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1. Introduction

The package MorphoTools2 is intended for multivariate analyses of morphological data. At the
moment, various necessary tools are scattered across several R packages. This package wraps
available statistical and graphical tools and provides a comprehensive framework for checking
and manipulating input data, performing core statistical analyses and running a wide palette
of functions designed to visualize results, making the workflow convenient and fast.

2. Obtaining and installing the MorphoTools2 package

The R console and base system can be downloaded from http://www.r-project.org. Once R is
installed, MorphoTools2 can be installed and loaded by typing the following commands into the
R console:

install.packages("MorphoTools2")
library("MorphoTools2")

To get the latest version of the MorphoTools2 package, install it using the devtools::install_github()
function from the devtools package.

install.packages("devtools")
devtools::install_github("MarekSlenker/MorphoTools2")

After quitting or restarting R, the package needs to be loaded again (using the library function
as shown above).

3. Data import, checking and manipulation

As with any statistical software, the first task is to import raw data. However, raw data may
contain errors (e.g. typos in numbers or decimal points) and missing values which should be
corrected or removed. One should also consider removing very highly correlated characters
that could distort the results of some multivariate analyses. Moreover, an assessment of the
normality of distribution of data is a prerequisite for some statistical tests. If this assumption
is not met, the distribution of data can be improved by transformation, or non-parametric
methods that do not require normality of distribution of data can be preferred. The following
chapters go through these issues and end up with a cleaned-up dataset ready for exploring the
morphological differentiation among taxa (or any defined groups).

3.1 Data import

Data can be imported from plain text files (tab-, comma-, or space-delimited, see below) or
from spreadsheet files. The following structure of input data is required:

• the first row containing variable names;
• rows each containing values for a single individual sample or any other kind of sampling

unit;
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• the first three columns containing unique identifiers of individuals, populations and
taxa/groups (named “ID”, “Population” and “Taxon”)1; and

• the fourth and next columns holding values of morphological characters2.

ID Population Taxon SN SF ST SFT LL LW LLW
RTE1 RTE hybr 35.2 23.6 58.8 0.4 11.2 3.9 2.87
RTE2 RTE hybr 39 11.8 50.8 0.23 7.2 2.6 2.77
RUS112 RUS hybr 24.8 23.4 48.2 0.49 7.1 2.8 2.54
RUS113 RUS hybr 30 25.5 55.5 0.46 10.2 3.7 2.76
OLE1272 OLE1 ps 48.6 6.3 54.9 0.11 8.6 3.8 2.26
OLE1273 OLE1 ps 58.1 10 68.1 0.15 11.2 3.7 3.03
OLE1274 OLE1 ps 30.7 26.6 57.3 0.46 7.9 3.1 2.55
STGH309 STGH ps 77.1 15.5 92.6 0.17 11.6 3.9 2.97
STGH310 STGH ps 35.6 19.2 54.8 0.35 9.5 NA

Use underscores (_) instead of spaces, and avoid special characters (e.g. punctuation marks).
Missing values have to be represented as empty cells or by the text NA (without quotes).

In this tutorial, we will use the centaurea dataset, containing measurements of 25 morphological
characters of three diploid species of the Centaurea phrygia complex: C. phrygia s.str. (abbre-
viated “ph”), C. pseudophrygia (“ps”) and C. stenolepis (“st”) and the putative hybrid of the
last two species abbreviated as “hybr” (for details, see Koutecký, 2015). The centaurea dataset
is included with this package. Execute the command data(centaurea) to load this data to the
R workspace.

data(centaurea)

In general, morphological data can be imported using the read.morphodata() function, pro-
viding a path to the data3. The argument dec stands for the character used in the file for the
decimal separator, and sep is the column delimiter character, usually a blank space "", comma
"," or tab "\t". The default values are a dot and a tab ("\t"), respectively, and these may
be omitted from the function call. To read data from clipboard (select cells in the spreadsheet,
press Ctrl+C ), set file = "clipboard".

centaurea = read.morphodata(file = "<PATH>/centaurea.txt", dec = ".", sep = "\t")
centaurea = read.morphodata(file = "clipboard")

1If the population level is missing or inapplicable (e.g. more than one individual only in some populations
and/or very low number of individuals per population), copy the values from the “ID” column to the “Population”
column. This will allow analysing such data by most methods except analyses considering the population level.

2The morphological characters can be quantitative, binary (coded as 0/1), or multi-state ordered cate-
gorical (semiquantitative, rank-ordered) characters (e.g. 1 = small, 2 = medium, 3 = large, where change from
state 1 to 3 is more costly than change from 1 to 2). By contrast, unordered categorical (qualitative, nominal)
characters (e.g. describing colour: 1 = red, 2 = green, 3 = blue) are not applicable in most analyses (e.g. prin-
cipal component or discriminant analyses). If there is a reason to include such unordered multistate characters,
these characters either have to be coded as binary characters as follows: redFlowers (0/1), greenFlowers (0/1),
blueFlowers (0/1), or, in some cases, coefficients for mixed data (e.g. the Gower coefficient) should be used.

3Example dataset in txt and xlsx formats are stored in the “extdata” directory of the MorphoTools2
package installation directory. To find the path to the package location run system.file("extdata", package
= "MorphoTools2").
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The dataset now exists as a morphodata object in R. The morphodata object, like other objects
used later, is defined as a list. In R, lists act as containers for data. Elements stored in
the morphodata object can be referenced by the $ notation. Type centaurea$ and press the
tab key to see the contained elements. The command centaurea$Taxon prints the values to
the R console. Run ?morphodata to see the structure of a morphodata object. Alternatively,
the following commands display basic information about the dataset or show data in the data
viewer.

summary(centaurea)
#> Object of class 'morphodata'
#> - contains 33 populations
#> - contains 4 taxa (defined groups)
#>
#> Populations: BABL, BABU, BOL, BRT, BUK, CERM, CERV, CZLE, DEB, DOM, DUB, HVLT, KASH,
#> KOT, KOZH, KRO, LES, LIP, MIL, NEJ, NSED, OLE1, OLE2, PREL, PRIS, PROS, RTE, RUS,
#> SOK, STCV, STGH, VIT, VOL
#> Taxa (defined groups): hybr, ph, ps, st

samples(centaurea)
#> [1] "BABL1146" "BABL1147" "BABL1148" "BABL1149" "BABL1150" "BABL1151"
#> [7] "BABL1152" "BABL1153" "BABL1154" "BABL1155" "BABL1156" "BABL1157"
#> [13] "BABL1158" "BABL1159" "BABL1164" "BABL1165" "BABL1166" "BABL1170"
#> [19] "BABL1171" "BABL1174" "BABU834" "BABU835" "BABU836" "BABU837"
#> [25] "BABU838" "BABU839" "BABU840" "BABU841" "BABU842" "BABU843"
#> [31] "BABU845" "BABU848" "BABU851" "BABU852" "BABU854" "BABU855"
#> [37] "BABU856" "BABU857" "BABU859" "BABU860" "BOL1176" "BOL1177"
#> [43] "BOL1178" "BOL1179" "BOL1180" "BOL1181" "BOL1182" "BOL1183"
#> [49] "BOL1184" "BOL1185" "BOL1186" "BOL1187" "BOL1188" "BOL1189"
#> [55] "BOL1190" "BOL1191" "BOL1192" "BOL1193" "BOL1194" "BOL1200"
#> [61] "BRT1773" "BRT1774" "BRT1775" "BRT1778" "BRT1779" "BRT1780"
#> [67] "BRT1781" "BRT1782" "BRT1783" "BRT1784" "BRT1785" "BRT1788"
#> [73] "BRT1792" "BRT1794" "BRT1795" "BRT1797" "BRT1798" "BRT1799"
#> [ reached getOption("max.print") -- omitted 574 entries ]

populations(centaurea)
#> [1] "BABL" "BABU" "BOL" "BRT" "BUK" "CERM" "CERV" "CZLE" "DEB" "DOM"
#> [11] "DUB" "HVLT" "KASH" "KOT" "KOZH" "KRO" "LES" "LIP" "MIL" "NEJ"
#> [21] "NSED" "OLE1" "OLE2" "PREL" "PRIS" "PROS" "RTE" "RUS" "SOK" "STCV"
#> [31] "STGH" "VIT" "VOL"

taxa(centaurea)
#> [1] "hybr" "ph" "ps" "st"

characters(centaurea)
#> [1] "SN" "SF" "ST" "SFT" "LL" "LW" "LLW" "LM" "LBA" "LBS" "LS" "IL"
#> [13] "IW" "ILW" "CG" "ML" "MW" "MLW" "MF" "IS" "IV" "AL" "AW" "ALW"
#> [25] "AP"

viewMorphodata(centaurea)
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3.2 Assessing normality of data

An assessment whether the data are approximately normally distributed is a prerequisite for
many statistical tests, even though many analyses are quite robust to moderate deviations
from normality. Out of the analyses used here, normality of distribution is required by Pear-
son’s correlation coefficient and discriminant analysis (both canonical and linear or quadratic
classificatory analysis). The normality of distribution of data is not an inevitable assumption
of hierarchical clustering, principal component analysis, principal coordinates analysis or non-
metric multidimensional scaling.
There are two main approaches to assessing normality: numerical and graphical. Please note
that, although all methods available in the MorphoTools2 package are presented here, there is
no need to use all these methods at once.

3.2.1 Shapiro-Wilk test of normality

The normality of distribution of each character at the level of a taxon can be tested using the
Shapiro-Wilk statistic. If the calculated p-value of a certain character is below a set threshold
(0.05 is the default, but this can be changed using the p.value argument), we can reject the
null hypothesis that characters are normally distributed. The default behaviour is to print only
normally distributed or NOT normally distributed as the result, but setting the p.value
to NA displays the exact p-values.

shapiroWilkTest(centaurea)
#> hybr ph ps
#> SN NOT normally distributed NOT normally distributed normally distributed
#> SF NOT normally distributed NOT normally distributed NOT normally distributed
#> ST NOT normally distributed NOT normally distributed NOT normally distributed
#> SFT NOT normally distributed NOT normally distributed NOT normally distributed
#> LL normally distributed normally distributed NOT normally distributed
#> LW normally distributed normally distributed normally distributed
#> LLW normally distributed NOT normally distributed NOT normally distributed
#> st
#> SN NOT normally distributed
#> SF NOT normally distributed
#> ST NOT normally distributed
#> SFT NOT normally distributed
#> LL NOT normally distributed
#> LW NOT normally distributed
#> LLW NOT normally distributed
#> [ reached 'max' / getOption("max.print") -- omitted 18 rows ]

Because the results are rather extensive (depending on the number of groups and characters),
they can be assigned to an object and exported to the clipboard or a file using the exportRes()
function. This function is designed to export the results in a spreadsheet-like form. If needed,
the default decimal separator (dec) and column delimiter character (sep) can be changed using
the respective arguments; see the exportRes() function’s documentation for details.

swTest = shapiroWilkTest(centaurea)
exportRes(swTest, file = "clipboard")
exportRes(swTest, file = "D:/Projects/Centaurea/morpho/shapiroWilkTest.txt")
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3.2.2 Histograms

Histograms are a traditional way of displaying the shape of the distribution of data. The func-
tion histCharacter() displays the within-group distribution of values of a particular character
for each taxon. The density curve smoothing of the histogram (black) and the normal distri-
bution curve (red) are drawn as default but can be removed by setting the densityLine and
normDistLine arguments to FALSE. Missing data are omitted.

histCharacter(centaurea, character = "SF")

SF: hybr

0 10 20 30 40 50

SF: ph

0 20 40 60 80

SF: ps

0 10 20 30 40 50 60

SF: st

0 10 20 30 40 50

To save histograms for all characters with default settings to a new folder (in the working
directory), use the histAll() function.

histAll(centaurea, folderName = "histograms")

3.2.3 Normal Q-Q plot

The normal Q-Q plot is another graphical method of assessing normality. The points should lie
as close to the line as possible, with no obvious pattern of deviation from the line. Deviations
from this line correspond to various types of non-normality.

The function qqnormCharacter() draws a Q-Q plot for each taxon and a particular character.
The function qqnormAll() does the same for all characters (and save images to a new folder).
Missing data are omitted.
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qqnormCharacter(centaurea, character = "SF")
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qqnormAll(centaurea, folderName = "qqnormPlots")

Most of the characters in the centaurea dataset do not have normal distribution. In general,
there are two options: The distribution of data can be improved by transformation to make
it more like normal, or non-parametric methods that do not require normality of distribution
(Spearman’s correlation coefficient instead of Pearson’s and k nearest neighbours classificatory
discriminant analysis instead of linear or quadratic DA) may be preferred.

The transformation of data is addressed in the following section. However, in all following
analyses, the original data are used and non-parametric methods preferred.

3.3 Data transformation

The characters that deviate the most from the normal distribution can be transformed to im-
prove their distribution (to make them normally distributed or at least to achieve lower deviation
from normality). From the wide palette of applicable transformations (e.g. logarithmic, square
root, cube root, arcsine), the one which improves the distribution of a particular character
the most should be chosen. Note that, when using a log transformation, a constant should be
added to all values to make them all positive before transformation if there are zero values in
the data, because the argument of the logarithm can only take positive numbers. The arcsine
transformation is often used for proportions and percentages (for values ranging from 0 to 1).

Transformation can be done using the transformCharacter() function, which, in addition to
the data object, the name of the character to be transformed (character) and a new name for
the transformed character (newName; not required), takes as argument an anonymous function
(FUN), also known as a lambda expression. Without long explanation, this is where to place the
function that will transforms the data. Transformed values will replace original values of the
character, under the old or new name, if the newName argument is set.
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As the transformCharacter() takes another function as an argument (FUN), there is an inex-
haustible amount of potential transformations:

For a right-skewed (positive) distribution, the following can be used:
* logarithmic transformation (natural): FUN = function(x) log(100*x+1)
* logarithmic transformation (common): FUN = function(x) log10(100*x+1)
* square root transformation: FUN = function(x) sqrt(x)
* cube root transformation: FUN = function(x) xˆ(1/3)
* arcsine transformation: FUN = function(x) asin(sqrt(x))

For a left-skewed (negative) distribution, the following can be used:
* logarithmic transformation (natural): FUN = function(x) log((100*max(x)+1)-x)
* logarithmic transformation (common): FUN = function(x) log10((100*max(x)+1)-x)
* square root transformation: FUN = function(x) sqrt((max(x)+1)-x)
* cube root transformation: FUN = function(x) ((max(x)+1)-x)ˆ(1/3)
* arcsine transformation: FUN = function(x) asin(sqrt((max(x))-x))

As stated above, when applying a log transformation, a constant should be added to all values
to make them all positive before transformation. However, log transformation (besides changing
the shape of the distribution) also changes multiplication to sum (the values differ x-times vs
differ by x). For small values of x, adding 1 significantly alters the original ratios, so when log-
transforming small numbers, it is recommended to first multiply x by some constant (e.g. 100)
and then add 1, as is shown in the examples above.

The following figure depicts the effects of different types of transformation on the same data.
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So finally, to apply a square root transformation to character SF, the following code can be
used.

centaurea = transformCharacter(centaurea, character = "SF", newName = "SF.sqrt",
FUN = function(x) sqrt(x))
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3.4 Box Plots

Boxplots are a handy tool for detecting outlier values (potential typos, missing decimal points,
etc.), between-species dissimilarities and critical morphological values discriminating among
species.
Boxplots can be produced for a particular character using the boxplotCharacter() function
or for all characters at once by invoking the boxplotAll() function, which saves all boxplots
to a new folder in the working directory or other location. A box is drawn from the first to
the third quartile (25th-75th percentiles), a horizontal line drawn inside denotes the median
(50th percentile). The whiskers can be extended to the desired percentiles using the arguments
lowerWhisker and upperWhisker. Missing data are omitted. Many graphic parameters can be
set; run ?boxplotCharacter for details.

boxplotCharacter(centaurea, character="AL", col=c("blue","green","red","orange"))

hybr ph ps st
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boxplotCharacter(centaurea, character = "AL", pch = 1,
lowerWhisker = 0.1, upperWhisker = 1)
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boxplotCharacter(centaurea, character = "AL", outliers = FALSE,
frame = FALSE, horizontal = T, notch = TRUE)

hy
br

ph
ps

st

2.8 3.0 3.2 3.4 3.6 3.8

AL

The default behaviour is to plot outliers (as asterisks be default, but this can be changed in
the pch argument; outliers = FALSE will suppress the plotting of outliers) and to show the
trimmed range (omitting 10% of the most extreme values) using whiskers.
Boxplots for all characters with the default settings can be saved to a new folder (in the working
directory) using the following command:

boxplotAll(centaurea, folderName = "boxplots")

3.5 Descriptive statistics

The table of descriptive statistics is a less comfortable way of detecting outlier values. However,
it can be used for reporting descriptive statistics for morphological characters. These statistics
can be calculated at the levels of populations, taxa/groups or for the whole dataset, using the
functions descrPopulation(), descrTaxon() or descrAll(), respectively.
Using the argument format, the desired output format can be specified. The keywords $MEAN,
$SD, $MIN, $5%, $25%, $MEDIAN, $75%, $95% and $MAX are then replaced by actual values. The
default behaviour (format = NULL) is to produce a table with all values. Run ?descrTaxon for
more details.

descrTaxon(centaurea, format = "($MEAN ± $SD)", decimalPlaces = 2)
#> group hybr ph ps st
#> 1 format (MEAN ± SD) (MEAN ± SD) (MEAN ± SD) (MEAN ± SD)
#> 2 N 120 160 240 132
#> 3 SN (48.32 ± 23.07) (45.22 ± 17.03) (49.07 ± 19.13) (55.47 ± 14.8)
#> 4 SF (16.33 ± 9.83) (20.12 ± 10.21) (18.85 ± 9.08) (9.64 ± 7.96)
#> 5 ST (64.65 ± 23.13) (65.34 ± 17.63) (67.93 ± 20.93) (65.11 ± 17.17)
#> 6 SFT (0.27 ± 0.16) (0.31 ± 0.14) (0.29 ± 0.14) (0.14 ± 0.1)
#> 7 LL (10.78 ± 2.56) (9.92 ± 2.41) (10.01 ± 2.17) (8.96 ± 2.32)
#> [ reached 'max' / getOption("max.print") -- omitted 20 rows ]
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The results can be assigned to an object and copied to the clipboard (this fails with extensive
datasets) or exported to file, both using the exportRes() function.

descrTax = descrTaxon(centaurea, format = "($MEAN ± $SD)", decimalPlaces = 2)

exportRes(descrTax, file = "clipboard")
exportRes(descrTax, file = "descrTax.txt")

Please note that some of the following statistical analyses require that no character is invariant
in any taxon or group. If it is, a more common practice is to add a small constant (e.g. 0.000001)
to some value instead of removing the whole character.

3.6 Correlations of characters

Highly correlated characters (r > |0.95|) should not be used in discriminant analysis, as this
can distort the results. The function cormat() calculates the correlation coefficients of the
characters, be it Pearson’s (default) or Spearman’s (does not require normally distributed data).
The results can be exported with the exportRes() function. One of the pair of highly correlated
characters can be removed from the dataset using the removeCharacter() function, see below.

correlations.s = cormat(centaurea, method = "spearman")
exportRes(correlations.s, file = "correlations.spearman.txt")

Significance tests are usually unnecessary for morphometric analysis. Anyway, if tests are
needed, they can be performed using the cormatSignifTest() function.

correlations.s.signifTest = cormatSignifTest(centaurea, method = "spearman")

3.7 Populations as operational taxonomic units

To simplify the overall structure, especially with large datasets, using populations instead of
individuals can be considered. This means that each population will be represented by averages
of the individuals’ values. Missing values will be ignored.

pops = populOTU(centaurea)
#> Warning: Unable to calculate the means of characters AL AW ALW AP in
#> populations LIP PREL. Values are NA.

There is a warning that the values of some characters are NA. How to deal with missing data
is discussed in the following section.

3.8 Missing data

Missing values are not accepted in the majority of morphological analyses. The decision what
to do with missing values is on the user. There are two options: remove or replace. However,
before doing anything else, let us have a look at the descriptive statistic about missing data,
using the missingCharactersTable() and missingSamplesTable() functions. The amount
of missing data can be summarized at various levels, namely "taxon", populations ("pop"), or
individuals ("indiv").
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# For demonstration only. Not all populations are displayed.
missingCharactersTable(centaurea, level = "pop")
#> Population Taxon N missing.percentage missing.values
#> 1 BABU hybr 20 0.03 16
#> 2 BOL ps 20 0.12 60
#> 3 BUK ph 20 0.00 0
#> 4 CZLE ps 20 0.08 40
#> 5 DEB hybr 20 0.00 0
#> 6 DOM st 12 0.07 20
#> 7 DUB st 20 0.08 40
#> 8 KOT ph 20 0.00 0
#> 9 KOZH ps 20 0.15 76
#> 10 LES st 20 0.00 0
#> 11 LIP st 20 0.16 80
#> 12 NEJ ph 20 0.01 4
#> 13 PREL st 20 0.16 80
#> 14 RTE hybr 20 0.09 47
#> 15 RUS hybr 20 0.00 0
#> 16 STCV ph 20 0.11 56
#> 17 VIT hybr 20 0.05 24
#> 18 VOL st 20 0.02 8

# For demonstration purposes only. Only a subset of data is displayed.
missingSamplesTable(centaurea, level = "pop")
#> Population N SN LS CG ML MF IS IV AP missing.percentage missing.values
#> 1 BABU 20 0 0 0 0 0 0 0 0.20 0.03 4
#> 2 BOL 20 0 0 0 0 0 0 0 0.75 0.09 15
#> 3 BUK 20 0 0 0 0 0 0 0 0.00 0.00 0
#> 4 CZLE 20 0 0 0 0 0 0 0 0.50 0.06 10
#> 5 DEB 20 0 0 0 0 0 0 0 0.00 0.00 0
#> 6 DOM 12 0 0 0 0 0 0 0 0.42 0.05 5
#> 7 DUB 20 0 0 0 0 0 0 0 0.50 0.06 10
#> 8 KOT 20 0 0 0 0 0 0 0 0.00 0.00 0
#> 9 KOZH 20 0 0 0 0 0 0 0 0.95 0.12 19
#> 10 LES 20 0 0 0 0 0 0 0 0.00 0.00 0
#> 11 LIP 20 0 0 0 0 0 0 0 1.00 0.12 20
#> 12 NEJ 20 0 0 0 0 0 0 0 0.05 0.01 1
#> 13 PREL 20 0 0 0 0 0 0 0 1.00 0.12 20
#> 14 RTE 20 0 0 0 0 0 0 0 0.60 0.07 12
#> 15 RUS 20 0 0 0 0 0 0 0 0.00 0.00 0
#> 16 STCV 20 0 0 0 0 0 0 0 0.70 0.09 14
#> 17 VIT 20 0 0 0 0 0 0 0 0.30 0.04 6
#> 18 VOL 20 0 0 0 0 0 0 0 0.10 0.01 2

As indicated by the warnings above, populations LIP and PREL have the highest percentages
of missing values in morphological characters (16%; 80 values per population are missing). The
latter table shows that the characters AL, AW, ALW and AP are completely missing in these
populations and 95% samples of population KOZH lack values of these characters.
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3.8.1 Removing items

The descriptive tables above show that four characters in two populations are completely miss-
ing. The user should decide between removing the characters, using the removeCharacter()
function, or the populations, using the removePopulation() function. As the character AP
looks promising for the delimitation of C. pseudophrygia and C. stenolepis, characters will be
retained and the populations removed.

centaurea = removePopulation(centaurea, populationName = c("LIP", "PREL"))
pops = removePopulation(pops, populationName = c("LIP", "PREL"))

Another available option is to remove samples with a high portion of missing data using the
removeSample() function. The command removeSample(centaurea, missingPercentage =
0.1) returns a new morphodata object (dataset), retaining only samples having no more than
10% of missing data. To remove specific samples, enumerate them in the ‘sampleName’ argu-
ment in these functions.

Here is the right place to mention also removeTaxon() and another four functions with reversed
logic, which will return only mentioned samples, populations, taxa or characters: keepSample(),
keepPopulation(), keepTaxon() and keepCharacter().

3.8.2 Replacing missing values

Missing values can be substituted by the average value of the respective character in the re-
spective population. However, substitution by the mean introduces values that are not present
in the original dataset. This approach is acceptable only if the following conditions are met:
There are relatively few missing values; these missing values are scattered across characters
(each character including only a few missing values); and removing all individuals or all charac-
ters with missing data would unacceptably reduce the dataset. To substitute remaining missing
values by an average value, use the function naMeanSubst().

centaurea = naMeanSubst(centaurea)

After examining the normality of distribution of each character, confirming that the data do not
contain highly correlated characters, replacing missing values by average values and removing
remaining NAs, the centaurea dataset is prepared for further analyses. It is not a bad idea to
save a copy of it using the exportRes() function.
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4. Hierarchical clustering

Hierarchical classification is one of the methods that do not require a priori specification of
the membership of samples in taxa (groups). Therefore, this method is recommended to be
used first in order to gain insight into the existence of a (hierarchical) group structure in the
data. Both individuals and populations can be used, but with large datasets (of hundreds of
specimens or more) dendrograms for individuals may be somewhat messy and populations are
a better choice. Various measures of distance between observations (rows) are applicable: (1)
coefficients of distance for quantitative and binary characters: Euclidean (default), Manhattan,
Minkovski; (2) similarity coefficients for binary characters: Jaccard and simple matching; and
(3) coefficient for mixed data: Gower. The clustering methods available with this package, using
the above coefficients are: UPGMA (default), Ward’s method, single linkage, complete linkage,
WPGMA, WPGMC and UPGMC. However, note that for morphometric analysis, Euclidean
distance and UPGMA or Ward’s method are the most commonly used. The function includes
the standardization of characters to a zero mean and a unit standard deviation. For further
details, run ?clust.

The dendrogram is displayed using the plot() function with usual graphical parameters. The
parameter hang controls the distance of the labels from the plot; negative values cause labels
to be aligned at zero.

hierClust = clust(pops, distMethod = "Euclidean", clustMethod = "UPGMA")
plot(hierClust, hang = -1, sub = "", xlab = "", ylab = "distance")
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Several main clusters were formed in the dendrogram above; however, some populations (BABL,
LES, OLE1, OLE2 and PROS) were clustered “incorrectly”, requiring further inspection.
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5. Principal component analysis (PCA)

Principal component analysis (PCA) is another method without the requirement for the a
priori specification of the samples’ membership in taxa (groups). PCA transforms the measured
variables into principal components (artificial variables). The first few of them extract most
of the variance in the measured variables. Standardized PCA based on a correlation matrix is
calculated by the pca.calc() function (based on the package stats; R Core Team, 2020); the
result is an object of the class pcadata. Run ?pcadata for the help page about the elements of
this object. Note the limitation of PCA with regard to the number of analysed characters. It
should be lower than the number of objects analysed.

pca.centaurea = pca.calc(centaurea)

The summary statistics of the data are available through the function summary(). Eigen-
values indicate the proportion of variation of the original dataset expressed by individ-
ual axes. They are usually presented as a percentage of their total sum (eigenvalues
as percentages). Eigenvectors express the direction of vectors characterizing the influ-
ence of the original characters on the principal component axes. The output of the
summary() function is usually truncated. To get a full listing, execute the following
commands: pca.centaurea$eigenvalues, pca.centaurea$eigenvaluesAsPercentages,
pca.centaurea$cumulativePercentageOfEigenvalues and pca.centaurea$eigenvectors
(values will be printed on the console).

summary(pca.centaurea)
#> Object of class 'pcadata'; storing results of principal component analysis
#>
#> Variation explained by individual axes (listing of axes is truncated):
#> PC1 PC2 PC3 PC4
#> Eigenvalues 5.1628 3.5660 2.6634 1.7359
#> Eigenvalues as percentages 0.2065 0.1426 0.1065 0.0694
#> Cumulative percentage of eigenvalues 0.2065 0.3492 0.4557 0.5251
#>
#> Eigenvectors (listing of axes is truncated):
#> PC1 PC2 PC3 PC4
#> SN 0.10771859 0.09373031 0.533139126 0.173265222
#> SF -0.26900856 0.08099386 0.059673923 -0.462177220
#> ST -0.02956541 0.12948462 0.538957839 -0.062077155
#> SFT -0.27145559 0.02321041 -0.244805653 -0.411793361
#> LL -0.07372490 0.19206329 0.383723626 -0.232003396
#> LW -0.20896559 0.21922418 0.152923297 -0.218305082
#> LLW 0.20543544 -0.11181134 0.188443414 0.037332596
#> LM -0.07506076 -0.13142341 0.065759045 -0.102072769
#> LBA 0.27729432 -0.03899012 -0.004432443 -0.089885703
#> LBS -0.16210200 0.23562860 -0.130667743 0.042490929
#> LS 0.27249981 -0.04295413 0.111132394 0.048352730
#> IL -0.19760433 0.22449890 -0.018527821 0.225092141
#> IW -0.36011332 0.06964662 0.053343011 0.247319193
#> ILW 0.34334276 0.04623376 -0.072130258 -0.164859081
#> CG -0.06830949 0.13736296 0.084854346 -0.328948291
#> ML 0.05725511 0.43511355 -0.160955641 0.110889828
#> [ reached getOption("max.print") -- omitted 9 rows ]
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The result can be plotted using the plotPoints() function. The parameter axes define which
principal components to plot (the 1st and 2nd being default), and the parameters col and pch4

control the colour and type of plotting character, respectively (the same for each point or specific
for each taxon). The usual graphical parameters affect the axes, data point symbol size, etc.,
and several parameters define the appearance and position of the legend; see the documentation
for plotPoints() for details.

plotPoints(pca.centaurea, col = c("blue","green","red","orange"), axes=c(1,2),
pch = c(8,17,20,18), legend = T, ncol = 2, legend.pos="bottomright")
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The coordinates of the individuals (populations) in the principal component space (sam-
ple scores) are stored in pca.centaurea$objects$scores and can be exported using the
exportRes() function. The dollar sign ($) enables one to extract items from an object, as
above.

exportRes(pca.centaurea$objects$scores, file="scoresPCA.centaurea.txt")

The character loadings (eigenvectors) express the influence of the original characters on the main
components. Eigenvectors are stored in pca.centaurea$eigenvectors and can be exported
using the exportRes() function. The function plotCharacters() draws character loadings as
arrows.

4Plotting symbols commonly used in R

0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25
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plotCharacters(pca.centaurea)
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exportRes(pca.centaurea$eigenvectors, file="eigenvectors.centaurea.txt")

Ordination diagrams of PCA resulted in relatively compact groupings corresponding to taxa
with partial overlaps. The first two components (axes) extracted 20.65% and 14.26% of the
overall variability in the data. The characters ILW and IW are strongly correlated with the
direction of the separation of the taxa C. pseudophrygia and C. stenolepis (“ps”, “st”) and their
putative hybrid “hybr”. Centaurea phrygia s.str. (“ph”) is separated in the diagonal direction,
being highly correlated with the characters MW, ML, IV and MLW.
The plotPoints() and plotCharacters() are default plotting functions. Simple data point
labels and a legend can be added using the arguments labels = TRUE and legend = TRUE,
respectively.
For more precise control of labels and the legend, or adding elements to the plot, the following
functions can be used:

• plotAddLabels.points(), plotAddLabels.characters() allows to include or exclude
specified labels (include), specify the label’s position (pos), offset (offset), colours (col),
magnification (cex), etc.

• plotAddLegend() allows to specify the position using a keyword (x5), the number
of columns (ncol), expansion and interspacing factors (cex, pt.cex, x.intersp,
y.intersp), line width (lwd), borders parameters (e.g., box.type, box.lty, box.lwd),
etc.

• plotAddEllipses() draws prediction ellipses around taxa. Ellipses with a given proba-
bility (probability) define regions where any new independent observation belonging to
the respective taxa will fall.

• plotAddSpiders() connects points with their group centroid, thus forming a “spider”
diagram.

5legend position: "topleft", "topright", "bottomleft", "bottomright", "top", "left", "bottom",
"right" and "center".
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pca.pops = pca.calc(pops)
plotPoints(pca.pops, col = c("blue","green","red","orange"), pch=c(8,17,20,18),

legend = FALSE, labels = FALSE)
plotAddLabels.points(pca.pops, labels=c("PROS","SOK","KASH","BOL","KRO","DUB",

"MIL","CERM","DOM","KOZH","KOT"), include=FALSE, pos=4, cex=0.7)
plotAddLabels.points(pca.pops, labels=c("PROS","SOK","KASH","BOL","CERM","DOM"),

pos = 2, cex = 0.7)
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plotCharacters(pca.pops, labels = FALSE)
plotAddLabels.characters(pca.pops,labels=c("ILW","MLW","LBA"),pos=4,cex=0.75)
plotAddLabels.characters(pca.pops,labels=c("IW","SFT"),pos=2,offset=0.7)
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plotPoints(pca.centaurea, col = c("blue","green","red","orange"), cex = 0.5)
plotAddLegend(pca.centaurea, col = c("blue","green","red","orange"),

x = "bottomright", cex = 0.8, box.type = "n", ncol = 2)

# Semi-transparent spiders
plotAddSpiders(pca.centaurea, col=c(rgb(0,0,255, max=255, alpha=50), # blue

rgb(0,255,0, max=255, alpha=50), # green
rgb(255,0,0, max=255, alpha=50), # red
# orange
rgb(255,102,0, max=255, alpha=50)))
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To highlight only some groups in colour, set the colour values of groups not to be highlighted
to NA.

plotPoints(pca.centaurea, col = c("blue","green","red","orange"), cex = 0.5)

plotAddSpiders(pca.centaurea, col=c(NA,NA,NA,rgb(255,102,0,max=255,alpha=100)))
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plotPoints(pca.centaurea, col = c("blue","green","red","orange"), cex = 0.7)
plotAddLegend(pca.centaurea, col = c("blue","green","red","orange"),

x = "bottomright", pt.cex = 1.3, box.type = "n", ncol = 2)

plotAddEllipses(pca.centaurea, col = c("blue","green","red","orange"), lwd = 2)
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plotPoints(pca.centaurea, type = "n", xlim = c(-5,7.5), ylim = c(-5,4))

plotAddEllipses(pca.centaurea, col = c("blue","green","red","orange"), lwd = 2)

plotAddLegend(pca.centaurea, col = c("blue","green","red","orange"),
x = "bottomright", box.type = "n", ncol = 2)
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To draw a 3D scatterplot, the plot3Dpoints() function can be used. The theta and phi
arguments define the viewing direction (azimuthal direction and co-latitude, respectively).

plot3Dpoints(pca.centaurea, col = c("blue","green","red","orange"),
phi = 20, theta = 30)
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plot3Dpoints(pca.pops, col = c("blue","green","red","orange"), labels = T)
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6. Principal coordinate analysis (PCoA)

Principal coordinate analysis (PCoA) is another method for exploring and visualizing similar-
ities or dissimilarities within the data. This method is especially useful in analyses of non-
quantitative characters, when Euclidean distance and the corresponding measures of correla-
tion do not provide acceptable model, so PCA is not adequate for ordination. PCoA estimates
coordinates for a set of objects (rows) in a space, whose relationships are measured by any
coefficient of similarity or distance (Euclidean, Manhattan, Minkovski, Jaccard, simple match-
ing, or Gower). PCoA might be used also when there are more characters than objects in the
analysis. As PCoA is computed from distances among objects, so there is no direct information
on the influence of the original characters on the coordinate axes.

PCoA is performed by the pcoa.calc() function (based on the stats package; R Core Team,
2020); the result is an object of the class pcoadata.

pcoa.res = pcoa.calc(centaurea, distMethod = "Manhattan")
summary(pcoa.res)
#> Object of class 'pcoadata'; storing results of principal coordinates analysis
#> Resemblance coefficient: Manhattan
#>
#> Variation explained by individual axes (listing of axes is truncated):
#> PCo1 PCo2 PCo3
#> Eigenvalues 1357127.8750 434014.9211 263932.2874
#> Eigenvalues as percentages 0.4361 0.1395 0.0848
#> Cumulative percentage of eigenvalues 0.4361 0.5755 0.6604

The result can be plotted by either the plotPoints() or plot3Dpoints() function as per usual.
The extending functions plotAddEllipses(), plotAddSpiders(), plotAddLabels.points()
and plotAddLegend() are available, too. Only the function plotCharacters() cannot be used,
as there is no information on the influence of the original characters on the coordinate axes.

plot3Dpoints(pcoa.res, col = c("blue","green","red","orange"), pch = c(8,17,20,18),
phi = 20, theta = 70, legend = T)
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7. Non-metric multidimensional scaling (NMDS)

All of the clustering and ordination analyses mentioned above attempt to preserve the distance
relationships among the objects as much as possible. The main difference with non-metric mul-
tidimensional scaling (NMDS) is that the preservation of distances is not of primary importance.
This analysis attempts to represent the objects in a small number of dimensions (usually two
or three) specified by the argument k, preserving the order of distances among objects (similar
objects are plotted closer to one another and dissimilar objects far apart). Like principal coor-
dinate analysis (PCoA), NMDS is not limited to Euclidean distance; it can produce ordinations
using any coefficient of similarity or distance.
Because NMDS compresses the relationships among objects into two or three dimensions, this
compression creates “stress”. This stress value can be interpreted as the “goodness” of the solu-
tion, lower values being better. Since stress decreases as dimensionality increases, the optimal
solution is when the decrease in stress is small after decreasing the number of dimensions. Fur-
ther, multiple runs of the NMDS analysis are needed to ensure that a stable ordination has been
reached, as any single run may get “trapped” in local optima which are not representative of
true similarities. Similarly to PCoA, the influence of the original characters on new axes cannot
be derived directly. Moreover, the ordination axes are arbitrary, so the variation explained by
individual axes is unknown.
The NMDS is calculated by the nmds.calc() function, using the monoMDS() function from
the package vegan (R Core Team, 2020); the result is an object of class pcoadata. The
result can be plotted with the functions plotPoints() or plot3Dpoints(); the functions
plotAddEllipses(), plotAddSpiders(), plotAddLabels.points() and plotAddLegend()
work as usual. Only the plotCharacters() function is not applicable, as there is no
information on the influence of the original characters on the coordinate axes.

nmds.res = nmds.calc(centaurea, distMethod = "Euclidean", k = 3)
summary(nmds.res)
#> Object of class 'nmdsdata'; storing results of non-metric multidimensional scaling
#> Resemblance coefficient: Euclidean
#>
#> Dimensions: 3
#> Stress: 0.1589555
#> Scores scaled to unit root mean square, rotated to principal components
plotPoints(nmds.res, col = c("blue","green","red","orange"), pch=c(8,17,20,18))
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8. Stepwise discriminant analysis

In some analyses, the number of characters must not exceed the number of samples. If it does,
in many cases only a subset of the “best” characters contributing the most to the differentiation
of taxa (predefined groups) have to be selected. Another common requirement is the linear
independence of characters. No character should not be a linear combination of any other
character(s). The way to eliminate such unnecessary or redundant characters is to use stepwise
discriminant analysis.

The most useful characters are identified and added to the selection step by step. After adding
a new character, the significance of all the characters in the model is tested, and those whose
unique contribution is no more significant (bellow the FToStay threshold) are excluded before
the addition of the next most useful character. When none of the unselected variables meets the
entry criterion (the significance of their unique contribution is bellow the FToEnter threshold)
or the maximum number of characters (depending on the number of individuals and defined
groups) is reached, the selection process stops. After the final step, the selected characters are
printed to the console, ordered according their importance for the separation of the predefined
groups.

Stepwise discriminant analysis is calculated by the stepdisc.calc() function.

stepdisc.calc(centaurea)
#> Entered Removed Partial R-square F-value Pr > F
#> 1 MLW 0.667335064 406.554939 7.890234e-145
#> 2 ML 0.506437108 207.611046 1.192547e-92
#> 3 IW 0.200252478 50.579714 3.483830e-29
#> 4 LS 0.157685396 37.752982 2.249101e-22
#> 5 IV 0.146472637 34.550532 1.281334e-20
#> 6 MW 0.115246110 26.181821 6.249414e-16
#> 7 MF 0.091473201 20.203721 1.736040e-12
#> 8 AP 0.070455039 15.184304 1.550026e-09
#> 9 IS 0.056738406 12.030259 1.174018e-07
#> 10 LBA 0.056209421 11.891566 1.422384e-07
#> 11 LW 0.054420588 11.472159 2.538006e-07
#> 12 AL 0.047197814 9.857623 2.364358e-06
#> 13 ILW 0.038600447 7.976519 3.205143e-05
#> 14 LBS 0.033553832 6.885891 1.454076e-04
#> 15 SFT 0.026130580 5.312678 1.281299e-03
#> 16 CG 0.028448848 5.788052 6.647989e-04
#> 17 IL 0.020554879 4.141286 6.406217e-03
#> 18 LM 0.012787149 2.551697 5.474060e-02
#> 19 ALW 0.011851686 2.358787 7.062704e-02
#> 20 AW 0.013462436 2.679193 4.621888e-02
#> 21 AL 0.005503766 1.086553 3.541773e-01
#> 22 SF 0.011227184 2.229299 8.371473e-02
#>
#> Selected characters:
#> MLW, ML, IW, LS, IV, MW, MF, AP, IS, LBA, LW, AL, ILW, LBS, SFT, CG, IL, LM, ALW, AW, SF
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9. Canonical discriminant analysis (CDA)

The canonical discriminant analysis finds linear combinations of the original variables that
provide maximum separation among a priori defined groups (by the Taxon column in the input
data). Group membership should be defined using some independent, non-morphological data
(e.g. on ploidy levels, geographic origin or genetic groups) to avoid circular reasoning.
Discriminant analyses (in general) have requirements concerning the number, correlation and
variability of characters: (1) No character may be a linear combination of any other character;
(2) No pair of characters may be highly correlated; (3) No character may be invariant in any
taxon (group); (4) For the number of taxa (g), characters (p) and the total number of samples
(n), the following should hold: 0 < p < (n - g); and (5) There must be at least two groups
(taxa) and in each group there must be at least two objects.
The CDA analysis is used to ascertain the extent to which the predefined groups of objects
can be distinguished based on available characters and to identify characters which contribute
the most to this differentiation. Note that canonical discriminant analysis finds n-1 meaningful
canonical axes, where n is the number of groups (taxa). If two groups are analysed, only a
single axis is computed and the sample scores are displayed as a histogram.
CDA can be applied by invoking the cda.calc() function (using the candisc package; Friendly
& Fox, 2020). The result is an object of the class cdadata, and among other elements (run
?cdadata for details) it stores total canonical structure coefficients, specifically total-sample
correlations between the original variables and the canonical variates. Thus, these coefficients
are used to interpret the contribution of different characters to the separation of groups. The
function summary() prints summaries of the results of the cda.calc() function (variation ex-
plained by individual axes, total canonical structure coefficients).

cda.centaurea = cda.calc(centaurea)

summary(cda.centaurea)
#> Object of class 'cdadata'; storing results of canonical discriminant analysis
#>
#> Variation explained by individual axes:
#> Can1 Can2 Can3
#> Eigenvalues 4.4194 2.0049 0.3647
#> Eigenvalues as percentages 0.6515 0.2956 0.0538
#> Cumulative percentage of eigenvalues 0.6515 0.9471 1.0008
#>
#> Total canonical structure coefficients:
#> Can1 Can2 Can3
#> SN -0.145905291 -0.143820071 0.187446717
#> SF 0.226719447 0.288948819 -0.088309973
#> ST -0.027765120 0.004883579 0.135653239
#> SFT 0.233159338 0.331672879 -0.213795111
#> LL -0.067843561 0.057468347 -0.252875809
#> LW 0.007404962 0.296609347 -0.354584342
#> LLW -0.051697329 -0.350145429 0.279507573
#> LM 0.297463454 -0.045009362 -0.047078365
#> LBA -0.318778094 -0.539202777 -0.294264249
#> LBS -0.163214379 0.469973590 0.277373927
#> LS -0.251889023 -0.640679116 0.197855575
#> [ reached getOption("max.print") -- omitted 14 rows ]
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plotPoints(cda.centaurea, col = c("blue","green","red","orange"), axes = c(1, 2),
pch = c(8,17,20,18), legend = T, ncol = 2, legend.pos="bottomright")
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plotPoints(cda.centaurea, col = c(NA, "green", NA, NA), cex = 0.8)
plotAddSpiders(cda.centaurea, col = c(rgb(0,0,255,max=255,alpha=130), # blue

NA, # green
rgb(255,0,0,max=255,alpha=130), # red
rgb(255,102,0,max=255,alpha=130))) # orange
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plotPoints(cda.centaurea, col = c(NA, "green", NA, NA), cex = 0.8)
plotAddEllipses(cda.centaurea, col = c("blue", NA, "red", "orange"), lwd = 2)
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plotPoints(cda.centaurea, col = c("blue","green","red","orange"), cex = 0.4)
plotAddEllipses(cda.centaurea, col = c("blue","green","red","orange"), lwd = 2)
plotAddSpiders(cda.centaurea, col = c(rgb(0,0,255,max=255,alpha=130), # blue

rgb(0,255,0,max=255,alpha=130), # green
rgb(255,0,0,max=255,alpha=130), # red
rgb(255,102,0,max=255,alpha=130))) # orange
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This CDA ordination diagram unequivocally supports the morphological differentiation of C.
phrygia s.str. (“ph”) along the first axis.

plotCharacters(cda.centaurea, cex = 1.2)
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The function plotCharacters(), called with an object of the class cdadata as an argument,
visualizes total canonical structure coefficients as arrows. The direction and length of the arrows
indicate the characters’ contribution to the separation of groups. The characters ML, MLW,
IV and MW are oriented in the direction of the separation of C. phrygia s.str. (“ph”), so they
contributed the most significantly, which is in accordance with the results of PCA.
The total canonical structure coefficients are elements of an object of the class cdadata and
can be accessed using the $ notation. The above-mentioned characters (ML, MLW, IV and
MW) received the highest absolute scores along the first canonical axis (regardless of sign).
The results can be exported using the exportRes() function.

exportRes(cda.centaurea$totalCanonicalStructure, file = "centaurea_TCS.txt")
# For demonstration purposes only. Only a subset of data is displayed.
cda.centaurea$totalCanonicalStructure
#> Can1 Can2 Can3
#> SN -0.145905291 -0.143820071 0.187446717
#> SF 0.226719447 0.288948819 -0.088309973
#> ST -0.027765120 0.004883579 0.135653239
#> LW 0.007404962 0.296609347 -0.354584342
#> LS -0.251889023 -0.640679116 0.197855575
#> IW 0.389239321 0.685339935 0.239991480
#> ILW -0.525181687 -0.611784805 -0.002541299
#> ML -0.831038839 0.379514738 0.079785332
#> MW 0.735479254 0.267972743 -0.012135822
#> MLW -0.867777425 -0.282448838 0.009070526
#> IV -0.735244321 0.270554318 -0.229699765
#> ALW -0.183216081 0.102614196 -0.134701510
#> AP 0.117451381 0.528786582 -0.006020908
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A 3D scatterplot can be produced using the plot3Dpoints() function. The viewing direction
and slope (co-latitude) can be set using the theta and phi arguments, respectively.

plot3Dpoints(cda.centaurea, col = c("blue","green","red","orange"),
phi = 12, theta = 25)
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To gain better insight into the differentiation among the remaining taxa (C. pseudophrygia, C.
stenolepis and their putative hybrid), these taxa will be analysed separately. A new subdataset
(stPsHybr) will be created by removing C. phrygia from the original dataset.

stPsHybr = removeTaxon(centaurea, taxonName = "ph")
cda.stPsHybr = cda.calc(stPsHybr)
plotPoints(cda.stPsHybr, col = c("blue","red","orange"), pch = c(8,20,18),

legend = T, ncol = 2, legend.pos="bottomright")
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cda.stPsHybr$totalCanonicalStructure
#> Can1 Can2
#> SN -0.184060229 0.140729352
#> SF 0.380685926 -0.045311134
#> ST 0.001661422 0.112106806
#> SFT 0.413332646 -0.162634321
#> LL 0.038953631 -0.265634161
#> LW 0.332488605 -0.380540862
#> LLW -0.379824050 0.278389296
#> LM 0.048811155 0.103057725
#> LBA -0.644983671 -0.296127557
#> LBS 0.437841099 0.138703090
#> LS -0.705219959 0.166523413
#> IL 0.515834335 0.238410156
#> IW 0.797627723 0.248437287
#> ILW -0.759008837 -0.091588297
#> CG 0.129352318 -0.050925559
#> ML 0.311426180 -0.358590686
#> MW 0.699934603 0.275940062
#> MLW -0.659822961 -0.289017875
#> MF 0.499559997 -0.005854128
#> IS -0.007715440 -0.188181984
#> IV 0.113766105 -0.544282887
#> AL 0.340820227 -0.048742382
#> AW 0.272345410 0.079949564
#> ALW 0.058836906 -0.187449402
#> AP 0.604687608 -0.030108718

The first axis captures most of the variation. Characters correlated with this axis (IW, ILW,
LS, MW and MLW) are the most suitable for the taxonomic delimitation of C. pseudophrygia
(“ps”) and C. stenolepis (“st”), while their hybrid exhibits intermediate values of these particular
characters. The characters correlated with the second axis (IV, ML and LW) contribute to the
separation of the hybrid from the parental species.

Passive prediction of samples.

Sometimes it is desirable to passively display (predict) the position of certain samples in the
canonical space formed by other samples. This approach is useful for displaying the position of
hybrids, type specimens, “atypical” populations (that could not be assigned reliably to any of the
predefined groups), etc. Passive samples can be specified using the passiveSamples argument
(accepting both populations and taxa). These samples are excluded from the computation of
the discriminant function and only passively predicted in the multidimensional space.

Note that in the following example, in which hybrids are passively projected into the analysis
of parental species, only two “active” groups are present, “ps” and “st”. In such a case, there
is only one canonical axis and the sample scores are displayed as a histogram instead of a
scatterplot by the plotPoints() function. The additional parameter breaks allows to define
the width of intervals (histogram columns). Also note the use of semi-transparent colours to
show the overlap of the groups. The colours are defined using the rgb() function, in which the
argument alpha defines opacity, in the example below on a scale 0 (fully transparent) to 255
(solid).
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cda.stPs_passiveHybr = cda.calc(stPsHybr, passiveSamples = "hybr")

plotPoints(cda.stPs_passiveHybr, legend = T, breaks = 0.2,
col = c(rgb(0,0,255, alpha=255, max=255), # blue

rgb(255,0,0, alpha=160, max=255), # red
rgb(255,102,0, alpha=160, max=255))) # orange,
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plotPoints(cda.stPs_passiveHybr, breaks = 0.2,
col = c(rgb(0,0,0, alpha=255, max=255), # hybr - black

rgb(255,255,255, alpha=80, max=255), # ps - white
rgb(255,255,255, alpha=80, max=255))) # st - white
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10. Classificatory discriminant analysis

Classificatory discriminant analysis (based on the packages MASS and class; Venables & Rip-
ley, 2002) is used to classify observations (sample dataset) into known groups, using criteria
(discriminant functions) based on other observations with known group membership (training
dataset). Group membership should be defined using independent, non-morphological data of
some sort, for example on ploidy levels, geographic origin or genetic groups, to avoid circular
reasoning. If a morphological character has to be used to define groups, it should be excluded
from further analyses. The results then indicate whether the retained characters are able to
separate the groups in addition to the defining character. Often, however, we do not have two
independent datasets (training and sample). We then opt for a cross validation procedure, in
which part of the dataset is used to compute the criteria that are applied to the remaining
observations, and the procedure is repeated until all observations are classified. The default is
leave-one-out cross validation (the criterion is based on n – 1 individuals and applied to the indi-
vidual left out), but it is also possible to use whole populations as leave-out units (as individuals
from a population are not completely independent observations and may be morphologically
closer to each other than to individuals from other populations). The cross-validation mode
can be specified by the argument crossval as "indiv" or "pop" (the former, which is the
default option, is applied in the example below). The resulting classification is then compared
with the original (a priori) classification of individuals into groups. The result of classificatory
DA is stored in an object of the class classifdata. The classif.matrix() function formats
the results of the above functions as a summary classification table of taxa, populations or
individuals. The results (classification tables) can be exported using the exportRes() function.

As stated above, discriminant analyses have certain requirements: (1) No character may be a
linear combination of any other character; (2) No pair of characters may be highly correlated; (3)
No character may be invariant in any taxon (group); (4) For the number of taxa (g), characters
(p) and total number of samples (n) the following should hold: 0 < p < (n - g); and (5)
There must be at least two groups (taxa) and in each group there must be at least two objects.
Violation of these requirements is reflected by warning or error messages (rank deficiency).

To fulfil these requirements, only a subset of characters is used. Linearly independent characters
can be identified by stepwise discriminant analysis and invariant characters within a taxon are
revealed by the descrTaxon() function. If invariant characters are present, a more common
practice is to add a small constant (e.g. 0.000001) to some value than to remove the character as
a whole. The subset includes all characters identified as most suitable for taxonomic delimitation
by PCA and CDA analyses.

stepdisc.calc(centaurea)
#> Entered Removed Partial R-square F-value Pr > F
#> 1 MLW 0.667335064 406.554939 7.890234e-145
#> 2 ML 0.506437108 207.611046 1.192547e-92
#> 3 IW 0.200252478 50.579714 3.483830e-29
#> 4 LS 0.157685396 37.752982 2.249101e-22
#> 5 IV 0.146472637 34.550532 1.281334e-20
#> 6 MW 0.115246110 26.181821 6.249414e-16
#> 7 MF 0.091473201 20.203721 1.736040e-12
#> 8 AP 0.070455039 15.184304 1.550026e-09
#> 9 IS 0.056738406 12.030259 1.174018e-07
#> 10 LBA 0.056209421 11.891566 1.422384e-07
#> 11 LW 0.054420588 11.472159 2.538006e-07
#> 12 AL 0.047197814 9.857623 2.364358e-06
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#> 13 ILW 0.038600447 7.976519 3.205143e-05
#> 14 LBS 0.033553832 6.885891 1.454076e-04
#> 15 SFT 0.026130580 5.312678 1.281299e-03
#> 16 CG 0.028448848 5.788052 6.647989e-04
#> 17 IL 0.020554879 4.141286 6.406217e-03
#> 18 LM 0.012787149 2.551697 5.474060e-02
#> 19 ALW 0.011851686 2.358787 7.062704e-02
#> 20 AW 0.013462436 2.679193 4.621888e-02
#> 21 AL 0.005503766 1.086553 3.541773e-01
#> 22 SF 0.011227184 2.229299 8.371473e-02
#>
#> Selected characters:
#> MLW, ML, IW, LS, IV, MW, MF, AP, IS, LBA, LW, AL, ILW, LBS, SFT, CG, IL, LM, ALW, AW, SF

partialCent = keepCharacter(centaurea, c("MLW", "ML", "IW", "LS", "IV",
"MW", "MF", "AP", "IS", "LBA", "LW", "AL", "ILW",
"LBS","SFT", "CG", "IL", "LM", "ALW", "AW", "SF"))

descrTaxon(partialCent, format = "$SD")
#> group hybr ph ps st
#> 1 format SD SD SD SD
#> 2 N 120 160 240 92
#> 3 MLW 3.912 1.962 4.522 5.531
#> 4 ML 1.66 1.255 1.548 1.269
#> 5 IW 0.234 0.175 0.192 0.208
#> 6 LS 0.359 0.243 0.111 0.491
#> 7 IV 0.129 0 0.459 0.501
#> 8 MW 0.123 0.394 0.251 0.11
#> 9 MF 2.069 2.066 2.054 1.801
#> 10 AP 0.194 0.256 0.243 0.204
#> 11 IS 0.341 0.454 0.429 0.435
#> 12 LBA 0.501 0.332 0.2 0.479
#> 13 LW 0.78 1.049 0.86 0.783
#> 14 AL 0.295 0.237 0.24 0.281
#> 15 ILW 0.147 0.078 0.117 0.217
#> 16 LBS 0.374 0.191 0.493 0
#> 17 SFT 0.164 0.139 0.142 0.106
#> 18 CG 0.435 0.283 0.443 0.35
#> 19 IL 0.152 0.133 0.135 0.119
#> 20 LM 0 0.352 0.143 0.104
#> 21 ALW 0.195 0.176 0.228 0.246
#> 22 AW 0.098 0.115 0.104 0.094
#> 23 SF 9.827 10.211 9.084 8.944

partialCent$data[ partialCent$Taxon == "hybr", "LM" ][1] =
partialCent$data[partialCent$Taxon=="hybr","LM"][1] + 0.000001

partialCent$data[ partialCent$Taxon == "ph", "IV" ][1] =
partialCent$data[partialCent$Taxon=="ph","IV"][1] + 0.000001

partialCent$data[ partialCent$Taxon == "st", "LBS"][1] =
partialCent$data[partialCent$Taxon=="st","LBS"][1] + 0.000001
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If the data have an approximately normal distribution, linear (LDA; classif.lda()) or
quadratic (QDA; classif.qda()) discriminant function can be used. The decision what
analysis to use should be based on the homogeneity of the within-group covariance matrices
(tested by Box’s M-test; BoxMTest()). LDA assumes equality of covariances among the
characters (the predictor variables). This assumption is relaxed with QDA.
The non-parametric k nearest neighbours method (classif.knn()) can be used without
making any assumptions about data distributions.

boxMTest(partialCent)
#> Box's M-test for homogeneity of covariance matrices
#> Chi-Sq (approx.) = 14628, df = 693, p-value < 2.2e-16

The Box’s M test indicates that there is a significant difference in the covariance matrices among
taxa (p-value < 0.001), so quadratic DA is recommended.

10.1 Linear discriminant analysis (LDA)

Linear discriminant analysis can be performed by invoking the classif.lda() function. If
collinear variables are present, a warning message is returned. The problem of multicollinearity
is not covered in this tutorial, but note that if the classification itself is the only thing that
matters, the warning can be ignored.

classifRes.lda = classif.lda(partialCent)

classif.matrix(classifRes.lda, level = "taxon")
#> Taxon N as.hybr as.ph as.ps as.st correct correct[%]
#> 1 hybr 120 92 0 23 5 92 76.67
#> 2 ph 160 0 154 6 0 154 96.25
#> 3 ps 240 36 8 195 1 195 81.25
#> 4 st 92 12 0 3 77 77 83.70
#> 5 Total 612 140 162 227 83 518 84.64

classif.matrix(classifRes.lda, level = "pop")
#> Population Taxon N as.hybr as.ph as.ps as.st correct correct[%]
#> 1 BABL ps 20 10 0 9 1 9 45.00
#> 2 BABU hybr 20 18 0 0 2 18 90.00
#> 3 BOL ps 20 3 0 17 0 17 85.00
#> 4 BRT ph 20 0 20 0 0 20 100.00
#> 5 BUK ph 20 0 15 5 0 15 75.00
#> 6 CERM ps 20 14 0 6 0 6 30.00
#> 7 CERV ph 20 0 20 0 0 20 100.00
#> 8 CZLE ps 20 0 1 19 0 19 95.00
#> 9 DEB hybr 20 15 0 4 1 15 75.00
#> 10 DOM st 12 0 0 0 12 12 100.00
#> 11 DUB st 20 4 0 0 16 16 80.00
#> 12 HVLT ps 20 1 0 19 0 19 95.00
#> 13 KASH ps 20 0 1 19 0 19 95.00
#> 14 KOT ph 20 0 20 0 0 20 100.00
#> 15 KOZH ps 20 0 0 20 0 20 100.00
#> 16 KRO ph 20 0 20 0 0 20 100.00
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#> 17 LES st 20 5 0 3 12 12 60.00
#> 18 MIL st 20 2 0 0 18 18 90.00
#> 19 NEJ ph 20 0 20 0 0 20 100.00
#> 20 NSED ph 20 0 19 1 0 19 95.00
#> 21 OLE1 ps 20 1 0 19 0 19 95.00
#> 22 OLE2 ps 20 1 6 13 0 13 65.00
#> 23 PRIS ps 20 3 0 17 0 17 85.00
#> 24 PROS hybr 20 8 0 12 0 8 40.00
#> 25 RTE hybr 20 20 0 0 0 20 100.00
#> 26 RUS hybr 20 17 0 2 1 17 85.00
#> 27 SOK ps 20 1 0 19 0 19 95.00
#> 28 STCV ph 20 0 20 0 0 20 100.00
#> 29 STGH ps 20 2 0 18 0 18 90.00
#> 30 VIT hybr 20 14 0 5 1 14 70.00
#> 31 VOL st 20 1 0 0 19 19 95.00
#> 32 Total 612 140 162 227 83 518 84.64

A detailed classification of populations is very useful, as it can reveal atypical or incorrectly
assigned populations. Most of the populations from the sample data were classified successfully
(generally over 70% of correct classifications and often 100%), but some populations (BABL,
CERM, LES, OLE2, PROS) yielded a maximum of 65% of correct classifications. Moreover,
almost all of them were “incorrectly” clustered by hierarchical classification, and the positions of
these populations in the PCA ordination plot are within clusters of different taxa. Such popula-
tions require further attention. For example, these results may indicate previously unrecognized
hybridization.

The results can be exported to the clipboard or a file using the exportRes() function. In
the example below, posterior probabilities of classification of an individual into each group are
exported.

classif_lda = classif.matrix(classifRes.lda, level = "indiv")
exportRes(object = classif_lda, file = "lda_classifMatrix.txt")

10.2 Quadratic discriminant analysis (LDA)

Quadratic DA does not assume equal covariance matrices among groups and can be calculated
by the classif.qda() function.

classifRes.qda = classif.qda(partialCent)

classif.matrix(classifRes.qda, level = "taxon")
#> Taxon N as.hybr as.ph as.ps as.st correct correct[%]
#> 1 hybr 120 105 0 3 12 105 87.50
#> 2 ph 160 0 158 2 0 158 98.75
#> 3 ps 240 118 31 74 17 74 30.83
#> 4 st 92 8 0 2 82 82 89.13
#> 5 Total 612 231 189 81 111 419 68.46
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10.3 K nearest neighbour classificatory DA

The k nearest neighbour method classifies each individual according to the a priori classifi-
cation of its k neighbours (by Euclidean distance) using a majority vote. As this method uses
Euclidean distance, the characters are standardized to a zero mean and a unit variance. The
cross-validation mode can be set as "indiv" or "pop", in the same manner as above.

The optimum number of neighbours to consider is unknown, but it is estimated empirically from
the data. The knn.select() function searches for the optimal k for the given dataset. The
function can use two cross-validation methods (by individuals and populations) in a similar way
as with classificatory discriminant analysis functions (the latter is used in the example below).
The function computes the number of correctly classified individuals for k values from 1 to
30 and highlights the value with the greatest success rate. Ties (i.e. when there are the same
numbers of votes for two or more groups) are broken at random, so subsequent iterations may
yield different results. Therefore, the functions compute ten iterations, and the average success
rates for each k are used; the minimum and maximum success rates for each k are also displayed
as error bars. Note that several k values may have nearly the same success rates; if this is the
case, the similarity of iterations may also be considered.

knn.select(partialCent, crossval = "pop")

#> Tested 10 % of Ks
#> Tested 20 % of Ks
#> Tested 30 % of Ks
#> Tested 40 % of Ks
#> Tested 50 % of Ks
#> Tested 60 % of Ks
#> Tested 70 % of Ks
#> Tested 80 % of Ks
#> Tested 90 % of Ks
#> Tested 100 % of Ks
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#>
#> The highest number of correct classifications is at k = 15.
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The highest number of correct classifications is at k = 15, so we set k to equal 15 in the
classif.knn() function (to classify each individual according its 15 nearest neighbours).

classifRes.knn = classif.knn(partialCent, crossval = "pop", k = 15)

classif.matrix(classifRes.knn, level = "taxon")
#> Taxon N as.hybr as.ph as.ps as.st correct correct[%]
#> 1 hybr 120 55 0 52 13 55 45.83
#> 2 ph 160 0 152 5 3 152 95.00
#> 3 ps 240 14 14 212 0 212 88.33
#> 4 st 92 30 4 9 49 49 53.26
#> 5 Total 612 99 170 278 65 468 76.47

The results can be exported with the exportRes() function.

popClassifMatrix = classif.matrix(classifRes.knn, level = "taxon")

exportRes(popClassifMatrix, file = "clipboard")

10.4 Classification of sample individuals based on an independent training set.

The functions classifSample.lda(), classifSample.qda() and classifSample.knn() are
designed to classify hybrid populations, type herbarium specimens, atypical samples, entirely
new data, etc. A discriminant criterion is devised from the original (training) dataset and
applied to the specific sample(s).

Let us remove population LES, and pretend that sample LES1116 is a type herbarium specimen
of Centaurea stenolepis and that we want to quantify its similarity with other populations of
the species. To classify LES1116, run the following code:

trainingSet = removePopulation(partialCent, populationName = "LES")
typeSpecimen = keepSample(partialCent, "LES1116")

classifSample.lda(typeSpecimen, trainingSet)
#> ID Population Taxon classification as.hybr as.ph as.ps as.st
#> 1 LES1116 LES st st 0.0105 0.0143 0.0029 0.9723

classifSample.qda(typeSpecimen, trainingSet)
#> ID Population Taxon classification as.hybr as.ph as.ps as.st
#> 1 LES1116 LES st st 0 0 0 1

classifSample.knn(typeSpecimen, trainingSet, k = 4)
#> ID Population Taxon classification
#> 1 LES1116 LES st st
#> Proportion.of.the.votes.for.the.winning.class
#> 1 1

The probability that sample LES1116 is of C. stenolepis is over 90%.
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Further reading

A brief account of the multivariate methods used in taxonomy is given in:

Marhold K. (2011). Multivariate morphometrics and its application to monography at spe-
cific and infraspecific levels. In: Stuessy TF, Lack HW, eds. Monographic plant systematics:
fundamental assessment of plant biodiversity. Ruggell: A.R.G. Gantner Verlag K. G., 73–99.

For a detailed description of the methods used, see:

Legendre P. & Legendre L. (2012). Numerical Ecology, 3rd English edn. Elsevier Science
BV, Amsterdam.

Selection of papers employing the methods of multivariate morphometrics:

Lihová J., Kudoh H., Marhold K. (2010). Morphometric studies of polyploid Cardamine
species (Brassicaceae) from Japan: solving a long-standing taxonomic and nomenclatural con-
troversy. Australian Systematic Botany 23, 94-111. doi: 10.1071/sb09038

Melichárková A., Španiel S., Marhold K., Hurdu B.I., Drescher A., Zozomová-
Lihová J. (2019). Diversification and independent polyploid origins in the disjunct species
Alyssum repens from the Southeastern Alps and the Carpathians. American Journal of Botany
106, 1499-1518. doi: 10.1002/ajb2.1370

Skokanová K., Hodálová I., Mereďa P., Slovák M., Kučera, J. (2019). The Cyanus
tuberosus group (Asteraceae) in the Balkans: biological entities require correct names. Plant
Systematics and Evolution 305, 569–596. doi: 10.1007/s00606-019-01576-4

Šlenker M., Zozomová-Lihová J., Mandáková T., Kudoh H., Zhao Y., Soejima A.,
et al. (2018). Morphology and genome size of the widespread weed Cardamine occulta: how
it differs from cleistogamic C. kokaiensis and other closely related taxa in Europe and Asia.
Botanical Journal of the Linnean Society 187, 456-482. doi: 10.1093/botlinnean/boy030

Španiel S., Marhold K., Passalacqua N.G., Zozomová-Lihová J. (2011). Intricate vari-
ation patterns in the diploid-polyploid complex of Alyssum montanum-A. repens (Brassicaceae)
in the Apennine Peninsula: Evidence for long-term persistence and diversification. American
Journal of Botany 98, 1887-1904. doi: 10.3732/ajb.1100147

Šrámková G., Kolář F., Záveská E., Lučanová M., Španiel S., Kolník M., et
al. (2019). Phylogeography and taxonomic reassessment of Arabidopsis halleri - a mon-
tane species from Central Europe. Plant Systematics and Evolution 305, 885-898. doi:
10.1007/s00606-019-01625-y
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