 6
convertToWideFormat . 7
micSim . 8
micSimParallel . 15
setSimHorizon . 19

Index 21

1

2 MicSim-package

MicSim-package MicSim: Continuous-time microsimulation for population projection

Description

In life sciences, the central device of microsimulations is the life-course of an individual, which
is defined by the sequence of states that the individual visits over time, and the waiting times be-
tween these state transitions. Modelling and simulating the life courses of a representative share of
population members allows mapping population dynamics on a very detailed scale.

A standard approach to describe individual behavior is a continuous-time multi-state model. A
multi-state model is a stochastic process that at any point in time occupies one out of a set of discrete
states. These states summarize the demographically relevant categories an individual can belong to.
Generally, the state space is determined by the problem to be studied, but commonly it will at least
comprise the elementary demographic characteristics of sex and marital status. One element always
present in the state space is "dead", a risk to which each individual is always exposed to.

In demographic microsimulations life-courses usually evolve along two time scales: individual age
and calendar time. A possible third time scale is the time that an individual has already spent in
his/her current demographic state, e.g., the time that has elapsed since the individual’s wedding. A
demographic event implies a change in the state of an individual. It should be emphasized that age
runs parallel to the process time in the model, and therefore birthdays, i.e., completion of another
year of life, is not an event in itself.

A common way to characterize an individual life-course is via a trajectory of a stochastic process
from the family of Markovian processes, where the process time maps the time span over which we
"observe" an individual life-course. The MicSim package uses non-homogeneous continuous-time
Markov chains to describe individual life-courses.

The transition rates (also denoted as hazard rates or intensities) of Markovian processes are their
key quantities. Once they are known one can compute the distribution functions of sojourn times
and thus simulate synthetic life-courses. That is, to run a microsimulation model, for all transitions
and time scales considered transition rates have to be provided.

Details

Package: MicSim
Type: Package
Version: 1.1.0
Date: 2022-01-28
License: GPL-2

Author(s)

Sabine Zinn
Maintainer: szinn@diw.de

buildTransitionMatrix 3

References

S. Zinn (2014). The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsim-
ulation. In International Journal of Microsimulation 7(3), 3-32.

Willekens, F., & Putter, H. (2014). Software for multistate analysis. Demographic Research, 31,
381-420.

buildTransitionMatrix Determining transition pattern and transition functions

Description

The function buildTransitionMatrix supports the constructing of the ‘transition matrix’, which
determines the transition pattern of the microsimulation model. The actual microsimulation is per-
formed by micSim (sequentially) or by micSimParallel (parallel computing).

Usage

buildTransitionMatrix(allTransitions, absTransitions, stateSpace)

Arguments

allTransitions A matrix comprising all possible transitions between values of state variables in
the first column and in the second column the names of the functions defining
the corresponding transition rates.

absTransitions A matrix comprising the names of the absorbing states which individuals are
always exposed to (such as "dead"" and emigrated labeled as "rest") in the first
column and in the second column the names of the functions defining the corre-
sponding transition rates.

stateSpace A matrix comprising all nonabsorbing states considered during simulation.

Details

The function buildTransitionMatrix is an auxiliary function for building the transition matrix
required to run the microsimulation using micSim or micSimParallel.

In stateSpace all state variables considered during simulation including their values have to be
defined. Values are always described using labels. For example, label "M" for being married. Each
column of stateSpace refers to one state variable considered and each row refers to one state of the
state space. Apart from "m" and "f" reserved for male and female (state variable: gender) and "no"
and "low" reserved for no education and elementary school attended (state variable: educational
attainment), labels can be set arbitrarily.

Each element of the first column of allTransitions has to be of the form "A->B" with indicating
"A" the starting value of a transition and "B" the arrival value. ("->" is the placeholder defined to
mark a transition.) For example, "0" (childless) describes the starting value of the transition marking
a first birth event and "1" (first child) its arrival value. All value labels used have to be identical to
the value labels of the state variables specifying the simulation model.

4 buildTransitionMatrix

All absorbing states listed in the first column of absTransitions have to be given as strings such
as "dead" for being dead or "rest" for emigrated. Since dying is a competing risk all individuals are
always exposed to, "dead" is a mandatory part of absTransitions.

All transitions can be defined to depend on several state variables. For example, a divorce rate de-
pends on gender and on the fertility status. Therefore, the starting value and the arrival value of a
transition have to be specified as a combination of the considered attributes, separated by a forward
slash and in accordance with the ordering of the state variables in the state space. For example, "f/A-
>f/B" describes a female specific transition from "A" to "B" and "f/M/1 -> f/D/1" might describe a
mother’s (indicated by "1") transition from "M" (e.g., married) to "D" (e.g., divorced). For absorb-
ing states, a prefix indicates the attributes on which a transition is assumed to depend (also separated
by forward slashs), e.g., "f/dead" and "m/dead" describe gender specific mortality transitions and
"f/M/dead" and "m/M/dead" indicate gender specific mortality rates for married persons.

Value

The transitionMatrix that is mandatory to perform a microsimulation run by micSim (sequen-
tially) or by micSimParallel (parallel computing) is returned. The matrix has as many rows as the
simulation model comprises nonabsorbing states and as many columns as the simulation model
comprises absorbing and nonabsorbing states. The rows indicate starting states of transitions and
the columns signify arrival states. At positions indicating impossible transitions, the matrix contains
zeros. Otherwise the name of the function defining the respective transition rates is given.

Author(s)

Sabine Zinn

Examples

###
1. Example: Transition rates are specified to depend on only one state variable
###

Defintion of state space, i.e., nonabsorbing and absorbing states
sex <- c("m","f")
fert <- c("0","1","2","3+")
marital <- c("NM","M","D","W")
edu <- c("no","low","med","high")
stateSpace <- expand.grid(sex=sex,fert=fert,marital=marital,edu=edu)

Possible transitions indicating fertility behavior are "0->1", "1->2", "2->3+",
and "3+->3+". Here, "->" is the defined placeholder defining a transition.
`fert1Rates' marks the name of the function defining the transition rates to
parity one and `fert2Rates' marks the name of the function defining the transition
rates to higher parities.
Note: The functions `fert1Rates' and `fert1Rates' are transition rate functions
defined by the user. Their naming depends on the user's choice.
fertTrMatrix <- cbind(c("0->1","1->2","2->3+","3+->3+"),

c("fert1Rates", "fert2Rates", "fert2Rates","fert2Rates"))

Possible transitions indicating changes in the marital status are "NM->M", "M->D",

buildTransitionMatrix 5

"M->W", "D->M", and "W->M".
`marriage1Rates' marks the name of the function defining the transition rates for first
marriage and `marriage2Rates' marks the name of the function defining the transition rates
for further marriages. `divorceRates' marks the name of the function defining divorce
rates and `widowhoodRates' marks the name of the function describing transition rates to
widowhood.
Note: The functions `marriage1Rates',`marriage2Rates', `divorceRates', and
`widowhoodRates' are transition rate functions defined by the user.
Their naming depends on the user's choice.
maritalTrMatrix <- cbind(c("NM->M","M->D","M->W","D->M","W->M"),

c("marriage1Rates","divorceRates","widowhoodRates","marriage2Rates",
"marriage2Rates"))

Possible transitions indicating changes in the educational attainment are "no->low",
"low->med", and "med->high".
`noToLowEduRates' marks the name of the function defining transition rates for accessing
primary education, `noToLowEduRates' marks the name of the function defining transition
rates for graduating with a lower secondary education, and `medToHighEduRates' marks the
name of the function defining transition rates for graduating with a higher secondary
education.
Note: The functions `noToLowEduRates',`noToLowEduRates', and `medToHighEduRates' are
transition rate functions defined by the user. Their naming depends on the user's
choice.
eduTrMatrix <- cbind(c("no->low","low->med","med->high"),

c("noToLowEduRates","noToLowEduRates","medToHighEduRates"))

Combine all possible transitions and the related transition function into one matrix.
allTransitions <- rbind(fertTrMatrix, maritalTrMatrix, eduTrMatrix)

Possible absorbing states are `dead' and `rest'. (The latter indicates leaving the
population because of emigration). The accordant transition rate functions are named
`mortRates' and `emigrRates'. (Again, naming is up to the user.)
absTransitions <- rbind(c("dead","mortRates"),c("rest","emigrRates"))

Construct `transition matrix'.
transitionMatrix <- buildTransitionMatrix(allTransitions,absTransitions,stateSpace)

###
2. Example: Transition rates are gender specific
###
Defintion of nonabsorbing and absorbing states
sex <- c("m","f")
stateX <- c("H","P")
stateSpace <- expand.grid(sex=sex,stateX=stateX)
absStates <- c("dead")

Transitions indicating changes in `stateX'.
We assume distinct transition rates for females and males.
Note: The functions `ratesHP_f',`ratesHP_m', `ratesPH_f', and
`ratesPH_m' are transition rate functions defined by the user.
trMatrix_f <- cbind(c("f/H->f/P","f/P->f/H"),c("ratesHP_f", "ratesPH_f"))
trMatrix_m <- cbind(c("m/H->m/P","m/P->m/H"),c("ratesHP_m", "ratesPH_m"))
allTransitions <- rbind(trMatrix_f,trMatrix_m)

6 convertToLongFormat

We assume gender specific mortality rates.
Note: The naming and specification of the respective mortality rate functions
`mortRates_f' and `mortRates_m' depend on the user.
absTransitions <- rbind(c("f/dead","mortRates_f"), c("m/dead","mortRates_m"))

transitionMatrix <- buildTransitionMatrix(allTransitions=allTransitions,
absTransitions=absTransitions, stateSpace=stateSpace)

convertToLongFormat Reshaping microsimulation output into long format

Description

The function reshapes the output given by micSim or by micSimParallel into long format. In long
format, the data comprises for each episode which an individual experiences one row.

Usage

convertToLongFormat(pop,migr=FALSE)

Arguments

pop The data frame pop contains the whole synthetic population considered during
simulation including all events generated. For each individidual pop contains as
many rows as the individual performed transitions during simulation.

migr A logical variable indicating whether the simulation model considers immigra-
tion. The default setting is "no immigration considered": migr=FALSE.

Details

convertToLongFormat uses information from the definition of the microsimulation model. In
particular, it uses stateSpace, absTransitions, allTransitions, simHorizon, and optionally
immigrPop. (For a description of these objects see micSim.) stateSpace, absTransitions,
allTransitions, simHorizon, and immigrPop are globally defined, i.e., they are already part
of the workspace. Thus, they do not have to be given to convertToLongFormat as extra input
parameters.

Value

A data frame comprising the microsimulation output in long format.

- ID is the unique numerical person identifier of an individual.

- birthDate is the birth date of an individual.

- The variables Tstart and Tstop mark the start und the ending dates of episodes.

convertToWideFormat 7

- statusEntry specifies whether the entry into an episode has been observed. Value "1" marks an
observed entry and "0" marks a left truncated episode.

- statusExit specifies whether a transition between two states or right censoring completed an
episode. Value "1" indicates a transition and "0" a censoring event.

- OD names the transition which completed an episode. Here, right censoring is marked by "cens".

- ns gives the number of episodes an individual has passed.

- Episode enumerates the episodes an individual has passed.

- The last columns of the data frame contain for each individual and episode the values of the state
variables during that episode such as ‘sex’, ‘education’, etc.

- Birth and transition times are given as calendar dates in form of chron objects.

Author(s)

Sabine Zinn

Examples

Run microsimulation before, e.g., the complex example described on the
help page of the function "micSim".
Not run:
pop <- micSim(initPop, immigrPop, transitionMatrix, absStates, initStates, initStatesProb,

maxAge, simHorizon, fertTr)
popLong <- convertToLongFormat(pop,migr=TRUE)

End(Not run)

convertToWideFormat Reshaping microsimulation output into wide format

Description

The function reshapes the output given by micSim or by micSimParallel into wide format. In wide
format, the data comprises for each episode which an individual experiences additional column
entries.

Usage

convertToWideFormat(pop)

Arguments

pop The data frame pop contains the whole synthetic population considered during
simulation including all events generated. For each individidual pop contains as
many rows as the individual performed transitions during simulation.

8 micSim

Value

A data frame comprising the microsimulation output in wide format.

- ID is the unique numerical person identifier of an individual.

- birthDate is the birth date of an individual.

- initState is the state in which an individual initially entered the virtual population of the simu-
lation.

- ns gives the number of (completed) episodes an individual has passed.

- The variables From.i and To.i mark the start und the arrival state of the transition corresponding
to episode i. The variables transitionTime.i and transitionAge.i give the corresponding
transition time and age. The enumerator i ranges from 1 to the maximal number of transitions
which an individual experienced during simulation. Only completed episodes are counted.

Author(s)

Sabine Zinn

Examples

Run microsimulation before, e.g., the complex example described on the
help page of the function "micSim".
Not run:
pop <- micSim(initPop, immigrPop, transitionMatrix, absStates, initStates,

initStatesProb, maxAge, simHorizon, fertTr)
popWide <- convertToWideFormat(pop)

End(Not run)

micSim Run microsimulation (sequentially)

Description

Performs a continuous-time microsimulation run (sequentially, i.e., using only one CPU core).

Usage

micSim(initPop, immigrPop = NULL, transitionMatrix, absStates = NULL,
initStates = c(), initStatesProb = c(), maxAge = 99, simHorizon,
fertTr = c(), dateSchoolEnrol="09/01", reportMothers=FALSE)

micSim 9

Arguments

initPop Data frame comprising the starting population of the simulation.

immigrPop Data frame comprising information about the immigrants entering the popula-
tion across simulation time.

transitionMatrix

A matrix indicating the transition pattern and the names of the functions deter-
mining the respective transition rates.

absStates A vector indicating the absorbing states of the model.

initStates A vector comprising all initial states that newborns might enter.

initStatesProb A vector comprising the probabilities corresponding to initStates. In sum,
these probabilities have to be one.

maxAge A scalar indicating the maximal age which an individual can reach during sim-
ulation. maxAge has to be greater than zero

simHorizon A vector comprising the starting and ending date of the simulation. Both dates
have to be chron objects. The starting date has to precede the ending date.

fertTr A vector indicating all transitions triggering a child birth event during simula-
tion, that is, the creation of a new individual.

dateSchoolEnrol

A string of the form "month/day" indicating the general enrollment date for ele-
mentary school, e.g., "09/01" for September 1st. The default setting is "09/01".

reportMothers A logical indicating whether the ID of the mother should be stored in the func-
tion’s output for all newborns generated during simulation.

Details

All nonabsorbing states considered during simulation have to be defined as composite states. In
more detail, they consist of labels indicating values of state variables. Within states, labels are
separated by a forward slash "/". Possible state variables are, for example, gender, number of chil-
dren ever born, and educational attainment. Corresponding values are, for example, "m" and "f"
(gender), "0","1","2", and "3+" (number of children ever born), "no", "low", "med", and "high"
(educational attainment). Possible examples of states are "m/0/low" for a childless male with ele-
mentary education or "f/1/high" for a female with one child and a higher secondary school degree.
All state variables considered plus accordant value labels have to be provided by the user. The only
exception is gender which is predefined by labels "m" and "f" indicating male and female individ-
uals. The label values "no" and "low" are reserved for enrolment events to elementary school (see
below).

Nonabsorbing states have to be given as strings such as "dead" for being dead or "rest" for emi-
grated.

micSim is able to conduct enrollment events to elementary school such that they take place on
dateSchoolEnrol of a particular year. For this purpose, a state variable defining educational at-
tainment has to be created first. Then, labels of possible values have to be defined such that "no"
describes no education and "low" describes elementary education. Finally, the transition function
determining the transition rate for the respective enrollment event has to be defined to return "Inf"
for the age x at which children should be enrolled (e.g., at age seven) and zero otherwise. That way,

10 micSim

an event "school enrollment on dateSchoolEnrol of the year in which a child turns x years old" is
enforced.

If educational attainment is not considered, dateSchoolEnrol can let be unspecified: dateSchoolEnrol=c().

The starting population initPop has to be given in the form of a data frame. Each row of the data
frame corresponds to one individual. initPop has to comprise the following information: unique
numerical person identifier (ID), birth date, and initial state (i.e., the state occupied by the individual
when entering the synthetic population). Birth dates have to be chron objects.

Information about immigrants has to be given in the form of a data frame (immigrPop). Each row
of the data frame corresponds to one immigrant. immigrPop contains the following data: unique
numerical person identifier (ID), immigration date, birth date, and initial state (i.e., the state occu-
pied by the immigrant when entering the simulated population). Immigration dates and birth dates
have to be chron objects.

For each transition that should be considered during simulation accordant transition rates have to be
provided. micSim requires these rates in form of functions which are handed over via the transition
matrix transitionMatrix (described in the subsequent paragraph). The MicSim package allows
rates to depend on three time scales: age, calendar time, and the time that has elapsed since the last
change of a particular state variable (e.g., the time elapsed since wedding). In accordance therewith,
micSim requires transition rates functions to feature three input parameters, namely age, calTime,
and duration. Via age the age of an individual is handed over, via caltime the calendar time, and
via duration the time that has elapsed since the last change of the affected state variable. All three
input parameters might vary, or only one or two of them. Also none of the input parameters can
be specified to vary, i.e., a transition rate can be defined to be constant. If rates are assumed to be
independent of a specific time scale, the corresponding input argument can simply be ignored within
the body of the rates function (i.e., is not used to determine a specific rate value). For illustration,
see the examples in the example section. Note that allowing transition rates to vary along the time
elapsed since a last transition facilitates modelling gestation gaps after a delivery: For a period of
nine or ten months transition rates for higher order parities are simply set to zero (cf., the complex
example in the example section).

The transition matrix transitionMatrix has as many rows as the simulation model comprises
nonabsorbing states and as many columns as the simulation model comprises absorbing and nonab-
sorbing states. The rows of transitionMatrix mark starting states of transitions and the columns
mark arrival states. At positions of transitionMatrix indicating impossible transitions, the matrix
contains zeros. Otherwise the name of the function determining the respective transition rates has
to be given. The function buildTransitionMatrix supports the construction of transitionMatrix.

If, during simulation, an individual reaches maxAge, he/she stays in his/her current state until sim-
ulation ending date is reached, that is, the respective individual is no longer at risk of experiencing
any events and his/her ongoing episode will be censored at simlation ending date.

It is recommended to set simHorizon using the function setSimHorizon.

Each element of fertTr has to be of the form "A->B", that is, "A" indicates the starting attribute
of the transition and "B" the arrival attribute. ("->" is the placeholder defined to mark a transition.)
For example, "0" (childless) gives the starting point of the transition marking a first birth event
and "1" (first child) its arrival point. All fertility attributes given in fertTr have to be part of the
state variable specifiying fertility in the state space. That is, if there is none, fertTr is empty:
fertTr=c().

micSim 11

Value

The data frame pop contains the whole synthetic population considered during simulation including
all events generated. In more detail, pop contains as many rows as there are transitions performed by
the individuals. (Also, "entering the population" is considered as an event. In general, individuals
can enter the simulation via three channels: by being part of the starting population, by immigration,
and by being born during simulation). If reportMothers is set to TRUE in the function’s input argu-
ments and fertility events are part of the model’s specification, pop contains an additional column
indicating the ID of the mother for individuals born during simulation.

The function convertToLongFormat reshapes the microsimulation output into long format, while
the function convertToWideFormat gives the microsimulation in wide format.

Note

Concerning run times micSim is not very performant. That is because it is purely implemented in R,
i.e., it does not incorporate routines implemented in a high level programming language like Java,
C++ or Python. Furthermore, the current code contains a lot of string splits and format conversions.
The reason for this are twofold (i) minimize dependencies to other R packages and (ii) a allow
a handy and flexible model specification and structure. The long long run times are certainly an
issue to tackle with the next version(s) of the package. For the meantime, if a computer cluster is
accessible, I recommend parallel computing using micSimParallel. This speeds up execution times
considerably.

Author(s)

Sabine Zinn

Examples

##
1. Simple example only dealing with mortality events
##

Clean workspace
rm(list=ls())

Defining simulation horizon
simHorizon <- setSimHorizon(startDate="01/01/2000", endDate="31/12/2100")

Seed for random number generator
set.seed(234)

Definition of maximal age
maxAge <- 120

Defintion of nonabsorbing and absorbing states
sex <- c("m","f")
stateSpace <- sex
attr(stateSpace,"name") <- "sex"
absStates <- "dead"

12 micSim

Definition of an initial population
dts <- c("31/12/1930","03/04/1999","15/10/1956","11/11/1991","01/01/1965")
birthDates <- chron(dates=dts,format=c(dates="d/m/Y"))
initStates <- c("f","m","f","m","m")
initPop <- data.frame(ID=1:5,birthDate=birthDates,initState=initStates)

Definition of mortality rates (Gompertz model).
mortRates <- function(age, calTime, duration){

a <- 0.00003
b <- ifelse(calTime<=2020, 0.1, 0.097)
rate <- a*exp(b*age)
return(rate)

}

Transition pattern and assignment of functions specifying transition rates
absTransitions <- c("dead","mortRates")
transitionMatrix <- buildTransitionMatrix(allTransitions=NULL,

absTransitions=absTransitions, stateSpace=stateSpace)

Execute microsimulation (sequentially, i.e., using only one CPU)
pop <- micSim(initPop=initPop, transitionMatrix=transitionMatrix, absStates=absStates,

maxAge=maxAge, simHorizon=simHorizon)

##
2. More complex example dealing with mortality, changes in the fertily and the marital
status, in the educational attainment, as well as dealing with migration
##
Clean workspace
rm(list=ls())

Defining simulation horizon
simHorizon <- setSimHorizon(startDate="01/01/2014", endDate="31/12/2024")

Seed for random number generator
set.seed(234)

Definition of maximal age
maxAge <- 100

Defintion of nonabsorbing and absorbing states
sex <- c("m","f")
fert <- c("0","1+")
marital <- c("NM","M","D","W")
edu <- c("no","low","med","high")
stateSpace <- expand.grid(sex=sex,fert=fert,marital=marital,edu=edu)
absStates <- c("dead","rest")

General date of enrollment to elementary school
dateSchoolEnrol <- "09/01"

Assign to all newborns born during simulation the ID of the mother
reportMothers <- TRUE

micSim 13

Definition of an initial population (for illustration purposes, create a random population)
N = 100
initBirthDatesRange <- chron(dates=c("31/12/1950","01/01/2014"), format=c(dates="d/m/Y"),

out.format=c(dates="d/m/year"))
birthDates <- dates(initBirthDatesRange[1] + runif(N, min=0, max=diff(initBirthDatesRange)))
getRandInitState <- function(birthDate){

age <- trunc(as.numeric(simHorizon[1] - birthDate)/365.25)
s1 <- sample(sex,1)
s2 <- ifelse(age<=18, fert[1], sample(fert,1))
s3 <- ifelse(age<=18, marital[1], ifelse(age<=22, sample(marital[1:3],1),
sample(marital,1)))

s4 <- ifelse(age<=7, edu[1], ifelse(age<=18, edu[2], ifelse(age<=23, sample(edu[2:3],1),
sample(edu[-1],1))))

initState <- paste(c(s1,s2,s3,s4),collapse="/")
return(initState)

}
initPop <- data.frame(ID=1:N, birthDate=birthDates,

initState=sapply(birthDates, getRandInitState))

Definition of immigrants entering the population (for illustration purposes, create immigrants
randomly)
M = 20
immigrDatesRange <- as.numeric(simHorizon)
immigrDates <- dates(chron(immigrDatesRange[1] + runif(M, min=0,max=diff(immigrDatesRange)),
format=c(dates="d/m/Y", times="h:m:s"), out.format=c(dates="d/m/year",times="h:m:s")))

immigrAges <- runif(M, min=15*365.25, max=70*365.25)
immigrBirthDates <- dates(chron(as.numeric(immigrDates) - immigrAges,
format=c(dates="d/m/Y", times="h:m:s"), out.format=c(dates="d/m/year", times="h:m:s")))

IDmig <- max(as.numeric(initPop[,"ID"]))+(1:M)
immigrPop <- data.frame(ID = IDmig, immigrDate = immigrDates, birthDate=immigrBirthDates,

immigrInitState=sapply(immigrBirthDates, getRandInitState))

Definition of initial states for newborns
initStates <- rbind(c("m","0","NM","no"),c("f","0","NM","no"))
Definition of related occurrence probabilities
initStatesProb <- c(0.515,0.485)

Definition of (possible) transition rates
(1) Fertility rates (Hadwiger mixture model)
fert1Rates <- function(age, calTime, duration){ # parity 1

b <- ifelse(calTime<=2020, 3.9, 3.3)
c <- ifelse(calTime<=2020, 28, 29)
rate <- (b/c)*(c/age)^(3/2)*exp(-b^2*(c/age+age/c-2))
rate[age<=15 | age>=45] <- 0
return(rate)

}
fert2Rates <- function(age, calTime, duration){ # partiy 2+

b <- ifelse(calTime<=2020, 3.2, 2.8)
c <- ifelse(calTime<=2020, 32, 33)
rate <- (b/c)*(c/age)^(3/2)*exp(-b^2*(c/age+age/c-2))
rate[age<=15 | age>=45 | duration<0.75] <- 0
return(rate)

14 micSim

}
(2) Rates for first marriage (normal density)
marriage1Rates <- function(age, calTime, duration){

m <- ifelse(calTime<=2020, 25, 30)
s <- ifelse(calTime<=2020, 3, 3)
rate <- dnorm(age, mean=m, sd=s)
rate[age<=16] <- 0
return(rate)

}
(3) Remariage rates (log-logistic model)
marriage2Rates <- function(age, calTime, duration){

b <- ifelse(calTime<=2020, 0.07, 0.10)
p <- ifelse(calTime<=2020, 2.7,2.7)
lambda <- ifelse(calTime<=1950, 0.04, 0.03)
rate <- b*p*(lambda*age)^(p-1)/(1+(lambda*age)^p)
rate[age<=18] <- 0
return(rate)

}
(4) Divorce rates (normal density)
divorceRates <- function(age, calTime, duration){

m <- 40
s <- ifelse(calTime<=2020, 7, 6)
rate <- dnorm(age,mean=m,sd=s)
rate[age<=18] <- 0
return(rate)

}
(5) Widowhood rates (gamma cdf)
widowhoodRates <- function(age, calTime, duration){

rate <- ifelse(age<=30, 0, pgamma(age-30, shape=6, rate=0.06))
return(rate)

}
(6) Rates to change educational attainment
Set rate to `Inf' to make transition for age 7 deterministic.
noToLowEduRates <- function(age, calTime, duration){

rate <- ifelse(age==7,Inf,0)
return(rate)

}
lowToMedEduRates <- function(age, calTime, duration){

rate <- dnorm(age,mean=16,sd=1)
rate[age<=15 | age>=25] <- 0
return(rate)

}
medToHighEduRates <- function(age, calTime, duration){

rate <- dnorm(age,mean=20,sd=3)
rate[age<=18 | age>=35] <- 0
return(rate)

}
(7) Mortality rates (Gompertz model)
mortRates <- function(age, calTime, duration){

a <- .00003
b <- ifelse(calTime<=2020, 0.1, 0.097)
rate <- a*exp(b*age)
return(rate)

micSimParallel 15

}
(8) Emigration rates
emigrRates <- function(age, calTime, duration){

rate <- ifelse(age<=18,0,0.0025)
return(rate)

}

Transition pattern and assignment of functions specifying transition rates
fertTrMatrix <- cbind(c("0->1+","1+->1+"),

c("fert1Rates", "fert2Rates"))
maritalTrMatrix <- cbind(c("NM->M","M->D","M->W","D->M","W->M"),

c("marriage1Rates","divorceRates","widowhoodRates",
"marriage2Rates","marriage2Rates"))

eduTrMatrix <- cbind(c("no->low","low->med","med->high"),
c("noToLowEduRates","lowToMedEduRates","medToHighEduRates"))

allTransitions <- rbind(fertTrMatrix, maritalTrMatrix, eduTrMatrix)
absTransitions <- rbind(c("dead","mortRates"),c("rest","emigrRates"))
transitionMatrix <- buildTransitionMatrix(allTransitions=allTransitions,

absTransitions=absTransitions, stateSpace=stateSpace)

Define transitions triggering a birth event
fertTr <- fertTrMatrix[,1]

Execute microsimulation (sequentially, i.e., using only one CPU core)
pop <- micSim(initPop=initPop, immigrPop=immigrPop,

transitionMatrix=transitionMatrix, absStates=absStates,
initStates=initStates, initStatesProb=initStatesProb,
maxAge=maxAge, simHorizon=simHorizon, fertTr=fertTr,
dateSchoolEnrol=dateSchoolEnrol, reportMothers=reportMothers)

micSimParallel Run microsimulation (parallel computing)

Description

The function micSimParallel is a parallelized version of the function micSim. That is, it runs a
continuous-time microsimulation simulation distributed, i.e., using more than one CPU core.

Usage

micSimParallel(initPop, immigrPop = NULL, transitionMatrix, absStates = NULL,
initStates = c(), initStatesProb = c(), maxAge = 99, simHorizon, fertTr = c(),
dateSchoolEnrol="09/01", reportMothers=FALSE, cores=1, seeds=1254)

Arguments

initPop

immigrPop

16 micSimParallel

transitionMatrix

absStates

initStates

initStatesProb

maxAge

simHorizon

fertTr
dateSchoolEnrol

reportMothers See micSim.

cores Number of CPUs to be used.

seeds Seeds for pseudo number generators used for parallel computing.

Details

The argument cores must not exceed the number of cores of the computer (cluster) used.

In seeds as many seeds should be given as cores are used. If less are given, the latter are repeated
to complete the set of seeds.

Value

The data frame pop contains the whole synthetic population considered during simulation including
all events generated. For more details, see micSim.

Author(s)

Sabine Zinn

Examples

##
Complex example dealing with mortality, changes in the fertily and the marital
status, in the educational attainment, as well as dealing with migration
(A simpler example is given on the help page of the "micSim" function of this package.)
##

Clean workspace
rm(list=ls())

Defining simulation horizon
simHorizon <- setSimHorizon(startDate="01/01/2014", endDate="31/12/2024")

Seed for random number generator
set.seed(234)

Definition of maximal age
maxAge <- 100

micSimParallel 17

Defintion of nonabsorbing and absorbing states
sex <- c("m","f")
fert <- c("0","1+")
marital <- c("NM","M","D","W")
edu <- c("no","low","med","high")
stateSpace <- expand.grid(sex=sex,fert=fert,marital=marital,edu=edu)
absStates <- c("dead","rest")

General date of enrollment to elementary school
dateSchoolEnrol <- "09/01"

Definition of an initial population (for illustration purposes, create a random population)
N = 10000
initBirthDatesRange <- chron(dates=c("31/12/1950","01/01/2014"),format=c(dates="d/m/Y"),

out.format=c(dates="d/m/year"))
set.seed(124) # Set a seed for the random number generator (to make results repeatable)
birthDates <- dates(initBirthDatesRange[1] + runif(N, min=0, max=diff(initBirthDatesRange)))
getRandInitState <- function(birthDate){

age <- trunc(as.numeric(simHorizon[1] - birthDate)/365.25)
s1 <- sample(sex,1)
s2 <- ifelse(age<=18, fert[1], sample(fert,1))
s3 <- ifelse(age<=18, marital[1], ifelse(age<=22, sample(marital[1:3],1),
sample(marital,1)))

s4 <- ifelse(age<=7, edu[1], ifelse(age<=18, edu[2], ifelse(age<=23, sample(edu[2:3],1),
sample(edu[-1],1))))

initState <- paste(c(s1,s2,s3,s4),collapse="/")
return(initState)

}
initPop <- data.frame(ID=1:N, birthDate=birthDates,

initState=sapply(birthDates, getRandInitState))

Definition of immigrants entering the population (for illustration purposes, create immigrants
randomly)
M = 2000
immigrDatesRange <- as.numeric(simHorizon)
immigrDates <- dates(chron(immigrDatesRange[1] + runif(M, min=0,max=diff(immigrDatesRange)),
format=c(dates="d/m/Y", times="h:m:s"), out.format=c(dates="d/m/year",times="h:m:s")))

immigrAges <- runif(M, min=15*365.25, max=70*365.25)
immigrBirthDates <- dates(chron(as.numeric(immigrDates) - immigrAges,
format=c(dates="d/m/Y", times="h:m:s"), out.format=c(dates="d/m/year", times="h:m:s")))

IDmig <- max(as.numeric(initPop[,"ID"]))+(1:M)
immigrPop <- data.frame(ID = IDmig, immigrDate = immigrDates, birthDate=immigrBirthDates,

immigrInitState=sapply(immigrBirthDates, getRandInitState))

Definition of initial states for newborns
initStates <- rbind(c("m","0","NM","no"),c("f","0","NM","no"))
Definition of related occurrence probabilities
initStatesProb <- c(0.515,0.485)

Definition of (possible) transition rates
(1) Fertility rates (Hadwiger mixture model)
fert1Rates <- function(age, calTime, duration){ # parity 1

18 micSimParallel

b <- ifelse(calTime<=2020, 3.9, 3.3)
c <- ifelse(calTime<=2020, 28, 29)
rate <- (b/c)*(c/age)^(3/2)*exp(-b^2*(c/age+age/c-2))
rate[age<=15 | age>=45] <- 0
return(rate)

}
fert2Rates <- function(age, calTime, duration){ # partiy 2+

b <- ifelse(calTime<=2020, 3.2, 2.8)
c <- ifelse(calTime<=2020, 32, 33)
rate <- (b/c)*(c/age)^(3/2)*exp(-b^2*(c/age+age/c-2))
rate[age<=15 | age>=45 | duration<0.75] <- 0
return(rate)

}
(2) Rates for first marriage (normal density)
marriage1Rates <- function(age, calTime, duration){

m <- ifelse(calTime<=2020, 25, 30)
s <- ifelse(calTime<=2020, 3, 3)
rate <- dnorm(age, mean=m, sd=s)
rate[age<=16] <- 0
return(rate)

}
(3) Remariage rates (log-logistic model)
marriage2Rates <- function(age, calTime, duration){

b <- ifelse(calTime<=2020, 0.07, 0.10)
p <- ifelse(calTime<=2020, 2.7, 2.7)
lambda <- ifelse(calTime<=1950, 0.04, 0.03)
rate <- b*p*(lambda*age)^(p-1)/(1+(lambda*age)^p)
rate[age<=18] <- 0
return(rate)

}
(4) Divorce rates (normal density)
divorceRates <- function(age, calTime, duration){

m <- 40
s <- ifelse(calTime<=2020, 7, 6)
rate <- dnorm(age,mean=m,sd=s)
rate[age<=18] <- 0
return(rate)

}
(5) Widowhood rates (gamma cdf)
widowhoodRates <- function(age, calTime, duration){

rate <- ifelse(age<=30, 0, pgamma(age-30, shape=6, rate=0.06))
return(rate)

}
(6) Rates to change educational attainment
Set rate to `Inf' to make transition for age 7 deterministic.
noToLowEduRates <- function(age, calTime, duration){

rate <- ifelse(age==7,Inf,0)
return(rate)

}
lowToMedEduRates <- function(age, calTime, duration){

rate <- dnorm(age,mean=16,sd=1)
rate[age<=15 | age>=25] <- 0
return(rate)

setSimHorizon 19

}
medToHighEduRates <- function(age, calTime, duration){

rate <- dnorm(age,mean=20,sd=3)
rate[age<=18 | age>=35] <- 0
return(rate)

}
(7) Mortality rates (Gompertz model)
mortRates <- function(age, calTime, duration){

a <- 0.00003
b <- ifelse(calTime<=2020, 0.1, 0.097)
rate <- a*exp(b*age)
return(rate)

}
(8) Emigration rates
emigrRates <- function(age, calTime, duration){

rate <- ifelse(age<=18,0,0.0025)
return(rate)

}

Transition pattern and assignment of functions specifying transition rates
fertTrMatrix <- cbind(c("0->1+","1+->1+"),

c("fert1Rates", "fert2Rates"))
maritalTrMatrix <- cbind(c("NM->M","M->D","M->W","D->M","W->M"),

c("marriage1Rates","divorceRates","widowhoodRates",
"marriage2Rates","marriage2Rates"))

eduTrMatrix <- cbind(c("no->low","low->med","med->high"),
c("noToLowEduRates","lowToMedEduRates","medToHighEduRates"))

allTransitions <- rbind(fertTrMatrix, maritalTrMatrix, eduTrMatrix)
absTransitions <- rbind(c("dead","mortRates"),c("rest","emigrRates"))
transitionMatrix <- buildTransitionMatrix(allTransitions=allTransitions,

absTransitions=absTransitions, stateSpace=stateSpace)

Define transitions triggering a birth event
fertTr <- fertTrMatrix[,1]

Run microsimulation on cluster with five cores (settings depend on cluster used)
Not run:
cores <- 5
seeds <- c(1233,1245,1234,5,2)
pop <- micSimParallel(initPop=initPop, immigrPop=immigrPop,

transitionMatrix=transitionMatrix, absStates=absStates, initStates=initStates,
initStatesProb=initStatesProb, maxAge=maxAge, simHorizon=simHorizon,
fertTr=fertTr, dateSchoolEnrol=dateSchoolEnrol,
cores=cores, seeds=seeds)

End(Not run)

setSimHorizon Set simulation horizon

20 setSimHorizon

Description

The function sets the simulation horizon of the microsimulation. The actual microsimulation is
performed by micSim (sequentially) or by micSimParallel (parallel computing).

Usage

setSimHorizon(startDate, endDate)

Arguments

startDate Starting date of simulation given as string of the format "dd/mm/yyyy".

endDate End date of simulation given as string of the format "dd/mm/yyyy".

Details

The starting date has to precede the ending date.

Value

A vector of two chron objects indicating the simulation horizon of the simulation.

Author(s)

Sabine Zinn

Examples

setSimHorizon(startDate="01/01/2000", endDate="31/12/2010")

Index

∗ package
MicSim-package, 2

buildTransitionMatrix, 3, 10

convertToLongFormat, 6, 11
convertToWideFormat, 7, 11

MicSim (MicSim-package), 2
micSim, 3, 4, 6, 7, 8, 15, 16, 20
MicSim-package, 2
micSimParallel, 3, 4, 6, 7, 11, 15, 20

setSimHorizon, 10, 19

21

	MicSim-package
	buildTransitionMatrix
	convertToLongFormat
	convertToWideFormat
	micSim
	micSimParallel
	setSimHorizon
	Index

