Package 'Mqrem'

February 2, 2021
Type Package
Title M-Quantile Regression Coefficients Modeling
Version 1.2
Date 2021-01-29
Author Paolo Frumento paolo.frumento@unipi.it
Maintainer Paolo Frumento paolo.frumento@unipi.it
Description Parametric modeling of M-quantile regression coefficient functions.
Imports stats, utils, graphics, Hmisc
Depends pch (>=2.0)
License GPL-2
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-02 03:10:06 UTC
R topics documented:
Mqrem-package 2
iMqr 3
plf 6
plot.iMqr 7
predict.iMqr 8
psi 10
slp 11
summary.iMqr 12
Index 15

Description

This package implements Frumento and Salvati (2020) method for M-quantile regression coefficients modeling (Mqrem), in which M-quantile regression coefficients are described by (flexible) parametric functions of the order of the quantile. This permits modeling the entire conditional M -quantile function of a response variable.

Details

Package:	Mqrcm
Type:	Package
Version:	1.2
Date:	$2021-01-29$
License:	GPL-2

The function iMqr permits specifying the regression model. Two special functions, slp and plf, are provided to facilitate model building. The auxiliary functions summary.iMqr, predict.iMqr, and plot.iMqr can be used to extract information from the fitted model.

Author(s)

Paolo Frumento
Maintainer: Paolo Frumento paolo.frumento@unipi.it

References

Frumento, P., Salvati, N. (2020). Parametric modeling of M-quantile regression coefficient functions with application to small area estimation, Journal of the Royal Statistical Society, Series A, 183(1), p. 229-250.

Examples

```
# use simulated data
n <- 250
x <- rexp(n)
y <- runif(n, 0, 1 + x)
model <- iMqr(y ~ x, formula.p = ~ p + I(p^2))
summary(model)
summary(model, p = c(0.1,0.2,0.3))
predict(model, type = "beta", p = c(0.1,0.2,0.3))
predict(model, type = "CDF", newdata = data.frame(x = c(1,2,3), y = c(0.5,1,2)))
```

```
    predict(model, type \(=\) "QF", \(p=c(0.1,0.2,0.3)\), newdata \(=\) data.frame(x = c(1,2,3)))
    predict(model, type \(=\) "sim", newdata \(=\) data.frame \((x=c(1,2,3))\) )
    \(\operatorname{par}(m f r o w=c(1,2)) ;\) plot(model, ask \(=\) FALSE \()\)
```

iMqr M-Quantile Regression Coefficients Modeling

Description

This function implements Frumento and Salvati's (2020) method for M-quantile regression coefficients modeling (Mqrem). M-quantile regression coefficients are described by parametric functions of the order of the quantile.

Usage

iMqr(formula, formula.p $=\sim \operatorname{slp}(p, 3)$, weights, data, s, psi = "Huber", plim = c(0,1), tol = 1e-6, maxit)

Arguments

formula	a two-sided formula of the form $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\ldots$ a symbolic description of the M-quantile regression model.
formula.p	a one-sided formula of the form $\sim \mathrm{b} 1(\mathrm{p}, \ldots)+\mathrm{b} 2(\mathrm{p}, \ldots)+\ldots$, describing how M-quantile regression coefficients depend on p, the order of the quantile. an optional vector of weights to be used in the fitting process. The weights will always be normalized to sum to the sample size. This implies that, for example, using double weights will not halve the standard errors.
weights	an optional data frame, list or environment containing the variables in formula. an optional 0/1 matrix that permits excluding some model coefficients (see 'Ex- amples'). s
psi	a character string indicating the 'psi' function. Currently, only 'Huber' is imple- mented.
plim	the extremes of the estimation interval. You may want to model the M-quantile regression coefficients in an interval, say, (a, b) instead of $(0,1)$. convergence criterion for numerical optimization.
maxit	maximum number of iterations.

Details

A linear model is used to describe the p-th conditional M-quantile:

$$
M(p \mid x)=\beta_{0}(p)+\beta_{1}(p) x_{1}+\beta_{2}(p) x_{2}+\ldots
$$

Assume that each M-quantile regression coefficient can be expressed as a parametric function of p of the form:

$$
\beta(p \mid \theta)=\theta_{0}+\theta_{1} b_{1}(p)+\theta_{2} b_{2}(p)+\ldots
$$

where $b_{1}(p), b_{2}(p, \ldots)$ are known functions of p. If q is the dimension of $x=\left(1, x_{1}, x_{2}, \ldots\right)$ and k is that of $b(p)=\left(1, b_{1}(p), b_{2}(p), \ldots\right)$, the entire M-conditional quantile function is described by a $q \times k$ matrix θ of model parameters.
Users are required to specify two formulas: formula describes the regression model, while formula.p identifies the 'basis' $b(p)$. By default, formula. $\mathrm{p}=\sim \mathrm{slp}(\mathrm{p}, \mathrm{k}=3)$, a 3rd-degree shifted Legendre polynomial (see slp). Any user-defined function $b(p, \ldots)$ can be used, see 'Examples'.
Estimation of θ is carried out by minimizing an integrated loss function, corresponding to the integral, over p, of the loss function of standard M-quantile regression. This motivates the acronym iMqr (integrated M-quantile regression). The scale parameter sigma is estimated as the minimizer of the log-likelihood of a Generalized Asymmetric Least Informative distribution (Bianchi et al 2017), and is "modeled" as a piecewise-constant function of the order of the quantile.

Value

An object of class "iMqr", a list containing the following items:
coefficients a matrix of estimated model parameters describing the fitted M-quantile function.
plim a vector of two elements indicating the range of estimation.
call the matched call.
converged logical. The convergence status.
n.it the number of iterations.
obj.function the value of the minimized integrated loss function.
$s \quad$ the used ' s ' matrix.
psi the used 'psi' function.
covar the estimated covariance matrix.
mf the model frame used.
PDF , CDF the fitted values of the conditional probability density function (PDF) and cumulative distribution function (CDF). The CDF value should be interpreted as the order of the M-quantile that corresponds to the observed y variable, while the PDF is just the first derivative of the CDF.

Use summary.iMqr, plot.iMqr, and predict.iMqr for summary information, plotting, and predictions from the fitted model. The generic accessory functions coefficients, formula, terms, model.matrix, vcov are available to extract information from the fitted model.

Author(s)

Paolo Frumento paolo.frumento@unipi.it

References

Frumento, P., Salvati, N. (2020). Parametric modeling of M-quantile regression coefficient functions with application to small area estimation, Journal of the Royal Statistical Society, Series A, 183(1), p. 229-250.

Bianchi, et al. (2018). Estimation and testing in M-quantile regression with application to small area estimation, International Statistical Review, 0(0), p. 1-30.

See Also

summary.iMqr, plot.iMqr, predict.iMqr, for summary, plotting, and prediction, and plf and slp that may be used to define $b(p)$ to be a piecewise linear function and a shifted Legendre polynomial basis, respectively.

Examples

```
##### Using simulated data in all examples
##### NOTE 1: the true quantile and M-quantile functions do not generally coincide
##### NOTE 2: the true M-quantile function is usually unknown, even with simulated data
##### Example 1
n <- 250
x <- runif(n)
y<- rnorm(n, 1 + x, 1 + x)
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with
    # beta0(p) = beta1 (p) = 1 + qnorm(p)
# fit the 'true' model: b(p) = (1 , qnorm(p))
m1 <- iMqr(y ~ x, formula.p = ~ I(qnorm(p)))
# the fitted M-quantile regression coefficient functions are
    # beta0(p) = m1$coef[1,1] + m1$coef[1,2]*qnorm(p)
    # beta1(p) = m1$coef[2,1] + m1$coef[2,2]*qnorm(p)
# a basis b(p) = (1, p), i.e., beta(p) is assumed to be a linear function of p
m2 <- iMqr(y ~ x, formula.p = ~ p)
# a 'rich' basis b(p) = (1, p, p^2, log(p), log(1 - p))
m3 <- iMgr (y ~ x, formula.p = ~ p + I(p^2) + I(log(p)) + I(log(1 - p)))
# 'slp' creates an orthogonal spline basis using shifted Legendre polynomials
m4 <- iMqr(y ~ x, formula.p = ~ slp(p, k = 3)) # note that this is the default
# 'plf' creates the basis of a piecewise linear function
m5 <- iMqr(y ~ x, formula.p = ~ plf(p, knots = c(0.1,0.9)))
summary (m1)
summary(m1, p = c(0.25,0.5,0.75))
par(mfrow = c(1,2)); plot(m1, ask = FALSE)
# see the documentation for 'summary.iMqr' and 'plot.iMqr'
```

\#\#\#\#\# Example 2 \#\#\# excluding coefficients
n <- 250
$x<-\operatorname{runif}(n)$

```
qy <- function(p,x){(1 + qnorm(p)) + (1 + log(p))*x}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with
    # beta0(p) = 1 + qnorm(p)
    # beta1(p) = 1 + log(p)
y <- qy(runif(n), x) # to generate y, plug uniform p in qy (p,x)
iMar(y ~ x, formula.p = ~ I(qnorm(p)) + I(log(p)))
# I would like to exclude log(p) from beta0(p), and qnorm(p) from beta1(p)
# I set to 0 the corresponding entries of 's'
s <- rbind(c(1,1,0),c(1,0,1))
iMqr(y ~ x, formula.p = ~ I(qnorm(p)) + I(log(p)), s = s)
```


Description

Generates $b_{1}(p), b_{2}(p), \ldots$ such that, for $0<\mathrm{p}<1$,

$$
\theta_{1} * b_{1}(p)+\theta_{2} * b_{2}(p)+\ldots
$$

is a piecewise linear function with slopes $\left(\theta_{1}, \theta_{2}, \ldots\right)$.

Usage

plf(p, knots)

Arguments

$\mathrm{p} \quad$ a numeric vector of values between 0 and 1.
knots a set of internal knots between 0 and 1. It can be NULL for no internal knots.

Details

This function permits computing a piecewise linear function on the unit interval. A different slope holds between each pair of knots, and the function is continuous at the knots.

Value

A matrix with one row for each element of p, and length(knots) +1 columns. The knots are returned as attr (, "knots"). Any linear combination of the basis matrix is a piecewise linear function where each coefficient represents the slope in the corresponding sub-interval (see 'Examples').

Note

This function is typically used within a call to iMqr. A piecewise linear function can be used to describe how M-quantile regression coefficients depend on the order of the quantile.

Author(s)

Paolo Frumento paolo.frumento@unipi.it

See Also

slp, for shifted Legendre polynomials.

Examples

```
    p <- seq(0,1, 0.1)
    a1 <- plf(p, knots = NULL) # returns p
    a2 <- plf(p, knots = c(0.2,0.7))
    plot(p, 3 + 1*a2[,1] - 1*a2[,2] + 2*a2[,3], type = "l")
        # intercept = 3; slopes = (1,-1,2)
```

```
plot.iMqr Plot M-Quantile Regression Coefficients
```


Description

Plots M-quantile regression coefficients $\beta(p)$ as a function of p, based on a fitted model of class "iMqr".

Usage

\#\# S3 method for class 'iMqr'
plot (x, conf.int $=$ TRUE, polygon $=$ TRUE, which $=$ NULL, ask $=$ TRUE, ...)

Arguments

x	an object of class "iMqr", typically the result of a call to iMqr.
conf.int	logical. If TRUE, asymptotic 95\% confidence intervals are added to the plot.
polygon	logical. If TRUE, confidence intervals are represented by shaded areas via polygon. Otherwise, dashed lines are used.
which	an optional numerical vector indicating which coefficient(s) to plot. If which = NULL, all coefficients are plotted.
ask	logical. If which = NULL and ask = TRUE (the default), you will be asked interactively which coefficients to plot.
\ldots	additional graphical parameters, that can include xlim, ylim, xlab, ylab, col, lwd, cex.lab, cex.axis, axes, frame.plot. See par.

Details

Using iMqr, each M-quantile regression coefficient $\beta(p)$ is described by a linear combination of known parametric functions of p. With this command, a plot of $\beta(p)$ versus p is created.

Author(s)

Paolo Frumento paolo.frumento@unipi.it

See Also

iMqr for model fitting; summary.iMqr and predict.iMqr for model summary and prediction.

Examples

```
# using simulated data
n <- 250
x <- runif(n)
qy <- function(p,x){p^2 + x*log(p)}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with
        # beta0(p) = p^2
    # beta1(p) = log(p)
y <- qy(runif(n), x) # to generate y, plug uniform p in qy (p,x)
par(mfrow = c(1,2))
plot(iMqr(y ~ x, formula.p = ~ slp(p,3)), ask = FALSE)
# flexible fit with shifted Legendre polynomials
```

```
predict.iMqr Prediction After M-Quantile Regression Coefficients Modeling
```


Description

Predictions from an object of class "iMqr".

Usage

\#\# S3 method for class 'iMqr'
predict (object, type = c("beta", "CDF", "QF", "sim"), newdata, p, se = TRUE, ...)

Arguments

object an object of class "iMqr", the result of a call to iMqr.
type a character string specifying the type of prediction. See 'Details'.

newdata	an optional data frame in which to look for variables with which to predict. If omitted, the data are used. For type $=" C D F ", ~ i t ~ m u s t ~ i n c l u d e ~ t h e ~ r e s p o n s e ~$
variable. Ignored if type = "beta".	
a numeric vector indicating the order(s) of the quantile to predict. Only used if	
type = "beta" or type = "QF".	
se	logical. If TRUE (the default), standard errors of the prediction will be computed. Only used if type = "beta" or type $=" Q F " . ~$ \ldots.
for future methods.	

Details

Using iMqr, M-quantile regression coefficients $\beta(p)$ are modeled as parametric functions of p, the order of the quantile. This implies that the model parameter is not $\beta(p)$ itself. The function predict. iqr permits computing $\beta(p)$ and other quantities of interest, as detailed below.

- if type = "beta" (the default), $\beta(p)$ is returned at the supplied value(s) of p . If p is missing, a default $\mathrm{p}=(0.01, \ldots, 0.99)$ is used.
- if type = "CDF", the value of the fitted CDF (cumulative distribution function) and PDF (probability density function) are computed. The CDF value should be interpreted as the order of the M-quantile that corresponds to the observed y values, while the PDF is just the first derivative of the CDF.
- if type $=$ "QF", the fitted values $x^{\prime} \beta(p)$, corresponding to the conditional M-quantile function, are computed at the supplied values of p.
- if type = "sim", data are simulated from the fitted model. To simulate the data, the fitted conditional M-quantile function is computed at randomly generated p following a Uniform $(0,1)$ distribution. CAUTION: this generates data assuming that the model describes the quantile function, while in practice it describes M-quantiles.

Value

- if type = "beta" a list with one item for each covariate in the model. Each element of the list is a data frame with columns (\mathbf{p}, beta, se, low, up) reporting $\beta(p)$, its estimated standard error, and the corresponding 95% confidence interval. If se $=$ FALSE, the last three columns are not computed.
- if type = "CDF", a two-columns data frame (CDF , PDF).
- if type = "QF" and se = FALSE, a data frame with one row for each observation, and one column for each value of p. If se = TRUE, a list of two data frames, fit (predictions) and se.fit (standard errors).
- if type = "sim", a vector of simulated data.

Note

Prediction may generate quantile crossing if the support of the new covariates values supplied in newdata is different from that of the observed data.

Author(s)

Paolo Frumento paolo.frumento@unipi.it

See Also

iMqr, for model fitting; summary.iMqr and plot.iMqr, for summarizing and plotting iMqr objects.

Examples

```
    # using simulated data
    n <- 250
    x <- runif(n)
    y<- rlogis(n, 1 + x, 1 + x)
    # true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with
        # beta0(p) = beta1(p) = 1 + log(p/(1 - p))
    model <- iMqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)))
    # (fit asymmetric logistic distribution)
    # predict beta(0.25), beta(0.5), beta(0.75)
    predict(model, type = "beta", p = c(0.25,0.5, 0.75))
    # predict the CDF and the PDF at new values of }x\mathrm{ and }
    predict(model, type = "CDF", newdata = data.frame(x = c(.1,.2,.3), y = c(1,2,3)))
    # computes the quantile function at new x, for p = (0.25,0.5,0.75)
predict(model, type = "QF", p = c(0.25,0.5,0.75), newdata = data.frame(x = c(.1,.2,.3)))
    # simulate data from the fitted model
    ysim <- predict(model, type = "sim") # 'newdata' can be supplied
    # NOTE: data are generated using the fitted M-quantile function as if
    # it was a quantile function. This means that the simulated data will
    # have quantiles (and not M-quantiles) described by the fitted model.
    # There is no easy way to generate data with a desired M-quantile function.
```

psi

Description

Influence function to be passed to iMqr.

Usage

Huber (c = 1.345)

Arguments

c tuning parameter for Huber's influence function.

Details

These functions are only meant to be used used within a call to iMqr.

Value

A list with the following items:

```
psi, psi_tau, psi1_tau, rho_tau
    define the influence function.
par the parameters of the influence function, e.g., the value of c in Huber's function.
name a character string indicating the name of the influence function.
```


References

Huber, P. J. (1981). "Robust Statistics", John Wiley and Sons, New York.

See Also

iMqr

Examples

```
    # The following are identical:
    # iMqr(y ~ x, psi = "Huber")
    # iMar(y ~ x, psi = Huber)
    # iMqr(y ~ x, psi = Huber(c = 1.345))
```

 slp Shifted Legendre Polynomials

Description

Computes shifted Legendre polynomials.

Usage

$\operatorname{slp}(\mathrm{p}, \mathrm{k}=3$, intercept $=\mathrm{FALSE})$

Arguments

$\mathrm{p} \quad$ the variable for which to compute the polynomials. Must be $0<=\mathrm{p}<=1$.
$k \quad$ the degree of the polynomial.
intercept logical. If TRUE, the polynomials include the constant term.

Details

Shifted Legendre polynomials (SLP) are orthogonal polynomial functions in $(0,1)$ that can be used to build a spline basis, typically within a call to iMqr. The constant term is omitted unless intercept $=$ TRUE: for example, the first two SLP are ($2 * p-1,6 * p^{\wedge} 2-6 * p+1$), but $\operatorname{slp}(p, k=2)$ will only return ($2 * \mathrm{p}, 6 \star \mathrm{p}^{\wedge} 2-6 \star \mathrm{p}$).

Value

An object of class "slp", i.e., a matrix with the same number of rows as p , and with k columns named slp1, slp2, . . containing the SLP of the corresponding orders. The value of k is reported as attribute.

Note

The default for iMqr is formula. $\mathrm{p}=\sim \operatorname{slp}(\mathrm{p}, \mathrm{k}=3)$.

Author(s)

Paolo Frumento paolo.frumento@unipi.it

References

Refaat El Attar (2009), Legendre Polynomials and Functions, CreateSpace, ISBN 978-1-4414-9012-4.

See Also

$\mathrm{pl} f$, for piecewise linear functions in the unit interval.

Examples

```
    p <- seq(0,1,0.1)
    slp(p, k = 1) # = 2*p
    slp(p, k = 1, intercept = TRUE) # = 2*p - 1 (this is the true SLP of order 1)
    slp(p, k = 3) # a linear combination of (p, p^2, p^3), with slp(0,k) = 0
```


Description

Summary of an object of class "iMqr".

Usage

\#\# S3 method for class 'iMqr'
summary (object, p , cov $=$ FALSE, \ldots)

Arguments

object an object of class "iMqr", the result of a call to iMqr.
p an optional vector of quantiles.
cov logical. If TRUE, the covariance matrix of $\beta(p)$ is reported. Ignored if \mathbf{p} is missing.
.. for future methods.

Details

If p is missing, a summary of the fitted model is reported. This includes the estimated coefficients, their standard errors, and other summaries (see 'Value'). If p is supplied, the M-quantile regression coefficients of order p are extrapolated and summarized.

Value

If p is supplied, a standard summary of the estimated M-quantile regression coefficients is returned for each value of p. If $\operatorname{cov}=$ TRUE, the covariance matrix is also reported.
If p is missing (the default), a list with the following items:
converged logical value indicating the convergence status.
n.it the number of iterations.
n the number of observations.
free.par the number of free parameters in the model.
coefficients the matrix of estimated coefficients. Each row corresponds to a covariate, while each column corresponds to an element of $b(p)$, the set of functions that describe how M-quantile regression coefficients vary with the order of the quantile. See 'Examples'.
se the estimated standard errors.
test.x Wald test for the covariates. Each row of coefficients is tested for nullity.
test.p Wald test for the building blocks of the quantile function. Each column of coefficients is tested for nullity.
obj.function the minimized loss function.
call the matched call.

Author(s)

Paolo Frumento paolo.frumento@unipi.it

See Also

iMqr, for model fitting; predict.iMar and plot.iMqr, for predicting and plotting objects of class "iMar".

Examples

```
# using simulated data
set.seed(1234); n <- 250
x1 <- rexp(n)
x2 <- runif(n)
qy <- function(p,x){qnorm(p)*(1 + x)}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with
    # beta0(p) = beta1(p) = qnorm(p)
y <- qy(runif(n), x1) # to generate y, plug uniform p in qy (p,x)
    # note that x2 does not enter
model <- iMqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + p + I(p^2))
# beta(p) is modeled by linear combinations of b(p) = (1, qnorm(p),p,p^2)
summary(model)
# interpretation:
    # beta0(p) = model$coef[1,]*b(p)
    # beta1(p) = model$coef[2,]*b(p); etc.
# x2 and (p, p^2) are not significant
```

summary (model, $\mathrm{p}=\mathrm{c}(0.25,0.75)$) \# summary of beta(p) at selected quantiles

Index

```
* array
    plf,6
* methods
    plot.iMqr,7
    predict.iMqr,8
    summary.iMqr, 12
* models
    iMqr, 3
    psi,10
* package
    Mqrcm-package, 2
* regression
    iMqr, 3
* smooth
    slp,11
Huber (psi), 10
iMqr, 2, 3, 7-13
Mqrcm-package, 2
par,7
plf, 2, 5, 6,12
plot.iMqr, 2, 4, 5, 7, 10, 13
predict.iMqr, 2, 4, 5, 8, 8, 13
psi, 10
slp, 2, 4, 5, 7, 11
summary.iMqr, 2, 4, 5, 8,10,12
```

