Package 'MoLE'

October 24, 2017
Type Package
Title Modeling Language Evolution
Version 1.0.1
Date 2017-10-23
Author Sander Lestrade
Maintainer Sander Lestrade samlestrade@protonmail.com
Description Model for simulating language evolution in terms of cultural evolution (Smith \& Kirby (2008) DOI:10.1098/rstb.2008.0145; Deacon 1997). The focus is on the emergence of argument-marking systems (Dowty (1991) DOI:10.1353/lan.1991.0021, Van Valin 1999, Dryer 2002, Lestrade 2015a), i.e. noun marking (Aris-
$\operatorname{tar}(1997)$ DOI:10.1075/sl.21.2.04ari, Lestrade (2010) DOI:10.7282/T3ZG6R4S), person indexing (Ariel 1999, Dahl (2000) DOI:10.1075/fol.7.1.03dah, Bhat 2004), and word order (Dryer 2013), but extensions are foreseen. Agents start out with a protolanguage (a language without grammar; Bickerton (1981) DOI:10.17169/langsci.b91.109, Jackendoff 2002, Arbib (2015) DOI:10.1002/9781118346136.ch27) and interact through language games (Steels 1997). Over time, grammatical construc-
tions emerge that may or may not become obligatory (for which the tolerance principle is assumed; Yang 2016). Throughout the simulation, uniformitarianism of principles is assumed (Hopper (1987) DOI:10.3765/bls.v13i0.1834, Givon (1995) DOI:10.1075/z.74, Croft (2000), Saffran (2001) DOI:10.1111/1467-8721.01243, Heine \& Kuteva 2007), in which maximal psychological validity is aimed at (Grice (1975) DOI:10.1057/9780230005853_5, Lev-
elt 1989, Gaerdenfors 2000) and language representation is usage based (Tomasello 2003, Bybee 2010). In Lestrade (2015b) <DOI:10.15496/publikation-
8640>, Lestrade (2015c) DOI:10.1075/avt.32.08les, and Lestrade (2016) <DOI: 10.17617/2.2248195>), which reported on the results of preliminary versions, this package was an-
nounced as WDWTW (for who does what to whom), but for reasons of pronunciation and generalization the title was changed.
Depends R (>= 3.0.0)
LazyData TRUE
License GPL-2
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-10-24 07:21:35 UTC
R topics documented:
MoLE-package 3
ACTOR 7
AGENTFIRST 8
ALLNAS 9
ANALYZE 10
CANDIDATESCORE 11
CHECKSUCCESS 12
DECOMPOSE 13
DIE 14
EROSION 15
FIRSTINFIRSTOUT 16
FIRSTSPEAKER 17
FMATCH 18
FORMS 19
FOUND 20
FREQUPDATE 20
FUSE 21
GENERALIZE 23
GROUP 24
INTERPRET 25
INTERPRET.INT 26
MAX 27
NOUNDESEMANTICIZATION 28
NOUNMORPHOLOGY 29
NOUNS 30
PERSONUPDATE 31
PREPARE 32
PROCREATE 33
PRODUCE 34
PROPOSITION 35
PROTOINTERPRETATION 36
REDUCE 37
REFCHECK 38
RESCALE 39
RUN 40
SELECTACTOR 40
SEMUPDATE 41
SITUATION 42
SUCCESS 43
SUMMARY 44
TALK 45
TOPICCOPY 46
TOPICFIRST 47
TURN 48
TYPEMATCH 49
VERBFINAL 50
VERBMORPHOLOGY 51
VERBS 52
VMATCH 52
WORDORDER 53
world 55
Index 60
MoLE-package Modeling Language Evolution

Description

Model for simulating language evolution in terms of cultural evolution (Smith \& Kirby (2008) DOI:10.1098/rstb.2008.0145; Deacon 1997). The focus is on the emergence of argument-marking systems (Dowty (1991) DOI:10.1353/lan.1991.0021, Van Valin 1999, Dryer 2002, Lestrade 2015a), i.e. noun marking (Aristar (1997) DOI:10.1075/sl.21.2.04ari, Lestrade (2010) DOI:10.7282/T3ZG6R4S), person indexing (Ariel 1999, Dahl (2000) DOI:10.1075/fol.7.1.03dah, Bhat 2004), and word order (Dryer 2013), but extensions are foreseen. Agents start out with a protolanguage (a language without grammar; Bickerton (1981) DOI:10.17169/langsci.b91.109, Jackendoff 2002, Arbib (2015) DOI:10.1002/9781118346136.ch27) and interact through language games (Steels 1997). Over time, grammatical constructions emerge that may or may not become obligatory (for which the tolerance principle is assumed; Yang 2016). Throughout the simulation, uniformitarianism of principles is assumed (Hopper (1987) DOI:10.3765/bls.v13i0.1834, Givon (1995) DOI:10.1075/z.74, Croft (2000), Saffran (2001) DOI:10.1111/1467-8721.01243, Heine \& Kuteva 2007), in which maximal psychological validity is aimed at (Grice (1975) DOI:10.1057/9780230005853_5, Levelt 1989, Gaerdenfors 2000) and language representation is usage based (Tomasello 2003, Bybee 2010). In Lestrade (2015b) DOI:10.15496/publikation-8640, Lestrade (2015c) DOI:10.1075/avt.32.08les, and Lestrade (2016) DOI:10.17617/2.2248195), which reported on the results of preliminary versions, this package was announced as WDWTW (for who does what to whom), but for reasons of pronunciation and generalization the title was changed.

Details

The DESCRIPTION file:

Package:	MoLE
Type:	Package
Title:	Modeling Language Evolution
Version:	1.0 .1
Date:	$2017-10-23$
Author:	Sander Lestrade
Maintainer:	Sander Lestrade <samlestrade@ protonmail.com>
Description:	Model for simulating language evolution in terms of cultural evolution (Smith \& Kirby (2008) <DOI:10.109

Depends:	$\mathrm{R}(>=3.0 .0)$
LazyData:	TRUE
License:	GPL-2
RoxygenNote:	6.0 .1

Index of help topics:

ACTOR	Determine actor role
AGENTFIRST	Actor argument first
ALLNAS	NA vector identification
ANALYZE	Determine sentence constituents
CANDIDATESCORE	Score candidate expressions
CHECKSUCCESS	Determine expected communicative success
DECOMPOSE	Decompose words into morphemes
DIE	Kill agents
EROSION	Word erosion
FIRSTINFIRSTOUT	Order constituents by activation
FIRSTSPEAKER	Create founding agent
FMATCH	Compare forms
FORMS	Generate forms
FOUND	Found population
FREQUPDATE	Update usage numbers
FUSE	Fuse words
GENERALIZE	Apply linguistic generalizations
GROUP	Group words into constituents
INTERPRET	Interpret utterance
INTERPRET.INT	Develop an interpretation
MAX	Find maximum value
MoLE-package	Modeling Language Evolution
NOUNDESEMANTICIZATION	Bleach word meaning
NOUNMORPHOLOGY	Interpret nominal morphology
NOUNS	Generate nominal lexicon
PERSONUPDATE	Adjust person value
PREPARE	Prepare a proposition for production
PROCREATE	Generate new generation of agents
PRODUCE	Produce utterance
PROPOSITION	Develop initial proposition
PROTOINTERPRETATION	Develop interpretation
REDUCE	Reduce length of expressions
REFCHECK	Check referential capacity
RESCALE	Rescale vector values
RUN	Run simulation
SELECTACTOR	Find actor expression
SEMUPDATE	Update lexicon
SITUATION	Create situational context
SUCCESS	Summarize simulation results
SUMMARY	

```
TALK Let agents talk
TOPICCOPY Make anaphoric copy of topic
TOPICFIRST Put topic in first position
TURN Organize communicative turn
TYPEMATCH Determine role qualification
VERBFINAL Put verb final
VERBMORPHOLOGY Interpret verbal morphology
VERBS Generate verbal lexicon
VMATCH Compare vectors
WORDORDER Use word order for interpretation
world Model parameters
```

Set the model parameters in world. Found a new population (FOUND). Run a simulation (RUN).
For language to change (and argument-marking grammar to develop), the simulation has to run for several hours.

Author(s)

Sander Lestrade
Maintainer: Sander Lestrade samlestrade@protonmail.com

References

Ariel, M. (1999), The development of person agreement markers: from pronouns to higher accessibility markers. In Barlow \& Kemmer (Eds.), Usage based models of language (pp. 197-260), Stanford: CSLI.
Aristar, A.R. (1997), Marking and hierarchy. Types and the grammaticalization of case markers. Studies in Language, 21 (2), 313-368.

Arbib, M. A. (2015), Language evolution. An emergentist perspective. In MacWhinney and OGrady (eds), The Handbook of Language Emergence. West Sussex, UK: Wiley/Blackwell, pp. 600-623.
Bhat, D.N.S. (2004), Pronouns. Oxford [etc.]: Oxford University Press.
Bickerton, D. (1981), Roots of language. Ann Arbor, Mich.: Karoma.
Bybee, J. (2010), Language, usage, and cognition. Cambridge, UK: Cambridge University Press.
Croft, W. (2000), Explaining language change: An evolutionary approach. Harlow etc.: Longman.
Dahl, O. (2000), Egophoricity in discourse and syntax. Functions of Language, 7 (1), 37-77.
Deacon, T. (1997), The symbolic species. London: Penquin.
Dowty, D. (1991), Thematic proto-roles and argument selection. Language 67 (3): 547-619.
Dryer, M. S. (2002), Case distinctions, rich verb agreement, and word order type. Theoretical Linguistics 28: 151-157.
Dryer, M. S. (2013), Order of subject, object and verb. In Dryer \& Haspelmath (Eds.), The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology.
Du Bois, J.W. (1987), The discourse basis of ergativity. Language 63 (4): 805-855

Gaerdenfors, P. (2000), Conceptual spaces: The geometry of thought. Cambridge, MA: MIT.
Givon, T. (1995), Functionalism and grammar. Amsterdam/Philadelphia: John Benjamins.
Grice, H. P. (1975), Logic and conversation. In P. Cole \& J. L. Morgan (Eds.), Syntax and semantics: Speech acts (Vol. 3, pp. 41-58), New York: Academic Press.
Heine, B. \& Kuteva, T. (2007), The genesis of grammar. A reconstruction. Oxford: Oxford University Press.
Hopper, P. J. (1987), Emergent grammar. In Proceedings of BLS (Vol. 13, pp. 139-157),
Jackendoff, R. (2002), Foundations of language: Brain, meaning, grammar, evolution. Oxford: Oxford University Press.
Levelt, W.J.M. (1989), Speaking. From intention to articulation. Cambridge, MA: MIT Press.
Lestrade, S. (2010), The space of case. PhD thesis, Radboud University Nijmegen.
Lestrade, S. (2015a), The interaction of argument-marking strategies. In: S. Lestrade, P. de Swart, and L. Hogeweg (eds), Addenda. Artikelen voor Ad Foolen. Radboud University Nijmegen, 251256.

Lestrade, S. (2015b), Simulating the development of bound person marking. In: H. Baayen, et al. (eds), Proceedings of the 6th Conference on Quantitative Investigations in Theoretical Linguistics. Tuebingen: University of Tuebingen.
Lestrade, S. (2015c), A case of cultural evolution: The emergence of morphological case. Linguistics in the Netherlands [AVT 32]: 105-115.
Lestrade, S. (2016), The emergence of argument marking. In: S.G. Roberts et al.(eds) The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11)
Saffran, J.R. (2001), Statistical language learning: Mechanisms and constraints. Current Directions in Psychological Science 12(4): 110-114.
Smith, K. \& Kirby, S. (2008), Cultural evolution: Implications for understanding the human language faculty and its evolution. Phil. Trans. R. Soc. B, 363, 3591-3603.
Steels, L. (1997), Constructing and sharing perceptual distinctions. Machine Learning, ECML-97, 4-13.
Tomasello, M. (2003), Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.
Van Valin, R. (1999), Generalized semantic roles and the syntax-semantics interface. In F. Corblin, C. Dobrovie-Sorin, \& J.-M. Marandin (Eds.), Empirical issues in formal syntax and semantics 2 (pp. 373-389), The Hague: Thesus.
Yang, Ch. (2016), The price of linguistic productivity. Cambridge, MA: MIT Press.

Examples

```
## Not run:
FOUND()
RUN(.00001)
(situation=SITUATION(1))
(proposition=PROPOSITION(1, situation))
(prep=PREPARE(1, proposition, situation))
(utterance=PRODUCE(1, prep))
(interpretation=INTERPRET(2, utterance, situation))
```

head(population[[1]]\$nouns)
\#\# End(Not run)

ACTOR Determine actor role

Description

Given two verb roles, which of these is most prominent and hence the actor?

Usage

$\operatorname{ACTOR}(x, y)$

Arguments

x	First verb role
y	Second verb role

Details

Higher meaning values are more prominent. If tie, first argument is actor

Value

numeric: 1 if first role is actor, 2 if second is.

Author(s)

Sander Lestrade

References

Van Valin, R. (1999). Generalized semantic roles and the syntax-semantics interface. In F. Corblin, C. Dobrovie-Sorin, \& J.-M. Marandin (Eds.), Empirical issues in formal syntax and semantics 2 (pp. 373-389). The Hague: Thesus.

See Also

SITUATION SELECTACTOR SELECTUNDERGOER PROPOSITION REFCHECK AGENTFIRST GENERALIZE CHECKSUCCESS WORDORDER VERBMORPHOLOGY INTERPRET. INT FREQUPDATE

Examples

```
a=rep(1, 4)
b=rep(0, 4)
ACTOR(a,b)
```

AGENTFIRST Actor argument first

Description

Reorganizes constituents of an utterance such that actor is put in sentence-initial position. Only applies if corresponding word-order generalization has been made.

Usage

AGENTFIRST(proposition)

Arguments

proposition Proposition of which the constituents are reordered.

Details

Applies to intransitives too, which may not be desirable.

Value

a proposition, i.e. a list:
external representation of the external argument
internal representation of the internal argument, if identified
verb representation of the action argument
target target event to be described

Author(s)

Sander Lestrade

References

Matthew S. Dryer. 2013. Order of Subject, Object and Verb. In: Dryer, Matthew S. \& Haspelmath, Martin (eds.) The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at http://wals.info/chapter/81, Accessed on 2017-0524.)

See Also

GENERALIZE

Examples

FOUND ()
situation=SITUATION(1)
(proposition=PROPOSITION(1, situation))
AGENTFIRST(proposition)

ALLNAS NA vector identification

Description

Determine whether vectors consist of NA values only.

Usage

ALLNAS (x)

Arguments

$x \quad x$ can be simple vector or data frame. Latter is evaluated row-wise.

Value

T/F for single vector, vector with logicals for data frames.

Note

Used as input requirement for VMATCH.

Author(s)

Sander Lestrade

See Also

VMATCH

Examples

```
x=rep(NA, 8)
ALLNAS(x)
y=data.frame(c(1, rep(NA,2)), rep(NA,3))
ALLNAS(y)
```


Description

Decomposes an utterance into its constituents and their parts (e.g. verb and/or noun markers). All possible analyses are tried, the best is selected.

Usage

ANALYZE(hearerID, utterance, situation)

Arguments

hearerID Pointer to hearer agent in the population
utterance The utterance to be analyzed.
situation The situation in which the utterance is uttered.

Details

Situation argument is necessary to determine which referential expressions have most likely been used. Suffix could be incorporated noun (1. 51-70), the rest could be a verb, a noun, a verb adposition, or noun adposition (l. 71-102) Nouns can have single suffix only (change once number is implemented; 1. 92) Default interpretation is noun (cf. Heine \& Kuteva) Analysis starts with identifying verb If verb can not be found by lexeme match, verb suffixes are used, if still unclear plausibility of alternative analysis is checked. Combinations of nouns with local person markers are penalized (to be removed if possessive marking is modelled), just like combinations of nouns with multiple markers (to be removed if case stacking is allowed)

Value

A data frame with the identified constituents and their analyses as entries.

Author(s)

Sander Lestrade

References

Heine, Bernd \& Tania Kuteva (2007), The genesis of grammar. A reconstruction. Oxford: Oxford University Press.

See Also

INTERPRET

Examples

FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
(utterance=PRODUCE (1, proposition))
ANALYZE (2, utterance, situation)

CANDIDATESCORE Score candidate expressions

Description

Provides each candidate expression for some meaning or function with a score in which (depending on the model settings) semantic match, lexeme activation, (relative) frequency of use, recency, collostruction frequency, semantic weight, and/or economy of expression are taken into consideration.

Usage

CANDIDATESCORE(lexicon, type = "referringExpression")

Arguments

lexicon lexicon with candidate expresions
type Type of function for which an expression has to be found (referringExpression, nounMarker, verbMarker, or pronoun).

Details

Collostruction frequencies are determined differently for different type of functions. The lighter, the better; recency starts with 0 .

Value

Vector of scores, corresponding to the entries evaluated.

Note

Match and collostruction frequency are calculated separately before CANDIDATESCORE can apply. In the example below, the latter is randomly set for illustration purposes.

Author(s)

Sander Lestrade

See Also

SELECTVERB, SELECTACTOR, SELECTUNDERGOER, REFCHECK, TOPICCOPY, GENERALIZE, CHECKSUCCESS

Examples

```
FOUND()
lexicon=head(population[[1]]$nouns)
lexicon$match=VMATCH(lexicon[1,1:9], lexicon)
lexicon$collostruction=sample(100, nrow(lexicon))
lexicon$score=CANDIDATESCORE(lexicon)
```

Determine expected communicative success

Description

Check whether the hearer is likely to arrive at the intended role distribution and elaborate if not through explicit role marking.

Usage

CHECKSUCCESS(speakerID, proposition, situation)

Arguments

speakerID Pointer to the speaker agent
proposition The proposition that is to be conveyed
situation The situation in which the event that the proposition refers to is embedded.

Details

Elaboration is necessary if best typing match leads to wrong distribution of roles, but not if (one of) the roles are marked one way or another First try if indexes are informative, next try appropriate pronominal case form, then check if word order is informative (if generalizations are made) N exceptions should minimally be $4(=8 / \ln (8))$ for Yang's tolerance principle.

Value

A list, i.e. a checked and possibly elaborated proposition.

external	representation of the external argument
internal	representation of the internal argument, if identified
verb	representation of the action argument
target	target event to be described

Note

Often, the interpretation of an utterance follows automatically by world knowledge in which case no explicit marking is necessary (e.g. "man book read"). Role marking is only necessary if participants qualify for both roles equally well (e.g. "man woman see") or if a participant qualifies better for another role and outperforms the intended performer in this (e.g. "man pig kill", in which the pig is the intended actor).

Author(s)

Sander Lestrade

References

Levelt, W.J.M. 1983. "Monitoring and self-repair in speech". Cognition 14.41-104
Hurford, J. R. 1989. "Biological evolution of the saussurean sign as a component of the language acquisition device". Lingua 77:2.187-222.

Steels, L. 2003. "Language re-entrance and the inner voice". Journal of Consciousness Studies 10:4-5.173-185.

Blutner, Reinhard, Helen de Hoop
\& Petra Hendriks. 2006. Optimal Communication. Stanford: CSLI.
Charles Yang (2016), The price of linguistic productivity. Cambridge, MA: MIT Press.

See Also

PREPARE

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
CHECKSUCCESS(1, proposition, situation)
```

DECOMPOSE Decompose words into morphemes

Description

Decomposes words into morphemes on the basis of the lexical entries in the lexicon. If multiple decompositions are possible, all are returned.

Usage

DECOMPOSE (hearerID, form)

Arguments

hearerID Pointer to hearer agent
form Word form that is considered for decomposition

Details

Decomposition is not trivial: Because of sloppy pronunciation (PRODUCE) and differences between speakers, mental representations of morphemes need not match one-to-one the parts of an utterance. Zero morphemes are not allowed. Reduced forms may become suffixes too. Suffixes must be minimally erosionMax long (should be automatically satisfied...). Function applies recursively (max twice)

Value

A vector with morphologically analyzed words, in which morpheme-s are separate-d by hyphen-s ("-")

Author(s)

Sander Lestrade

See Also

ANALYZE

Examples

```
FOUND()
old=world$suffixThreshold
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
(utterance=PRODUCE(1, proposition))
(utterance=gsub(' ', '', utterance))
world$suffixThreshold=20
DECOMPOSE(2, utterance)
world$suffixThreshold=old
```

DIE Kill agents

Description

After a prespecified number of utterances (and after having given birth to a new generation of speakers), agents are removed from the (actively speaking) population. Death agents are stored in the graveyard for later inspection.

Usage

DIE(agentID)

Arguments

agentID Pointer to agent whose death is considered.

Details

DIE is called at the end of each turn, but only applies if the agent is old enough.

Value

New entry in graveyard.

Author(s)

Sander Lestrade

Examples

```
FOUND()
```

population[[1]]\$age=world\$deathAge +1
DIE(1)
EROSION Word erosion

Description

If a perceived form differs from the mental representation it is matched with and the form has not been set yet, the hearer agent adjusts its mental representation.

Usage

EROSION(hearerID, interpretation)

Arguments

hearerID Pointer to the hearer agent whose representations might erode.
interpretation Analysis of the utterance including the actually perceived forms.

Details

Forms will only be adjusted if they have not been frequently used (yet). Pronounced forms may differ from their representations because of reduction in pronunciation (cf. REDUCE).

Value

no actual output; the form representations of the hearer agent are updated.

Author(s)

Sander Lestrade

See Also

TURN

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
interpretation=INTERPRET(2, utterance, situation)
EROSION(2, interpretation)
```

FIRSTINFIRSTOUT Order constituents by activation

Description

If incremental production is assumed (cf. world), constituents are produced in order of activation.

Usage

FIRSTINFIRSTOUT(speakerID, proposition)

Arguments

speakerID Pointer to speaker who's formulating an utterance
proposition The proposition to be uttered and whose constituents are reordered.

Value

a proposition, i.e. a list:

external	representation of the external argument
internal	representation of the internal argument, if identified
verb	representation of the action argument
target	target event to be described

Author(s)

Sander Lestrade

References

Balota, D. A. \& Chumbley, J. I. (1985). The locus of word-frequency in the pronunciation task: Lexical access and/or production? Journal of memory and languages, 24, 89-106.
Bock, K., and Levelt, W.J.M. (1994). Language production. Grammatical encoding. IN M.A. Gernsbacher (Ed.). Handbook of psycholinguistics (pp.741-779). New York: Academic Press

See Also

PREPARE

Examples

```
FOUND()
situation=SITUATION(1)
(proposition=PROPOSITION(1, situation))
FIRSTINFIRSTOUT(speakerID, proposition)
```

FIRSTSPEAKER
Create founding agent

Description

Creates first agent of a lineage which only consists of a conventional symbolic lexicon (and the infrastructure to count word uses).

Usage

FIRSTSPEAKER()

Details

Start with 4 for log operations later on. Only with minimally 4 exceptions, Tolerance threshold is minority indeed

Value

age	age of agent at birth=0
generation	generation of agent
fertile	logical for fertility of agent (1 until procreated)
semupdate	logical that says that whether agent has updated its semantics already (0 at birth; cf. SEMUPDATE)
verbs	verbal lexicon
nouns	nominal lexicon
usageHistory	list with actual usages of verbs, nouns, and verb and nominal markers
commonGround	vector with lexemes recently discussed
collostructions	
	list with collostruction frequencies for subject-verb, object-verb, index-referent, and noun marker-noun combinations
topic	topic
wordOrder	data frame with word order frequencies
topicPosition	data frame with topic position frequencies

Author(s)

Sander Lestrade

References

Charles Yang (2016), The price of linguistic productivity. Cambridge, MA: MIT Press.

See Also

FOUND

Examples

```
adam=FIRSTSPEAKER()
```

str(adam)

FMATCH

Compare forms

Description

Determine match between a given (perceived) form and a list of forms (i.e., the mental representations).

Usage

FMATCH(target, lexicon)

Arguments

target The form whose matching lexeme is to be identified
lexicon The lexicon in which a match is sought.

Details

Characters are matched one by one from left to right. Mismatches are weighted according to onset priority: mismatches in the beginning of a word are more important than later ones.

Value

vector of matching scores rescaled to 1-0 range.

Author(s)

Sander Lestrade

See Also

ANALYZE

Examples

```
FOUND()
(lexicon=head(population[[1]]$nouns))
target=lexicon$form[1]
FMATCH(target, lexicon)
```

FORMS Generate forms

Description

Generates set of unique forms for initial generation of speakers.

Usage

FORMS(n, length = world\$wordLength, vowels = world\$vowels, consonants = world\$consonants)

Arguments

n	Number of word forms to be generated
length	Length (range) within which word forms have to fall.
vowels	Vowels that are used in the language
consonants	Vowels that are used in the language

Details

Allows for CV and VC

Value

character vector

Author(s)

Sander Lestrade

See Also

VERBS, NOUNS, FOUND, FUSE, PROCREATE

Examples

world\$vowels; world\$consonants; world\$wordLength FORMS (10)
FOUND Found population

Description

Found a new population of speakers to start a simulation.

Usage

```
FOUND(nAgents = world$nAgents)
```


Arguments

nAgents number of agents to start with.

Value

starting population

Author(s)

Sander Lestrade

See Also
 MULTIRUN

Examples

FOUND (4)
names(population)
\qquad
FREQUPDATE Update usage numbers

Description

Update frequency numbers in lexicon and usage history.

Usage

FREQUPDATE(agentID, meaning, success)

Arguments

agentID pointer to agent whose numbers are to be updated
meaning Meaning (proposition or interpretation) on the basis of whose constituents the numbers in the usage history and lexicon have to be updated.
success Logical for success of conversational turn (as number of successful uses are kept track of)

Details

Difference is made between local and third-person pronouns. +1 at the end for log operation and to prevent division by zero

Value

No actual output: updated usage history and lexicon

Author(s)

Sander Lestrade

See Also

TURN

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
population[[1]]$nouns[population[[1]]$nouns$ID%in%c(proposition$external$ID),]
population[[1]]$wordOrder
FREQUPDATE(1, proposition, success=1)
population[[1]]$nouns[population[[1]]$nouns$ID%in%c(proposition$external$ID),]
population[[1]]$wordOrder
```

FUSE Fuse words

Description

Fuses lexical items with frequently co-occuring markers into new lexical items

Usage

FUSE (agent)

Arguments

agent Agent whose lexical items are considered for fusion.

Details

Words are only fused if the combination is used frequently enough (cf. world) and if meaning and form result of fusion is not in the lexicon already. Meaning of lexical item is overwritten for those meaning dimensions for which marker is specified only. Semantics of host is mixed with that of marker.

Value

No actual output: agent with updated lexicon

Author(s)

Sander Lestrade

References

Bybee, J. (2010). Language, usage and cognition. New York: Cambridge University Press.
Bybee, J. L. (1985). Morphology. a study of the relation between meaning and form. Amsterdam/Philadelphia: John Benjamins.

See Also
SEMUPDATE

Examples

```
FOUND()
agent=population[[1]]
agent$collostructions$flag[1,]$N=agent$nouns$ID[nrow(agent$nouns)-1]
agent$collostructions$flag[1,]$marker=agent$nouns$ID[nrow(agent$nouns)]
agent$collostructions$flag[1,]$frequency=100
agent$nouns[nrow(agent$nouns),]$nounMarker=100
agent$nouns[nrow(agent$nouns)-1,]$person=1
agent$nouns[nrow(agent$nouns),6:9]=NA
agent$collostructions$flag
tail(agent$nouns)
agent=FUSE(agent)
agent$collostructions$flag
tail(agent$nouns)
```


Description

Checks whether the previous use of certain constructions or word orders reaches a generalization threshold. If so, the construction will be used independently from its current communicative value.

Usage

GENERALIZE(speakerID, proposition, situation)

Arguments

speakerID	Pointer to speaker who's considering the use standard use of a construction
proposition	The proposition to which the construction applies
situation	The communicative situation in which the utterance is made

Details

For the generalization threshold, Yang's Tolerance principle is used, which says that the number of exceptions to a rule for it to be applied/maintained/stipulated has to be below $\mathrm{n} / \log (\mathrm{n})$, with n being the number of instances the rule (could have) applied. N exceptions should minimally be $4(=8 / \ln (8))$ for Yang to make sense. Generalizations are checked, for word order first (in which grammatical order is overruled by topic generalizations), then for marking (since solutionMethod for marking sometimes dependent on word order). Noun marking first checked at general level, then for more specific dimensions of semantic role. "values=l-values[1:length(speaker\$usageHistory\$flagl[[firstArgument\$semRole]]\$value)]" is necessary for economically stored resurrected agents (if world\$saveAll=F and their behavior is checked) Third-person pronoun are only used if single thirdperson referent in situation.

Value

A list: the proposition, possibly in a generalized form.

external	representation of the external argument
internal	representation of the internal argument, if identified
verb	representation of the action argument
target	target event to be described

Author(s)

Sander Lestrade

References

Charles Yang (2016), The price of linguistic productivity. Cambridge, MA: MIT Press.

See Also

PREPARE

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
GENERALIZE(1, proposition, situation)
population[[1]]$wordOrder[3,2:3]=9999
population[[1]]$wordOrder
GENERALIZE(1, proposition, situation)
```

GROUP Group words into constituents

Description

Determines each possible constituent ordering (assuming adjacency) of an utterance. Given A B C V , in which V is identified as the verb, B could be a marker of A , or C could be a marker of B .

Usage

GROUP(hearerID, analysis)

Arguments

hearerID Pointer to the hearer agent
analysis Analysis of the utterance in which the individual lexemes have been determined and the verb has been identified.

Details

VerbAdpositions are for topic cross reference only, and may be put on top of verb suffixes. VerbAdpositions are reanalyzed as verbSuffix if index=TRUE and no other verb suffixes (then no proper suffix was available) Only non-local-person noun markers, to be removed if possessive marking is modelled.

Value

list of all possible groupings
[[1]] First possible grouping analysis
[2] Second possible grouping analysis, if possible, etc.

Author(s)

Sander Lestrade

See Also

INTERPRET

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
utterance=paste(utterance, unlist(strsplit(utterance, ' '))[1])
analysis=ANALYZE(2, utterance, situation)
GROUP(2, analysis)
```

INTERPRET Interpret utterance

Description

Determines the best interpretation of an utterance given the situational context. Compares different interpretations if multiple analyses are possible and chooses most likely one given context.

Usage

INTERPRET(hearerID, utterance, situation)

Arguments

hearerID Pointer to the hearer agent
utterance The utterance to be interpreted
situation Set of events in which utterance was used

Details

\#first use explicit role marking \#then word order (if still necessary) \#then verb morphology (idem)

Value

interpretation, i.e. a list:
external representation of the external argument
internal representation of the internal argument, if identified
verb representation of the action argument
target target event identified on the basis of interpretation, including matching scores

Author(s)

Sander Lestrade

See Also

TURN

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
INTERPRET(2, utterance, situation)
```

INTERPRET.INT Develop an interpretation

Description

Translates utterance analysis into a proposition (i.e., an interpretation) and determines match with ongoing events.

Usage

INTERPRET.INT(hearerID, analysis, situation)

Arguments

hearerID Pointer to the hearer agent that is interpreting an analysis
analysis The analysis to be translated
situation Situation in which utterance is interpreted.

Details

INTERPRET. INT works internal to INTERPRET, which compares the interpretations of the different possible analyses. VerbAdpositions overrule verbSuffixes...

Value

external	representation of the external argument
internal	representation of the internal argument, if identified
verb	representation of the action argument
target	target event identified on the basis of interpretation, including matching scores

Author(s)

Sander Lestrade

See Also

INTERPRET

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
analysis=ANALYZE(2, utterance, situation)
(analysis=PROTOINTERPRETATION(2, analysis))
INTERPRET.INT(2, analysis, situation)
```

MAX Find maximum value

Description

Extension of standard max and min functions with which rank position(s) can be specified and result can be either rank or value.

Usage

MAX(vector, rank = 1, value = FALSE, rank.adjust = TRUE, forceChoice = FALSE)

Arguments

vector Vector in which maximum/minimum element needs to be identified
rank value(s) or rank(s) of maximum values.
value Should value or rank be returned?
rank. adjust If maximum value of range of ranks exceeds vector length, should this be adjusted?
forceChoice In case of ties, should all results be returned or only one?

Value

numeric vector (either value or rank)

Warning

If minimum value (of a range of) rank(s) exceeds vector length, results are meaningless.

Author(s)

Sander Lestrade

See Also

MIN, NOUNS, SITUATION, SELECTVERB, SELECTACTOR, SELECTUNDERGOER, REFCHECK, TOPICCOPY, GENERALIZE, CHECKSUCCESS, ANALYZE, TYPEMATCH, NOUNMORPHOLOGY, VERBMORPHOLOGY, INTERPRET. INT, INTERPRET, NOUNDESEMANTICIZATION, VERBDESEMANTICIZATION, SEMUPDATE, DIE

Examples

$a=r e p(1: 10,2)$
$\operatorname{MAX}(a$, rank=1:3, value=TRUE, forceChoice=TRUE)
MIN(a, rank=1:3, value=TRUE, forceChoice=TRUE)

NOUNDESEMANTICIZATION Bleach word meaning

Description

Update meaning representations of nouns/verbs on the basis of usage history.

Usage

NOUNDESEMANTICIZATION (agent)

Arguments

agent Agent whose lexicon is to be updated

Details

Cf. Heine and Kuteva p.39: freq is epiphenomenon of extension, not cause; extension by combinatorial flexibility 8 is minimum freq from which Yang applies.

Value

agent (with updated nominal representations)

Author(s)

Sander Lestrade

References

Hopper, P. J. \& Traugott, E. C. (2003). Grammaticalization. Cambridge: Cambridge University Press.
Heine, B. \& Kuteva, T. (2007). The genesis of grammar. a reconstruction. Oxford: Oxford University Press.
Bybee, J. (2010). Language, usage and cognition. New York: Cambridge University Press.

See Also

SEMUPDATE

Examples

```
#only effective if usage history is non-empty
FOUND()
population[[1]]=NOUNDESEMANTICIZATION(population[[1]])
population[[1]]=VERBDESEMANTICIZATION(population[[1]])
```

NOUNMORPHOLOGY Interpret nominal morphology

Description

Use noun markers to determine event-role distribution (i.e., who is actor and who is undergoer).

Usage

NOUNMORPHOLOGY(hearerID, analysis)

Arguments

hearerID Pointer to hearer agent who's developing an analysis
analysis Analysis of utterance (result of ANALYZE) in which roles have to be determined.

Details

Marker overrules suffix with same host Future work: allow for oblique roles.

Value

Analysis (dataframe) with roles assigned on the basis of nominal markers.

Author(s)

Sander Lestrade

See Also

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
prep=PREPARE(1, proposition, situation)
utterance=PRODUCE(1, prep)
analysis=ANALYZE(2, utterance, situation)
grouping=GROUP(2, analysis)
(analysis=NOUNMORPHOLOGY(2, grouping[[length(grouping)]]))
analysis$role
#repeat if no nounAdposition is identified.
```


NOUNS

Generate nominal lexicon

Description

Generate nominal lexicon for founding agents

Usage

NOUNS($\mathrm{n}=$ world\$nNouns, local = world\$local)

Arguments

$\mathrm{n} \quad$ Number of nominal lexemes
local Should agents have lexemes to refer to speech-act participants (i.e. 'I/me' and 'you')?

Details

Minimally 2 entries are necessary to create a dataframe.

Value

data frame with randomly generated forms, their meaning representations in terms of numeric vectors, and frequency counters.

Author(s)

Sander Lestrade

See Also

VERBS, FIRSTSPEAKER, SEMUPDATE

Examples

NOUNS (10)
PERSONUPDATE Adjust person value

Description

Adjust person value of noun from third to local (first or second) if it has been recruited frequently to express local reference.

Usage

PERSONUPDATE (agent)

Arguments

agent Agent whose nominal lexicon is considered.

Details

Multiple verb markers with same person are taken care of too. Redundant local pronouns and indexes are removed.

Value

Agent (with updated lexicon)

Author(s)

Sander Lestrade

References

Zeevat, Henk. 2007. "Simulating recruitment in evolution". Cognitive Foundations of Interpretation ed. by G. Bouma, I. Kraemer \& J. Zwarts, 175-194. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

See Also

SEMUPDATE

Examples

FOUND ()

population[[1]]=PERSONUPDATE(population[[1]]) \#only effective if pronouns have been recruited

Description

Prepare a proposition for production by checking if it will be intelligible and applying generalizations.

Usage

PREPARE(speakerID, proposition, situation)

Arguments

speakerID Pointer to speaker agent
proposition Proposition that is prepared for production
situation Situation in which proposition is to be uttered.

Details

PREPARE involves a number of subroutines: If role distribution is unclear, agents checks if this can be resolved with pronominal case forms and if not with noun markers (CHECKSUCCESS). If referential expression is too weak, stronger expressions are used (REFCHECK). If generalizations such as PutAgentFirst or IndexFirstPerson are made, they are applied (GENERALIZE). If words are frequently used, their forms are reduced (REDUCE). Etc. Ingredients of proposition are ordered by activation before other principles apply

Value

a proposition, i.e. a list:

external	representation of the external argument, possibly including role marking
internal	representation of the internal argument, if identified, , possibly including role marking
verb	representation of the action argument, possibly including person indexing
target	target event to be described

Author(s)

Sander Lestrade

See Also

TURN

Examples

FOUND ()
situation=SITUATION(1)
(proposition=PROPOSITION(1, situation))
PREPARE(1, proposition, situation)
\#result need not be different from simple proposition,
\#depends on generalizations and typing scores

PROCREATE

Generate new generation of agents

Description

Generate new generation of agents if (to be) parent generation is old enough.

Usage

PROCREATE(speakerID, hearerID)

Arguments

speakerID Pointer to first parent
hearerID Pointer to second parent

Details

New generation is mix of vocabularies of parents (if world\$crossover is T), with emptied usage histories. Agents procreate after number of utterances specified by world\$procreationAge. Meanings of words that have not been used by their parents are modified slightly.

Value

Set of new agents

Author(s)

Sander Lestrade

See Also

TALK

Examples

FOUND()
population[[1]]\$age=population[[2]]\$age=world\$procreationAge*world\$deathAge+1 PROCREATE (1,2)
PRODUCE Produce utterance

Description

Turns proposition into actual utterance.

Usage

PRODUCE(speakerID, prep)

Arguments

speakerID	Pointer to speaker agent
prep	Proposition to be uttered

Details

Internal markers are produced closest to verb (cf. Dryer); not exploited by hearer.

Value

Character string

Author(s)

Sander Lestrade

References

Matthew S. Dryer. 2013. Order of Subject, Object and Verb. In: Dryer, Matthew S. \& Haspelmath, Martin (eds.) The World Atlas of Language Structures Online.

See Also

TURN

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
PRODUCE(1, proposition)
```

PROPOSITION Develop initial proposition

Description

Develop initial proposition that consists of the expressions that refer to the participants of the event to be expressed (both objects and action). Proposition will be elaborated upon in later stages of the production processs, and word may be replaced later if they turn out to be insufficient (cf. PREPARE).

Usage

PROPOSITION(speakerID, situation)

Arguments

$\begin{array}{ll}\text { speakerID } & \text { Pointer to speaker agent } \\ \text { situation } & \text { Situation with target event to be referred to and number of distractor event }\end{array}$

Details

Words are ranked on the basis of a combination of semantic match (how well does word refer to its participant), frequency, and recency (cf. CANDIDATEORDER). The first word to be sufficiently distinctive is selected for expression.

Value

a proposition, i.e. a list:
external representation of the external argument
internal representation of the internal argument
verb representation of the action argument
target target event to be described

Author(s)

Sander Lestrade

See Also

TURN

Examples

FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)

Description

Develop interpretation of an utterance using simple heuristics only (i.e., ignoring grammatical markers and tendencies). Applies if grammar either did not develop yet, or does not suffice for disambiguation.

Usage

PROTOINTERPRETATION(hearerID, analysis)

Arguments

hearerID Pointer to hearer agent
analysis Analysis of the utterance to be interpreted (cf. ANALYZE)

Details

If only one role is unclear, it follows from simple reasoning (V has x and y role, A is x , then B must be y). If both roles are unclear, TYPEMATCH is used.

Value

a dataframe, i.e. the analysis input in which the role column is updated.

Author(s)

Sander Lestrade

See Also

VERBMORPHOLOGY, INTERPRET

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
(analysis=ANALYZE(2, utterance, situation))
PROTOINTERPRETATION(2, analysis)
```


REDUCE

Reduce length of expressions

Description

Reduces length of frequently or recently used expressions by removing final character.

Usage

REDUCE(speakerID, proposition)

Arguments

speakerID Pointer to speaker agent.
proposition Proposition with words whose forms may be reduced.

Details

Reduction is an online production process only. It does not affect the lexical representation of the speaker (but cf. EROSION)

Value

a proposition, i.e. a list:
external representation of the external argument, possibly with shortened form
internal representation of the internal argument, if identified, possibly with shortened form
verb representation of the action argument, possibly with shortened form
target target event to be described

Author(s)

Sander Lestrade

References

Nettle, D. (1999). Linguistic diversity. New York: OUP.
Jurafsky, Daniel, Alan Bell, Michelle Gregory \& William D. Raymond. 2001. "Probabilistic relations between words: Evidence from reduction in lexical production". In: J. Bybee and P. Hopper (eds), Frequency and the emergence of linguistic structure, 229-255. Amsterdam/Philadelphia. John Benjamins.

See Also

PREPARE

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
REDUCE(1, proposition) #only effective if proposition includes frequently/recently used words
```

REFCHECK Check referential capacity

Description

Check if pronoun is sufficiently strong to establish reference to referent. If not, another word is recruited for support, the pronoun being suffixed to the verb.

Usage

REFCHECK(speakerID, proposition, situation)

Arguments

speakerID Pointer to speaker agent
proposition Proposition in which the referential expressions are checked
situation Situation in which referential relations have to be established

Details

Strength is determined by formal mass, i.e. simple word length. Non-local arguments are matched with real-world argument; local pronoun with role, after which marker is removed. If there's no local pronominal paradigm yet, select prominent noun for local ref

Value

a proposition, i.e. a list:
external representation of the external argument, checked for strength
internal representation of the internal argument, if identified, checked for strength
verb representation of the action argument, possibly including person indexing if original expression for (one of the) event participants fell short
target target event to be described

Author(s)

Sander Lestrade

References

Zeevat, Henk. 2007. "Simulating recruitment in evolution". Cognitive Foundations of Interpretation ed. by G. Bouma, I. Kraemer \& J. Zwarts, 175-194. Amsterdam: Royal Netherlands Academy of Arts and Sciences.
Ariel, M. (1999). The development of person agreement markers: From pronouns to higher accessibility markers. In M. Barlow \& S. Kemmer (Eds.), Usage based models of language (p. 197-260). Stanford: CSLI.

See Also

PREPARE

Examples

> FOUND()
situation=SITUATION(1)
(proposition=PROPOSITION(1, situation))
REFCHECK(1, proposition, situation)
\#only effective if words have grammaticalized already
RESCALE Rescale vector values

Description

Rescale vector values to $-1: 1$ range (or $0: 1$ if there are no negative values)

Usage

RESCALE (x)

Arguments

x
Vector to be rescaled

Value

Numeric vector, with abs(max value) of 1

Author(s)

Sander Lestrade

See Also

CANDIDATESCORE, FREQUPDATE

Examples

```
RESCALE(-10:5)
```

| RUN \quad Run simulation |
| :--- | :--- |

Description

Run simulation for specified number of hours. Language change beyond phonological change to happen generally requires multiple hours of simulation.

Usage

RUN(nHours = 1)

Arguments

nHours \quad Number of hours to run simulation.

Value

No output. Objects in work space (population, graveyard, situation, proposition, utterance, interpretation) are adapted.

Author(s)

Sander Lestrade

See Also

MULTIRUN

Examples

FOUND ()
\#\# Not run: RUN(.000001)

SELECTACTOR Find actor expression

Description

Select best expression for actor/undergoer/verb participant in the event to be described

Usage

SELECTACTOR(speakerID, situation, verb = NULL)

Arguments

speakerID	Pointer to speaker agent
situation	Situation in which event to be described is situated
verb	Pointer to verb lexeme used in the utterance to be formulated (if present already)

Details

Verb is relevant because of collostruction frequencies: some agents are more likely to be mentioned given certain verbs (cf. CANDIDATEORDER). Works other way around for SELECTVERB.

Value

A dataframe with the lexical representation of the agent/undergoer/verb.

Author(s)

Sander Lestrade

See Also

PROPOSITION

Examples

FOUND()
situation=SITUATION(1)
situation[situation\$target==1,]
SELECTACTOR(1, situation)
SELECTVERB(1, situation)
if(!is.na(situation[situation\$target==1,]\$U1))\{
SELECTUNDERGOER(1, situation)
\}
SEMUPDATE Update lexicon

Description

Update meaning lexicon on the basis of usage. Involves NOUNDESEMANTICIZATION, VERBDESEMANTICIZATION, FUSE, and PERSONUPDATE. Also, words that have become meaningless are replaced.

Usage

SEMUPDATE(agentID)

Arguments

agentID Pointer to agent whose lexicon is to be updated.

Value

agent with updated lexicon

Author(s)

Sander Lestrade

See Also

talk

Examples

FOUND()
SEMUPDATE (1)

SITUATION

Create situational context

Description

Create situational context that consists of set of events among which the target event to be described.

Usage

SITUATION(speakerID)

Arguments

speakerID Pointer to speaker agent whose concepts are used to create situation.

Details

Events are generated on the basis of agents' world knowledge. In principle, qualified participants are more likely than unqualified ones (e.g. books are read, not eaten; cf. world\$roleNoise; world\$referenceNoise). Local person always known, so if world\$local==T, oddsNew for Dahl numbers are adjusted. Situations with multiple events are more likely than situations with single event. Locals are animate. If none of the candidates qualifies argument criterium, only recency is used for topichood (cf. DuBois: preference for actor topic)

Value

dataframe with sets of vectors that specify actions and actors, and if present undergoer participants.

Author(s)

Sander Lestrade

References

John W. DuBois (1987), The discourse basis of ergativity. Language 63 (4)

See Also

TURN

Examples

FOUND ()
SITUATION(1)

SUCCESS
Determine communicative success

Description

Determine communicative success by comparing intention of speaker (proposition) and interpretation of hearer.

Usage

SUCCESS(proposition, interpretation, situation)

Arguments

proposition Intended/speaker meaning
interpretation Interpretation/hearer meaning
situation Contextual situation in which communication took place.

Details

If there are no distractor events ongoing, success is determined by comparing the speaker and hearer meanings; otherwise, communication is successful if the same target event is selected.

Value

Logical: 1 for success; 0 for failure

Author(s)

Sander Lestrade

See Also

TURN

Examples

```
FOUND()
situation=SITUATION(1)
(proposition=PROPOSITION(1, situation))
utterance=PRODUCE(1, proposition)
(interpretation=INTERPRET(2, utterance, situation))
SUCCESS(proposition, interpretation, situation)
```

SUMMARY
Summarize simulation results

Description

Summarize results of simulation

Usage

SUMMARY()

Value

List and plots
generation generation of present agent
order word-order generalizations
topic topic-order generalizations
index verb-marker generalizations
person generalizations about role marking per person (e.g. first person undergoers should be marked)
actor actor-marking generalizations on the basis of meaning (e.g. all actors with a zero value on the first dimension should be marked)
undergoer undergoer-marking generalizations on the basis of meaning (e.g. all undergoer with a zero value on the first dimension should be marked)
markers which words were mostly used as markers
nounMarkerUse1 proportion of role-marking in total
nounMarkerUse12
proportion of role-marking of transitive events
first lexemes with first-person meaning
second lexemes with second-person meaning

Author(s)

Sander Lestrade

See Also

CHECKMARKER, HISTORY

Examples

```
    ## Not run:
    FOUND()
    RUN(.0001) #create results to summarize: first generation has to die
    world$deathAge=10
    DIE(1)
    SUMMARY()
    ## End(Not run)
```

 TALK Let agents talk

Description

Sample two agents and let them talk with each other.

Usage

TALK(nTurns)

Arguments

nTurns Number of communicative turns a conversation last before new agents are selected for communication.

Details

Young agents are less likely to talk with each other.

Value

On screen conversation. (Underlying update of usage history of talking agents.)

Author(s)

Sander Lestrade

See Also

RUN

Examples

FOUND ()
\#\# Not run: TALK(4)

Description

Make verb-adjacent anaphoric copy of contrastive topic. Only applies if topics are moved to first position (after this generalization is made).

Usage

TOPICCOPY(speakerID, proposition)

Arguments

speakerID Pointer to speaker agent
proposition Proposition that agent is formulating

Details

Anaphoric copies only need to distinguish topic from other argument for reestablished/non-continuous topics (cf. Givon)

Value

a proposition, i.e. a list:

external	representation of the external argument, possibly including role marking
internal	representation of the internal argument, if identified, possibly including role marking
verb	representation of the action argument, possibly including person indexing
target	target event to be described

Author(s)

Sander Lestrade

References

T. Givon (1976), "Topic, pronoun, and grammatical agreement", In: C. Li (Ed.), Subject and topic, New York, etc.: Academic Press, Inc, 149-188.

See Also

TOPICFIRST

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
proposition$verb$topic=0; if('internal'%in%names(proposition)){proposition$internal$topic=0}
proposition$external$topic=1; proposition$external$recency=10
world$topicCopy=FALSE
proposition=TOPICFIRST(1, proposition)
PRODUCE(1, proposition)
proposition=TOPICCOPY(1, proposition)
PRODUCE(1, proposition)
```


Description

Put topic of the utterance in first position if such a tendency was observed in and therefore generalization was made on the basis of previous utterances.

Usage

TOPICFIRST(speakerID, proposition)

Arguments

speakerID Pointer to speaker agent
proposition Proposition in which topic argument is to be moved

Value

a proposition, i.e. a list:
external representation of the external argument, possibly including role marking
internal representation of the internal argument, if identified, possibly including role marking
verb representation of the action argument, possibly including person indexing
target target event to be described
, in which the topic argument is put first

Author(s)

Sander Lestrade

References

Tomlin, R. S. (1986). Basic word order: Functional principles (Vol. 13). Routledge
Ferrer-i-Cancho, R. (2014). Why might SOV be initially preferred and then lost or recovered? a theoretical framework. In: Proceedings of the 10th international conference (evolang10), pp. 66-73.
Bates, E., \& MacWhinney, B. (1987). Competition, variation, and language learning. Mechanisms of language acquisition, 157-193.

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
PRODUCE(1, proposition)
proposition=TOPICFIRST(1, proposition)
PRODUCE(1, proposition)
```

TURN Organize communicative turn

Description

Organize communicative turn in conversation. Involves generating a situation (SITUATION), developing an utterance (PROPOSITION, PREPARE, PRODUCE), interpreting the utterance (INTERPRET), and updating the lexicon (FREQUPDATE, EROSION).

Usage

TURN(speakerID, hearerID)

Arguments

speakerID Pointer to speaker agent
hearerID Pointer to hearer agent

Value

Character string on screen, real output: agents with updated usage history.

Author(s)

Sander Lestrade

See Also

TALK

Examples

FOUND ()
$\operatorname{TURN}(1,2)$

TYPEMATCH Determine role qualification

Description

Determine event-role distribution of participants on the basis of role qualification.

Usage

TYPEMATCH(hearerID, analysis)

Arguments

hearerID Pointer to hearer agent
analysis Analyzed utterance in which verb and participants have been identified

Details

Typematch is only necessary if explicit markers and/or grammar are not sufficiently informative

Value
Analysis with event-role assignment (if possible on the basis of role qualifications)

Author(s)

Sander Lestrade

References

Aristar, A. R. 1997. "Marking and hierarchy. Types and the grammaticalization of case markers". Studies in Language 21:2.313-368.

See Also

PROTOINTERPRETATION

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
analysis=ANALYZE(2, utterance, situation)
TYPEMATCH(2, analysis)
```


VERBFINAL Put verb final

Description

Reorganizes constituents of an utterance such that verb is put in sentence-final position. Only applies if corresponding word-order generalization has been made.

Usage

VERBFINAL(proposition)

Arguments

proposition Proposition of which the constituents are reordered.

Value

a proposition, i.e. a list:
external representation of the external argument
internal representation of the internal argument, if identified
verb representation of the action argument
target target event to be described

Author(s)

Sander Lestrade

References

Matthew S. Dryer. 2013. Order of Subject, Object and Verb. In: Dryer, Matthew S. \& Haspelmath, Martin (eds.) The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at http://wals.info/chapter/81, Accessed on 2017-0524.)

See Also

GENERALIZE

Examples

```
FOUND()
situation=SITUATION(1)
(proposition=PROPOSITION(1, situation))
VERBFINAL(proposition)
```

VERBMORPHOLOGY Interpret verbal morphology

Description

Determine anaphoric reference of verb markers (either verb adpositions or suffixes).

Usage

VERBMORPHOLOGY(hearerID, analysis)

Arguments

hearerID Pointer to hearer agent who's developing an analysis
analysis Analysis of utterance (result of ANALYZE) in which roles have to be determined.

Details

If verb marker cannot be resolved anaphorically, it is reinterpret as a deictic argument.

Value

Analysis (dataframe) with resolved reference of verb markers.

Author(s)

Sander Lestrade

See Also

INTERPRET, NOUNMORPHOLOGY

Examples

FOUND ()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
proposition\$verb\$topic=0; if('internal'\%in\%names(proposition)) \{proposition\$internal\$topic=0\}
proposition\$external\$topic=1; proposition\$external\$recency=10
proposition=TOPICFIRST(1, proposition)
utterance=PRODUCE (1, proposition)
analysis=ANALYZE(2, utterance, situation)
grouping=GROUP(2, analysis)
for(i in 1:length(grouping))\{
if('verbAdposition'\%in\%grouping[[i]]\$role)\{
print(VERBMORPHOLOGY(2, grouping[[i]]))
\} \}

Description

Generate verbal lexicon for founding agents

Usage

VERBS(n = world\$nVerbs)

Arguments

$$
\mathrm{n} \quad \text { Number of verbal lexemes }
$$

Value

data frame with randomly generated forms, their meaning representations in terms of sets of numeric vectors (for action, actor role, and undergoer role), and frequency counters.

Author(s)

Sander Lestrade

See Also

NOUNS, FIRSTSPEAKER, SEMUPDATE

Examples

```
VERBS(10)
```

VMATCH Compare vectors

Description

Compare vectors properly taking into account uniform vectors (with same values on all dimensions) and non-specified dimensions.

Usage

$\operatorname{VMATCH}(x, y$, incomparable $=0$, noise=TRUE)

Arguments

x
y
incomparable Value to be returned for incomparable vectors, in which all dimension pairs contain underspecified values
noise logical for addition of noise to outcome (default is TRUE)

Details

Differences between vectors are determined per dimension, weighted (cf. world\$weigh), and then averaged. If vectors are not specified for certain target dimensions, this does not count as a mismatch.

Value

numeric

Author(s)

Sander Lestrade

See Also

ACTOR, NOUNS, SITUATION, SELECTVERB, SELECTACTOR, SELECTUNDERGOER, PROPOSITION, REFCHECK, TOPICCOPY, GENERALIZE, CHECKSUCCESS, ANALYZE, TYPEMATCH, NOUNMORPHOLOGY, VERBMORPHOLOGY, INTERPRET. INT, SUCCESS, PERSONUPDATE, FUSE, SEMUPDATE

Examples

```
FOUND()
vectors=head(population[[1]]$nouns[,1:9])
target=vectors[1,]
vectors[2,]=NA
VMATCH(target, vectors)
```

WORDORDER Use word order for interpretation

Description

Use observed word-order tendencies for interpretation of role distribution. E.g., if agents were observed to come first mostly, assign first constituent agent role.

Usage

WORDORDER(hearerID, analysis)

Arguments

hearerID	Pointer to hearer agent
analysis	Analysis of utterance in which roles have to be determined.

Details

To check if word order can be used, Yang's Tolerance principle is used.

Value

a proposition, i.e. a list:
external representation of the external argument, possibly including role marking
internal representation of the internal argument, if identified, possibly including role marking
verb representation of the action argument, possibly including person indexing
target target event to be described

Author(s)

Sander Lestrade

References

Charles Yang (2016), The price of linguistic productivity. Cambridge, MA: MIT Press.

See Also

INTERPRET

Examples

```
FOUND()
situation=SITUATION(1)
proposition=PROPOSITION(1, situation)
utterance=PRODUCE(1, proposition)
analysis=ANALYZE(2, utterance, situation)
WORDORDER(2, analysis)
population[[2]]$wordOrder[2,]$success=999 #makes AUV standard
population[[2]]$wordOrder
WORDORDER(2, analysis)
```


world Model parameters

Description

Model parameters that hold during the simulation for the entire lineage

Usage

data("world")

Format

The format is: List of 64 \$ nAgents : num 2 \$ deathAge : num $2000 \$$ procreationAge : num 0.55 \$ crossover : logi TRUE \$ replace : logi TRUE \$ weigh : logi TRUE \$ distinctions : num [1:9] 22 2229999 \$ wordLength : int [1:3] 8910 \$ vowels : chr [1:6] "a" "e" "i" "o" ... \$ consonants : chr [1:15] "b" "d" "f" "g" ... \$ nNouns : num 499 \$ nVerbs : num $199 \$$ proportionIntrans : num 0.2 \$ linkingPreference : num 5 \$ local : logi TRUE \$ useCommonGround : logi TRUE \$ commonGroundStart : num 3 \$ dahlS : num [1:4] 21102144 \$ dahlA : num [1:4] 3822337 \$ dahlO : num [1:4] $331084 \$$ oddsNewA : num $0.0333 \$$ oddsNewOther : num $0.25 \$$ referenceNoise : num 0.2 \$ roleNoise : num 0.3 \$ nEvents : int [1:11] $10111213141516171819 \ldots \$$ nTurns : int [1:16] $567891011121314 \ldots$ \$ talkAge : num $0.05 \$$ turnChange : num [1:2] $21 \$$ personTopicality : num [1:4] 2122 \$ topicContinuity : num [1:2] $31 \$$ checkSuccess : logi TRUE \$ solutionMethod : chr "bestMarker" \$ reductionFrequencyThreshold : num $0.05 \$$ reductionCollostructionThreshold: num 3 \$ reductionRecencyThreshold : num 2 \$ formSetFrequency : num 3 \$ suffixThreshold : num 6 \$ refCheck : logi TRUE \$ referenceThreshold : num 4 \$ generalization : logi TRUE \$ firstInFirstOut : logi TRUE $\$$ distinctiveness : num $0.05 \$$ candidateScoring : chr "all" \$ frequency : chr "relative" \$ activationImpact : num $0.2 \$$ collostructionImpact : num $0.2 \$$ semanticWeightImpact : num 0.1 \$ economyImpact : num $0.1 \$$ recencyDamper : num $5 \$$ activationNoise : num 2 \$ functionBlocking : logi TRUE \$ wordOrder : logi TRUE \$ topicCopy : logi TRUE \$ semUpdateAge : num 0.5 \$ erosion : logi TRUE \$ erosionMax : num 2 \$ formBlocking : logi TRUE \$ desemanticization : logi TRUE $\$$ desemanticizationCeiling : num $0.4 \$$ desemanticizationPower : num 2 \$ minimalSpecification : num $1 \$$ verbalRoleMarker : logi FALSE \$ semUpdateThreshold : num 0.02 \$ saveAll : logi FALSE

Details

nAgents: number of founding agents
deathAge: age, in number of utterances, at which agents die
procreationAge: point at which agents procreate (relative to their death age). If NA, no offspring. Best to procreate after semUpdate;
crossover: If true, lexicon of off spring is combination of those of parents. If false, each parent will get a child with identical lexicon
replace: Should minor modifications be made to non-used words?
weigh: In comparing meanings and determining whose the actor, should meaning dimensions be equally important (F) or should first dimension be more important than second, but less important
than second plus third, etc. (T). Slows down simulation in combination with high number of events per situation (>10)
The following set of parameters applies to the lexicon specifically:
distinctions: dimensionality and distinctionality of meaning representations (distinctions are normalized to $0-1$ range).
wordLength: initial length of words, can be single valued or range.
vowels: vowels of alphabet constituting the words
consonants: consonants of alphabet constituting the words
nNouns: number of nouns in the lexicon
nVerbs: number of verbs in the lexicon
proportionIntrans: proportion of intransitive verbs in both lexicon and events. Probably .5 in real life, but smaller in the interest of argument marking
linkingPreference: preference of external (internal) predicate role for higher (lower) values ("prominent performers"). linkingPreference is odds of highest against lowest role/value. 1 is no preference.
local: Do agents have the words/the possibility to refer to themselves?
The following set of parameters applies to the generation of the situational context, i.e., the set of target and distractor events (cf. Steels).
useCommonGround: Do speech participants share a common ground or are all words/concepts equally likely and accessible.
commonGroundStart: number of elements (excluding speech participants) that are present in common ground when conversation starts. Elements are randomly selected from lexicon.
dahlS: odds for intransitive subject to be 1, 2, 3Animate, and 3Inanimate person respectively (based on Dahl 2000, 45-51)
dahlA: odds for external role to be 1, 2, 3Animate, and 3Inanimate person. First three numbers are summed if local==F.
dahl0: odds for internal role to be 1, 2, 3Animate, and 3Inanimate person.
oddsNewA: odds for a non common-ground element to enter as A argument of one of the events in the situation (element will be added to the common ground if discussed; cf. DuBois 1987: 828, Table 7)
oddsNewOther: odds for a non common-ground element to enter as S or O argument of one of the events in the situation (element will be added to the common ground if discussed)
referenceNoise: how much "referential" noise is there in the world ($0-1$)? The less noise, the closer the world matches the concepts and relations in the language.
roleNoise: How much noise is there in the world with respect to the event roles that nouns are expected and found to perform.
nEvents: Number of events that are ongoing in speech situation, one of which is selected to talk about. If set to 1 , no distractor events occur.

The following set of parameters applies to the conversations two agents have:
nTurns: What is the range of communicative turns conversations consist of (before common ground is reset)
talkAge: At which point (relative to their death age) do agents start to talk? (Until then, they only listen) If zero, less learning from parents
turnChange: odds for speech-act participants to change speech-act roles
personTopicality: Preference for speaker, addressee, animate third person, and inanimate third person respectively to be the topic of the utterance and participant in a situation (based on Dahl's S and A numbers)
topicContinuity: odds for continuing with the same topic vs starting a new one
The following set of parameters applies to the production process:
checkSuccess: Should expected recovery of meaning be checked? (cf. Aristar for "typing" scores) solutionMethod: If check success shows utterance should be elaborated, how is this done? Options: firstFail, bestMarker, worstPerformer, random, secondArgument, internal, external, both
reductionFrequencyThreshold: Relative frequency threshold at which forms get reduced.
reductionCollostructionThreshold: Absolute collostruction-frequency threshold at which forms get reduced.
reductionRecencyThreshold: idem for recency
formSetFrequency: number of times an item has to be used before its form is set, after which its representation will no longer change
suffixThreshold: productionEffort threshold (in number of characters) at which words markers suffixed to their host
refCheck: Should referential threshold be reached for words to refer?
referenceThreshold: production effort (in number of characters) necessary for an utterance to be sufficiently referential (a la Ariel). If lower, a more expressive expression is added sentence first.
generalization: Should agents try to derive generalizations from the tendencies they observe? Applies from second generation onwards only (cf. Yang)
firstInFirstOut: Is utterance production incremental? (cf. Bock and Levelt)
The following set of parameters applies both to the production and interpretation process:
distinctiveness: If two forms are similar in meaning (or in role typing in case of global marking), how big should the difference be for the speaker to think the distinction is sufficiently clear?
candidateScoring: In what order should candidates be considered (first one to suffice is selected): by activation, frequency, match, economy, collostruction, all.
frequency: If frequency plays a role, should it do so absolutely or relatively (i.e. frequency as argument, or role or index marker)
activationImpact: if candidateOrdering=='all', how should (rescaled) activation be weighed with respect to match? Activation is function of frequency and recency. Impact==1: equally, impact below 1: impact times less important, impact above 1 : impact times more important.
collostructionImpact: If candidateOrdering=='all', how should (rescaled) collostruction frequency be weighed with respect to match? Also used by VERBMORPHOLOGY
semanticWeightImpact: If candidateOrdering=='all', how should semantic weight be weighed with respect to match (given Grice: do not say more than necessary)
economyImpact: If candidateOrdering=='all', how should economy be weighed with respect to match (given Grice: do not say more than necessary)
recencyDamper: decreases activation of most recent items [RESCALE(jitter(log((frequency+1)/(recency+1+recencyImpact) factor=activationNoise))]
activationNoise: noise factor that is added to activation values of items $[\operatorname{RESCALE}(\mathrm{jitter}(\log (($ frequency +1$) /($ recency $+1+\mathrm{r}$ factor=activationNoise))]
functionBlocking: Should frequent usage for some function (argument, role marker, index marker) inhibit other functions? (only applies if frequency==relative). And: should reference to certain person values block others?
wordOrder: Should agents try to use word-order generalizations to mark/determine roles?
topicCopy: Should a (pronominal) copy of a reestablished topic be put adjacent to the verb (a la Givon; only applies if topicFirst has been derived)?
The following set of parameters applies both to the process of language change
semUpdateAge: At which point (relative to their death age) do agents update their lexical representations? Should be lower than procreationAge for cultural evolution to apply
erosion: Should forms erode?
erosionMax: How short may form representations become in number of characters?
formBlocking: Should agent refrain from reducing forms if this leads to ambiguity?
desemanticization: Should forms desemanticize?
desemanticizationCeiling: proportion of utterances in which an item occurs at which it desemanticizes maximally (.3?)
desemanticizationPower: Development of thresholds for subsequent dimensions to be removed. 1 for linear development. Best between 1 and 2? The lower, the more difficult to desemanticize, as the threshold develops linearly to the same target (desemanticizationCeiling)
minimalSpecification: minimum number of dimensions along which referential items have to be specified (in the presence of other candidate expressions for same person). If null, words will be replaced once meaningless
verbalRoleMarker: Can verb markers be distinctive for role (within person)? Cf. Bhat...
semUpdateThreshold: proportion of number of utterances in which a construction has to occur before it is fused/lexicalized

The following parameter is for data management:
saveAll: Should usageHistory be stored in graveyard?

References

Ariel, M. (1999). The development of person agreement markers: from pronouns to higher accessibility markers. In M. Barlow \& S. Kemmer (Eds.), Usage based models of language (pp. 197-260). Stanford: CSLI.
Aristar, A.R. (1997). Marking and hierarchy. Types and the grammaticalization of case markers. Studies in Language, 21 (2), 313-368.
Bhat, D.N.S. (2004), Pronouns. Oxford [etc.]: Oxford University Press.
Croft, W. (2000). Explaining language change: An evolutionary approach. Harlow etc.: Longman.
Dahl, O. (2000). Egophoricity in discourse and syntax. Functions of Language, 7 (1), 37-77.
Deacon, T. (1997). The symbolic species. London: Penquin.

Dowty, D. (1991). Thematic proto-roles and argument selection. Language 67 (3), 547-619.
Du Bois, J.W. (1987), "The discourse basis of ergativity". Language 63 (4): 805-855
Gaerdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT.
Givon, T. (1995). Functionalism and grammar. Amsterdam/Philadelphia: John Benjamins.
Grice, H. P. (1975). Logic and conversation. In P. Cole \& J. L. Morgan (Eds.), Syntax and semantics: Speech acts (Vol. 3, pp. 41-58). New York: Academic Press.
Heine, B. \& Kuteva, T. (2007). The genesis of grammar. a reconstruction. Oxford: Oxford University Press.
Hopper, P. J. (1987). Emergent grammar. In Proceedings of BLS (Vol. 13, pp. 139-157).
Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford: Oxford University Press.
Levelt, W.J.M. (1989). Speaking. From intention to articulation. Cambridge, MA: MIT Press.
Smith, K. \& Kirby, S. (2008). Cultural evolution: Implications for understanding the human language faculty and its evolution. Phil. Trans. R. Soc. B, 363, 3591-3603.
Steels, L. (1997). Constructing and sharing perceptual distinctions. Machine Learning, ECML-97, 4-13.
Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.
Van Valin, R. (1999). Generalized semantic roles and the syntax-semantics interface. In F. Corblin, C. Dobrovie-Sorin, \& J.-M. Marandin (Eds.), Empirical issues in formal syntax and semantics 2 (pp. 373-389). The Hague: Thesus.
Yang, Ch. (2016), The price of linguistic productivity. Cambridge, MA: MIT Press.

Examples

length(world)
head(world, 10)

Index

*Topic argument marking
MoLE-package, 3
$*$ Topic datasets
world, 55
*Topic language change
MoLE-package, 3
$*$ Topic language evolution
MoLE-package, 3
$*$ Topic misc
ACTOR, 7
AGENTFIRST, 8
ALLNAS, 9
ANALYZE, 10
CANDIDATESCORE, 11
CHECKSUCCESS, 12
DECOMPOSE, 13
DIE, 14
EROSION, 15
FIRSTINFIRSTOUT, 16
FIRSTSPEAKER, 17
FMATCH, 18
FORMS, 19
FOUND, 20
FREQUPDATE, 20
FUSE, 21
GENERALIZE, 23
GROUP, 24
INTERPRET, 25
INTERPRET.INT, 26
MAX, 27
NOUNDESEMANTICIZATION, 28
NOUNMORPHOLOGY, 29
NOUNS, 30
PERSONUPDATE, 31
PREPARE, 32
PROCREATE, 33
PRODUCE, 34
PROPOSITION, 35
PROTOINTERPRETATION, 36

REDUCE, 37
REFCHECK, 38
RESCALE, 39
RUN, 40
SEMUPDATE, 41
SUCCESS, 43
SUMMARY, 44
TALK, 45
TOPICCOPY, 46
TOPICFIRST, 47
TURN, 48
TYPEMATCH, 49
VERBFINAL, 50
VERBMORPHOLOGY, 51
VERBS, 52
VMATCH, 52
WORDORDER, 53
*Topic simulation
MoLE-package, 3
ACTOR, 7
AGENTFIRST, 8
ALLNAS, 9
ANALYZE, 10

CANDIDATESCORE, 11
CHECKSUCCESS, 12
DECOMPOSE, 13
DIE, 14
EROSION, 15
FIRSTINFIRSTOUT, 16
FIRSTSPEAKER, 17
FMATCH, 18
FORMS, 19
FOUND, 20
FREQUPDATE, 20
FUSE, 21

GENERALIZE, 23
GROUP, 24
INTERPRET, 25
INTERPRET. INT, 26
MAX, 27
MIN (MAX), 27
MoLE (MoLE-package), 3
MoLE-package, 3
NOUNDESEMANTICIZATION, 28
NOUNMORPHOLOGY, 29
NOUNS, 30
PERSONUPDATE, 31
PREPARE, 32
PROCREATE, 33
PRODUCE, 34
PROPOSITION, 35
PROTOINTERPRETATION, 36
REDUCE, 37
REFCHECK, 38
RESCALE, 39
RUN, 40

SELECTACTOR, 40
SELECTUNDERGOER (SELECTACTOR), 40
SELECTVERB (SELECTACTOR), 40
SEMUPDATE, 41
SITUATION, 42
SUCCESS, 43
SUMMARY, 44
TALK, 45
TOPICCOPY, 46
TOPICFIRST, 47
TURN, 48
TYPEMATCH, 49
VERBDESEMANTICIZATION
(NOUNDESEMANTICIZATION), 28
VERBFINAL, 50
VERBMORPHOLOGY, 51
VERBS, 52
VMATCH, 52
WORDORDER, 53
world, 55

