Package 'MultBiplotR'

April 6, 2021

Type Package
Title Multivariate Analysis Using Biplots in R
Version 1.3.30
Date 2021-03-30
Author Jose Luis Vicente-Villardon
Maintainer Jose Luis Vicente-Villardon villardon@usal.es
Description Several multivariate techniques from a biplot perspective. It is the translation (with many improvements) into R of the previous package developed in 'Matlab'. The package contains some of the main developments of my team during the last 30 years together with some more standard techniques. Package includes: Classical Biplots, HJBiplot, Canonical Biplots, MANOVA Biplots, Correspondence Analysis, Canonical Correspondence Analysis, Canonical STATIS-ACT, Logistic Biplots for binary and ordinal data, Multidimensional Unfolding, External Biplots for Principal Coordinates Analysis or Multidimensional Scaling, among many others. References can be found in the help of each procedure.

License GPL (>=2)
Encoding UTF-8
Repository CRAN
Depends R (>= 4.0.0)

Suggests

Imports MASS, scales, geometry, deldir, mirt, GPArotation, optimr, Hmisc, car, dunn.test, gplots, lattice, polycor, dae, rgl, xtable, mvtnorm

LazyData yes
Archs i386, x64
NeedsCompilation no
Date/Publication 2021-04-06 08:50:09 UTC

R topics documented:

MultBiplotR-package 6
AddBinVars2Biplot 7
AddCluster2Biplot 8
AddContVars2Biplot 10
AddOrdVars2Biplot 11
AddSupVars2Biplot 12
anova.RidgeBinaryLogistic 13
Bartlett.Tests 14
BasicDescription 15
BinaryDistances 16
BinaryLogBiplotEM 17
BinaryLogBiplotGD 18
BinaryLogBiplotJoint 20
BinaryLogBiplotMirt 21
BinaryLogisticBiplot 22
BinaryProximities 23
Biplot.PLSR 26
Biplot.PLSR1BIN 27
BootstrapDistance 28
BootstrapScalar 30
BootstrapSmacof 32
BoxPlotPanel 34
CA 35
Canonical.Variate.Analysis 36
CanonicalBiplot 37
CanonicalDistanceAnalysis 39
CanonicalStatisBiplot 41
CategoricalDistances 42
CategoricalProximities 43
CCA 44
CheckBinaryMatrix 46
CheckBinaryVector 46
Chemical 47
Circle 48
Coinertia 49
ColContributionPlot 50
ConcEllipse 51
ConfidenceInterval 52
ConstrainedLogisticBiplot 53
ConstrainedOrdinalLogisticBiplot 54
ContinuousDistances 55
ContinuousProximities 56
Convert2ThreeWay 58
ConvertFactors2Integers 59
CorrelationCircle 59
CrissCross 60
R topics documented:3
CumSum 62
Dataframe2BinaryMatrix 63
DataFrame2Matrix4Regression 64
DensityBiplot 64
Dhats 65
diagonal 66
DimensionLabels 67
dlines 68
Doctors 69
ErrorBarPlotPanel 69
EuclideanDistance 71
ExpandTable 71
ExternalBinaryLogisticBiplot 72
ExtractTable 74
FA.Biplot 75
Fact2Bin 78
Fraction 78
Games_Howell 79
GD.Biplot 80
GeneralizedProcrustes 82
GetBiplotScales 83
GetCCAScales 84
ginv 85
GowerProximities 86
GowerSimilarities 87
Hermquad 88
HistogramPanel 89
HJ.Biplot 90
InBox 92
InitialTransform 93
Integer2Binary 94
Kruskal.Wallis.Tests 95
Levene.Tests 96
LogFrequencyBiplot 96
logit 99
Matrix2Proximities 99
matrixsqrt 100
matrixsqrinv 101
MDS 102
MGC 104
MonotoneRegression 105
moth 106
Multiquad 107
MultiTableStatistics 108
MultiTableTransform 109
NiceNumber 109
NIPALS.Biplot 110
NIPALSPCA 112
NominalDistances 113
NormalityTests 115
Numeric2Binary 116
ones 117
OrdinalLogisticFit 117
OrdLogBipEM 119
OrdVarBiplot 121
OrdVarCoordinates 122
OrthogonalizeScores 124
PCA.Analysis 124
PCA.Biplot 127
PCA.Bootstrap 130
plot.Binary.Logistic.Biplot 132
plot.CA.sol 135
plot.Canonical.Biplot 136
plot.CanonicalDistanceAnalysis 139
plot.CCA.sol 142
plot.ContinuousBiplot 144
plot.CVA 148
plot.ellipse 148
plot.External.Binary.Logistic.Biplot 150
plot.fraction 153
plot.MGC 154
plot.Ordinal.Logistic.Biplot 155
plot.PCA.Analysis 157
plot.PCA.Bootstrap 158
plot.PCoABootstrap 159
plot.Principal.Coordinates 161
plot.Procrustes 163
plot.StatisBiplot 164
plot.Unfolding 165
plot3d.ContinuousBiplot 167
plot3dCanonicalBiplot 170
PlotBiplotClusters 172
PlotOrdinalResponses 173
PLSR 174
PLSR1Bin 176
PLSRfit 177
PoliticalFigures 178
PrettyTicks 179
PrincipalCoordinates 180
print.MGC 182
print.RidgeBinaryLogistic 182
Protein 183
RAPD 184
RemoveRowsWithNaNs 185
riano 186
RidgeBinaryLogistic 187
RidgeBinaryLogisticFit 190
RidgeMultinomialLogisticFit 191
RidgeMultinomialLogisticRegression 193
RidgeOrdinalLogistic 195
scores.CCA.sol 197
SeparateVarTypes 198
SimpleProcrustes 199
SMACOF 201
smoking 203
Sparse.NIPALSPCA 204
spiders 205
SpidersEnv 206
SpidersSp 207
SSI 208
SSI3w 209
SSIEcon3w 210
SSIEnvir3w 211
SSIHuman3w 212
StatisBiplot 213
summary.Canonical.Biplot 215
summary.CCA.sol 216
summary.ContinuousBiplot 217
summary.CVA 218
summary.MGC 218
summary.PCA.Analysis 219
summary.PCA.Bootstrap 220
summary.PLSR 221
summary.PLSR1Bin 221
summary.Principal.Coordinates 222
summary.RidgeBinaryLogistic 223
textsmart 224
Three2TwoWay 225
TransformIni 226
Truncated.NIPALSPCA 227
Unfolding 228
VarBiplot 229
wa 231
wcor 232
weighted.quantile 232
WeightedPCoA 233
wine 234
zeros 236
Index 237

Description

Classical PCA biplot with aditional features as non-standard data transformations, scales for the variables, together with many graphical aids as sizes or colors of the points according to their qualities of representation or predictiveness. The package includes also Alternating Least Squares (ALS) or Criss-Cross procedures for the calculation of the reduced rank approximation that can deal with missing data, differencial weights for each element of the data matrix or even ronust versions of the procedure.

This is part of a bigger project called MULTBIPLOT that contains many other biplot techniques and is a translation to R of the package MULBIPLOT programmed in MATLAB. A GUI for the package is also in preparation.

Details

Package:	MultBiplot
Type:	Package
Version:	0.1 .00
Date:	$2015-01-14$
License:	GPL $(>=2)$

Author(s)

Jose Luis Vicente Villardon Maintainer: Jose Luis Vicente Villardon villardon@usal.es

References

Vicente-Villardon, J.L. (2010). MULTBIPLOT: A package for Multivariate Analysis using Biplots. Departamento de Estadistica. Universidad de Salamanca. (http://biplot.usal.es/ClassicalBiplot/index.html).
Vicente-Villardon, J. L. (1992). Una alternativa a las técnicas factoriales clasicas basada en una generalización de los metodos Biplot (Doctoral dissertation, Tesis. Universidad de Salamanca. España. 248 pp.[Links]).
Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453-467
Gabriel KR (1998) Generalised bilinear regresion, J. L. (1998). Use of biplots to diagnose independence models in three-way contingency tables. Visualization of Categorical Data. Academic Press. London.

Gabriel, K. R. (2002). Le biplot-outil d'exploration de donnes multidimensionnelles. Journal de la Societe francaise de statistique, 143(3-4).

Gabriel KR, Zamir S (1979) Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21(4):489-498.
Gower J, Hand D (1996) Biplots. Monographs on statistics and applied probability. 54. London: Chapman and Hall., 277 pp.
Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Qüestiió. 1986, vol. 10, núm. 1.
Demey J, Vicente-Villardon JL, Galindo MP, Zambrano A (2008) Identifying molecular markers associated with classification of genotypes using external logistic biplots. Bioinformatics 24(24):28322838.

Vicente-Villardon JL, Galindo MP, Blazquez-Zaballos A (2006) Logistic biplots. Multiple Correspondence Analysis and related methods pp 491-509.
Santos, C., Munoz, S. S., Gutierrez, Y., Hebrero, E., Vicente, J. L., Galindo, P.,
\& Rivas, J. C. (1991). Characterization of young red wines by application of HJ biplot analysis to anthocyanin profiles. Journal of Agricultural and food chemistry, 39(6), 1086-1090.
Rivas-Gonzalo, J. C., Gutierrez, Y., Polanco, A. M., Hebrero, E., Vicente, J. L., Galindo, P.,
\& Santos-Buelga, C. (1993). Biplot analysis applied to enological parameters in the geographical classification of young red wines. American journal of enology and viticulture, 44(3), 302-308.

Examples

```
data(iris)
bip=PCA.Biplot(iris[,1:4])
plot(bip)
```


Description

Add suplementary binary variables to a biplot of any kind

Usage

AddBinVars2Biplot(bip, Y, IncludeConst = TRUE, penalization = 0.2,
freq $=$ NULL, tolerance $=1 \mathrm{e}-05$, maxiter $=100$)

Arguments

bip	A biplot object
Y	Matrix of binary variables to add
IncludeConst	Should include a constant in the fit
penalization	Penalization for the fit
freq	frequencies for each row of Y. By default is 1.
tolerance	Tolerance for the fit
maxiter	Maximum number of iterations

Details

Fits binary variables to an existing biplot using penalized logistic regression.

Value

The biplot object with supplementary binary variables added.

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardón, J. L., \& Hernández-Sánchez, J. C. (2020). External Logistic Biplots for Mixed Types of Data. In Advanced Studies in Classification and Data Science (pp. 169-183). Springer, Singapore.

Examples

\#\# No examples yet

AddCluster2Biplot Add clusters to a biplot object

Description

The function add clusters to a biplot object to be represented on the biplot. The clusters can be defined by a nominal variable provided by the user, obtained from the hclust function of the base package or from the kmeans function

Usage

AddCluster2Biplot(Bip, NGroups=3, ClusterType="hi", Groups=NULL, Original=FALSE, ...)

Arguments

Bip A Biplot object obtained from any biplot procedure. It has to be a list containing a field called Bip\$RowCoordinates in order to calculate the clusters when necessary.
NGroups Number of groups or clusters. Only necessary when hierarchical or k-means procedures are used.
ClusterType The type of cluster to add. There are three possibilities "us" (User Defined), "hi" (hierarchical clusters), "km" (kmeans clustering) or "gm" (gaussian mixture).
Groups A factor defining the groups provided by the user.
Original Should the clusters be calculated using the original data rather than the reduced dimensions?.
... Any other parameter for the hclust and kmeans procedures.

Details

One of the main shortcomings of cluster analysis is that it is not easy to search for the variables associated to the obtained classification; representing the clusters on the biplot can help to perform that interpretation. If you consider the technique for dimension reduction as a way to separate the signal from the noise, clusters should be constructed using the dimensions retained in the biplot, otherwise the complete original data matrix can be used. The colors used by each cluster should match the color used in the Dendrogram. User defined clusters can also be plotted, for example, to investigate the relation of the biplot solution to an external nominal variable.

Value

The function returns the biplot object with the information about the clusters added in new fields
ClusterType The method of clustering as defined in the argument ClusterType.
Clusters A factor containing the solution or the user defined clusters
ClusterNames The names of the clusters
ClusterColors The colors of the clusters
Dendrogram The Dendrogram if we have used hirarchical clustering
ClusterObject The object obtained from hclust, kmeans or MGC

Author(s)

Jose Luis Vicente Villardon

References

Demey, J. R., Vicente-Villardon, J. L., Galindo-Villardon, M. P., \& Zambrano, A. Y. (2008). Identifying molecular markers associated with classification of genotypes by External Logistic Biplots. Bioinformatics, 24(24), 2832-2838.

Gallego-Alvarez, I., \& Vicente-Villardon, J. L. (2012). Analysis of environmental indicators in international companies by applying the logistic biplot. Ecological Indicators, 23, 250-261.

Galindo, P. V., Vaz, T. D. N., \& Nijkamp, P. (2011). Institutional capacity to dynamically innovate: an application to the Portuguese case. Technological Forecasting and Social Change, 78(1), 3-12.

Vazquez-de-Aldana, B. R., Garcia-Criado, B., Vicente-Tavera, S., \& Zabalgogeazcoa, I. (2013). Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability. PloS one, 8(12), e84539.

See Also

For clusters not provided by the user the function uses the standard procedures in hclust and kmeans.

Examples

```
data(Protein)
bip=PCA.Biplot(Protein[, 3:11])
plot(bip)
# Add user defined clusters containing the region (North, South, Center)
bip=AddCluster2Biplot(bip, ClusterType="us", Groups=Protein$Region)
plot(bip, mode="a", margin=0.1, PlotClus=TRUE)
# Hierarchical clustering on the biplot coordinates using the Ward method
bip=AddCluster2Biplot(bip, ClusterType="hi", method="ward.D")
op <- par(mfrow=c(1,2))
plot(bip, mode="s", margin=0.1, PlotClus=TRUE)
plot(bip$Dendrogram)
par(op)
# K-means cluster on the biplot coordinates using the Ward method
bip=AddCluster2Biplot(bip, ClusterType="hi", method="ward.D")
op <- par(mfrow=c(1,2))
plot(bip, mode="s", margin=0.1, PlotClus=TRUE)
plot(bip$Dendrogram)
par(op)
```

AddContVars2Biplot Adds supplementary continuous variables to a biplot object

Description

Adds supplementary continuous variables to a biplot object

Usage

AddContVars2Biplot(bip, X, dims = NULL, Scaling = 5, Fit = NULL)

Arguments

bip	A biplot object
X	Matrix containing the supplementary continuos variables
dims	Dimension of the solution
Scaling	Transformation to apply to X
Fit	Type of fit. Linear by default.

Details

More types of fit will be added in the future

Value

A biplot object with the coordinates for the supplementary variables added.

Author(s)

Jose Luis Vicente Villardon

See Also

AddSupVars2Biplot

Examples

\# Not yet

Description

Adds supplementary ordinal variables to an existing biplot objects.

Usage

AddOrdVars2Biplot(bip, Y, tol = 1e-06, maxiterlogist = 100,
penalization $=0.2$, showiter $=$ TRUE, show $=$ FALSE)

Arguments

bip	A biplot object.
Y	A matrix of ordinal variables.
tol	Tolerance.
maxiterlogist	Maximum number of iterations for the logistic fit.
penalization	Penalization for the logistic fit
showiter	Should the itrations be shown on screen
show	Show details.

Details

Adds supplementary ordinal variables to an existing biplot objects.

Value

An object with the information of the fits

Author(s)

Jose Luis Vicente-Villardon

References

Vicente-Villardon, J. L., \& Hernandez-Sanchez, J. C. (2020). External Logistic Biplots for Mixed Types of Data. In Advanced Studies in Classification and Data Science (pp. 169-183). Springer, Singapore.

Examples

\# not yet

AddSupVars2Biplot Adds supplementary variables to a biplot object

Description

Adds supplementary bariables to a biplot object constructed with any of the biplot methods of the package. The new variables are fitted using the coordinates for the rows. Each variable is fitted using the adequate procedure for its type.

Usage

AddSupVars2Biplot(bip, X)

Arguments

bip The biplot object
X
A data frame with the supplementary variables.

Details

Binary, nominal or ordinal variables are fitted using logistic biplots. Continuous variables are fitted with linear regression.

Value

A biplot object with the coordinates for the supplementary variables added.

Author(s)

Jose Luis Vicente Villardon

See Also

AddContVars2Biplot

Examples

```
    # Not yet
```

 anova.RidgeBinaryLogistic
 Compares two binary logistic models

Description

Anova for comparing two binary logistic models

Usage

```
## S3 method for class 'RidgeBinaryLogistic'
anova(object, object2, ...)
```


Arguments

object	The first model
object2	The second model
\ldots	Any additional arguments

Details

Anova for comparing two binary logistic models

Value

The comparison of the two models.

Author(s)

Jose Luis Vicente Villardon

Examples

\# Not yet

Description

Bartlett tests foor the columns of a matrix and a grouping variable

Usage

Bartlett.Tests(X, groups = NULL)

Arguments

$\begin{array}{ll}X & \text { A data frame or a matrix containing several numerical variables } \\ \text { groups } & \text { A factor with the groups }\end{array}$

Details

Bartlett tests foor the columns of a matrix and a grouping variable

Value

A matrix with the tests for each column

Author(s)

Jose Luis Vicente Villardon

References

Bartlett, M. S. (1937). "Properties of sufficiency and statistical tests". Proceedings of the Royal Statistical Society, Series A 160, 268-282 JSTOR 96803

Examples

```
data(wine)
```

Bartlett.Tests(wine[,4:8], groups = wine\$Origin)

Description

Basic descriptive sataistics of several variables by the categories of a factor.

Usage

BasicDescription(X, groups = NULL, SortByGroups = FALSE, na.rm = FALSE, Intervals = TRUE)

Arguments

X
groups
SortByGroups Sorting by groups
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Intervals Should the confidence intervals be calculated?

Details

Basic descriptive sataistics of several variables by the categories of a factor.

Value

A list with the description of each variable.

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
BasicDescription(wine[,4:8], groups = wine$Origin)
```

BinaryDistances Binary Distances

Description

Calculates distances among rows of a binary data matrix or among the rows of two binary matrices. The end user will use BinaryProximities rather than this function. Input must be a matrix with 0 or 1 values.

Usage

BinaryDistances(x, y = NULL, coefficient= "Simple_Matching", transformation="sqrt(1-S)")

Arguments

$x \quad$ Main binary data matrix. Distances among rows are calculated if $y=N U L$.
$y \quad$ Second binary data matrix. If not NULL the distances among the rows of x and y are calculated
coefficient Similarity coefficient. Use the name (see details)
transformation Transformation of the similarities. Use the name (see details)

Details

The following coefficients are calculated
1.- Kulezynski $=a /(b+c)$
2.- Russell_and_Rao $=a /(a+b+c+d)$
3.- Jaccard $=a /(a+b+c)$
4. Simple_Matching $=(a+d) /(a+b+c+d)$
5.- Anderberg $=a /(a+2 *(b+c))$
6.- Rogers_and_Tanimoto $=(a+d) /(a+2 *(b+c)+d)$
7.- Sorensen_Dice_and_Czekanowski $=\mathrm{a} /(\mathrm{a}+0.5 *(\mathrm{~b}+\mathrm{c}))$
8.- Sneath_and_Sokal $=(a+d) /(a+0.5 *(b+c)+d)$
9.- Hamman $=(a-(b+c)+d) /(a+b+c+d)$
10. - Kulezynski $=0.5 *((a /(a+b))+(a /(a+c)))$
11. - Anderberg $2=0.25 *(a /(a+b)+a /(a+c)+d /(c+d)+d /(b+d))$
12. - Ochiai $=a / \operatorname{sqrt}((a+b) *(a+c))$
13.- $\mathrm{S} 13=(\mathrm{a} * \mathrm{~d}) / \operatorname{sqrt}((\mathrm{a}+\mathrm{b}) *(\mathrm{a}+\mathrm{c}) *(\mathrm{~d}+\mathrm{b}) *(\mathrm{~d}+\mathrm{c}))$
14.- Pearson_phi $=(\mathrm{a} * \mathrm{~d}-\mathrm{b} * \mathrm{c}) / \operatorname{sqrt}((\mathrm{a}+\mathrm{b}) *(\mathrm{a}+\mathrm{c}) *(\mathrm{~d}+\mathrm{b}) *(\mathrm{~d}+\mathrm{c}))$
15.- Yule $=(\mathrm{a} * \mathrm{~d}-\mathrm{b} * \mathrm{c}) /(\mathrm{a} * \mathrm{~d}+\mathrm{b} * \mathrm{c})$

The following transformations of the similarity 3 are calculated
1.- 'Identity' dis=sim

$$
\begin{aligned}
& \text { 2.- ' } 1-S \text { ' dis=1-sim } \\
& \text { 3.- }{ }^{\prime} \operatorname{sqrt}(1-S)^{\prime} \cdot \operatorname{dis}=\operatorname{sqrt}(1-\operatorname{sim}) \\
& \text { 4.- }{ }^{〔}-\log (\mathrm{s})^{`} \text { dis=-1*} \log (\operatorname{sim}) \\
& \text { 5.- ' } 1 / \mathrm{S}-1 \text { ' dis=1/sim }-1 \\
& \text { 6.- }{ }^{\prime} \operatorname{sqrt}(2(1-S)) \cdot \operatorname{dis}==\operatorname{sqrt}\left(2^{*}(1-\operatorname{sim})\right) \\
& \text { 7.- ' } 1-(\mathrm{S}+1) / 2 \text { ' dis=1-(sim+1)/2 } \\
& \text { 8.- ' } 1-\mathrm{abs}(\mathrm{~S})^{\prime} \text { dis=1-abs(sim) } \\
& \text { 9.- ' } 1 /(\mathrm{S}+1)^{\text {' }} \text { dis }=1 /(\operatorname{sim})+1
\end{aligned}
$$

Value

An object of class proximities.This has components:

$$
\text { comp1 } \quad \text { Description of 'comp1' }
$$

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

See Also

PrincipalCoordinates

Examples

data(spiders)

BinaryLogBiplotEM Binary logistic biplot with the EM algorithm.

Description

Binary logistic biplot with the EM algorithm

Usage

BinaryLogBiplotEM(x, freq $=$ matrix(1, nrow(x), 1), aini = NULL, dimens $=2$, nnodos $=15$, tol $=1 \mathrm{e}-04$, maxiter $=100$, penalization $=0.2$)

Arguments

x	A binary data matrix
freq	A vector of frequencies.
aini	Initial values for the row coordinates.
dimens	Dimension of the solution.
nnodos	Number of nodes for the gaussian quadrature
tol	Tolerance
maxiter	Maximum number of iterations.
penalization	Penalization for the fit (ridge)

Details

Binary logistic biplot with the EM algorithm based on marginal maximum likelihood.

Value

A logistic biplot object.

Author(s)

Jose Luis Vicente-Villardon

References

Vicente-Villardón, J. L., Galindo-Villardón, M. P., \& Blázquez-Zaballos, A. (2006). Logistic biplots. Multiple correspondence analysis and related methods. London: Chapman \& Hall, 503-521.

Examples

\# Not yet

BinaryLogBiplotGD Binary Logistic Biplot with Gradient Descent Estimation

Description

Binary Logistic Biplot with Gradient Descent Estimation. An external optimization function is used to calculate the parameters.

Usage

```
BinaryLogBiplotGD(X, freq = matrix(1, nrow(X), 1), dim = 2, tolerance =
    1e-07, penalization = 0.01, num_max_iters = 100,
    RotVarimax = FALSE, seed = 0, OptimMethod = "CG",
    Initial = "random", Orthogonalize = FALSE, Algorithm =
    "Joint", ...)
```


Arguments

X	A binary data matrix
freq	Frequencies of each row. When adequate.
dim	Dimension of the final solution.
tolerance	Tolerance for convergence of the algorithm.
penalization	Ridge penalization constant.
num_max_iters	Maximum number of iterations of the algorithm.
RotVarimax	Should the final solution be rotated.
seed	Seed for the random numbers. Used for reproductibility.
OptimMethod	Optimization method used by optimr.
Initial	Initial configuration to start the iterations.
Orthogonalize	Should te solution be orthogonalized?.
Algorithm	Algorithm for esimation: Joint or alternated.
\ldots	Aditional parameters used by the optimization function.

Details

Fits a binary logistic biplot using gradient descent. The general function optimr is used to optimize the loss function. Conjugate gradien is used as a default although other alternatives can be USED.

Value

An object of class "Binary.Logistic.Biplot".

Author(s)

Jose Luis Vicente-Villardon

References

Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M \& Blasius, J, Eds, Chapman and Hall, Boca Raton.
Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.

Examples

```
data(spiders)
X=Dataframe2BinaryMatrix(spiders)
logbip=BinaryLogBiplotGD(X,penalization=0.1)
plot(logbip, Mode="a")
summary(logbip)
```

BinaryLogBiplotJoint Binary logistic biplot with a gradient descent algorithm.

Description

Binary logistic biplot with a gradient descent algorithm.

Usage

```
BinaryLogBiplotJoint(x, freq = matrix(1, nrow(x), 1), dim = 2,
ainit = NULL, tolerance = 1e-04, maxiter = 30, penalization = 0.2,
maxcond = 7, RotVarimax = FALSE, lambda = 0.1, ...)
```


Arguments

x	A binary data matrix
freq	A vector of frequencies.
dim	Dimension of the solution
ainit	Initial values for the row coordinates.
tolerance	Tolerance
maxiter	Maximum number of iterations.
penalization	Penalization for the fit (ridge)
maxcond	Naximum condition number
RotVarimax	Should a Varimax Rotation be used?
lambda	
\ldots	Aditional arguments

Details

Binary logistic biplot with a gradient descent algorithm. Estimates row and column parameters at the same time.

Value

A logistic biplot object.

Author(s)

Jose Luis Vicente-Villardon

References

Vicente-Villardón, J. L., Galindo-Villardón, M. P., \& Blázquez-Zaballos, A. (2006). Logistic biplots. Multiple correspondence analysis and related methods. London: Chapman \& Hall, 503-521. Vicente-Villardon, J. L., \& Vicente-Gonzalez, L. Redundancy Analysis for Binary Data Based on Logistic Responses in Data Analysis and Rationality in a Complex World. Springer.

Examples

\# not yet

Description

Binary logistic biplot with Item Response Theory.

Usage

BinaryLogBiplotMirt(x, dimens $=2$, tolerance $=1 \mathrm{e}-04$,
maxiter $=30$, penalization $=0.2$, Rotation = "varimax", ...)

Arguments

x	The binary Data matrix
dimens	Dimension of the solution
tolerance	Tolerance of the algorithm
maxiter	Maximum number of iterations
penalization	Rige Penalization
Rotation	Should a rotation be applied?
\ldots	Aditional argumaents.

Details

Binary logistic biplot with Item Response Theory.

Value

A logistic biplot object.

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardón, J. L., Galindo-Villardón, M. P., \& Blázquez-Zaballos, A. (2006). Logistic biplots. Multiple correspondence analysis and related methods. London: Chapman \& Hall, 503-521.

Examples

```
# Not yet
```


Description

Fits a binary lo gistic biplot to a binary data matrix.

Usage

```
BinaryLogisticBiplot(x, dim = 2, compress = FALSE, init = "mca",
method = "EM", rotation = "none", tol = 1e-04,
maxiter = 100, penalization = 0.2, similarity = "Simple_Matching", ...)
```


Arguments

$x \quad$ The binary data matrix
dim Dimension of the solution
compress Compress the data before the fitting (not yet implemented)
init Type of initial configuration. ("random", "mirt", "PCoA", "mca")
method Method to fit the logistic biplot ("EM", "Joint", "mirt", "JointGD", "AlternatedGD", "External", "Recursive")
rotation Rotation of the solution ("none", "oblimin", "quartimin", "oblimax" ,"entropy", "quartimax", "varimax", "simplimax") see GPARotation
tol Tolerance for the algorithm
maxiter Maximum number of iterations.
penalization Panalization for the different algorithms
similarity Similarity coefficient for the initial configuration or the external model
... Any other argument for each particular method.

Details

Fits a binary lo gistic biplot to a binary data matrix.
Different Initial configurations can be selected:
1.- random : Random coordinates for each point.
2.- mirt: scores of the procedure mirt (Multidimensional Item Response Theory)
3.- PCoA: Principal Coordinates Analysis
4.- mca: Multiple Correspondence Analysis

We can use also different methods for the estimation
1.- Joint: Joint estimation of the row and column parameters. The Initial alorithm.
2.- EM: Marginal Maximum Likelihood
3.- mirt: Similar to the previous but fitted using the package mirt.
4.- JointGD: Joint estimation of the row and column methods using the gradient descent method.
5.- AlternatedGD: Alternated estimation of the row and column methods using the gradient descent method.
6.- External: Logistic fits on the Principal Coordinates Analysis.
7.- Recursive: Recursive (one axis at a time) estimation of the row and column methods using the gradient descent method. This is similar to the NIPALS algorithm for PCA

Value

A Logistic Biplot object.

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M \& Blasius, J, Eds, Chapman and Hall, Boca Raton.
Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.

See Also

BinaryLogBiplotJoint, BinaryLogBiplotEM, BinaryLogBiplotGD, BinaryLogBiplotMirt,

Examples

```
# data(spiders)
# X=Dataframe2BinaryMatrix(spiders)
# logbip=BinaryLogBiplotGD(X,penalization=0.1)
# plot(logbip, Mode="a")
# summary(logbip)
```

BinaryProximities Proximity Measures for Binary Data

Description

Calculation of proxymities among rows or columns of a binary data matrix or a data frame that will be converted into a binary data matrix.

Usage

```
BinaryProximities(x, y = NULL, coefficient = "Jaccard", transformation =
                NULL, transpose = FALSE, ...)
```


Arguments

$x \quad$ A data frame or a binary data matrix. Proximities among the rows of x will be calculated
$y \quad$ Supplementary data. The proximities amond the rows of x and the rows of y will be also calculated
coefficient Similarity coefficient. Use the number or the name (see details)
transformation Transformation of the similarities. Use the number or the name (see details)
transpose Logical. If TRUE, proximities among columns are calculated
... Used to provide additional parameters for the conversion of the dataframe into a binary matrix

Details

A binary data matrix is a matrix with values 0 or 1 coding the absence or presence of several binary characters. When a data frame is provided, every variable in the data frame is converted to a binary variable using the function Dataframe2BinaryMatrix. Factors with two levels are converted directly to binary variables, factors with more than two levels are converted to a matrix with as meny columns as levels and numerical variables are converted to binary variables using a cut point that can be the median, the mean or a value provided by the user.
The following coefficients are calculated
1.- Kulezynski $=a /(b+c)$
2.- Russell_and_Rao $=a /(a+b+c+d)$
3.- Jaccard $=a /(a+b+c)$
4.- Simple_Matching $=(a+d) /(a+b+c+d)$
5.- Anderberg $=a /(a+2 *(b+c))$
6.- Rogers_and_Tanimoto $=(a+d) /(a+2 *(b+c)+d)$
7.- Sorensen_Dice_and_Czekanowski $=\mathrm{a} /(\mathrm{a}+0.5 *(\mathrm{~b}+\mathrm{c}))$
8.- Sneath_and_Sokal $=(\mathrm{a}+\mathrm{d}) /(\mathrm{a}+0.5 *(\mathrm{~b}+\mathrm{c})+\mathrm{d})$
9.- Hamman $=(a-(b+c)+d) /(a+b+c+d)$
10.- Kulezynski $=0.5 *((a /(a+b))+(a /(a+c)))$
11.- Anderberg2 $=0.25 *(a /(a+b)+a /(a+c)+d /(c+d)+d /(b+d))$
12. - Ochiai $=\mathrm{a} / \operatorname{sqrt}((a+b) *(a+c))$
13.- $\operatorname{S13}=(\mathrm{a} * \mathrm{~d}) / \operatorname{sqrt}((\mathrm{a}+\mathrm{b}) *(\mathrm{a}+\mathrm{c}) *(\mathrm{~d}+\mathrm{b}) *(\mathrm{~d}+\mathrm{c}))$
14.- Pearson_phi $=(a * d-b * c) / \operatorname{sqrt}((a+b) *(a+c) *(d+b) *(d+c))$
15.- Yule $=(a * d-b * c) /(a * d+b * c)$

The following transformations of the similarity 3 are calculated
1.- 'Identity' dis=sim
2.- '1-S' dis=1-sim
3.- ${ }^{\prime} \operatorname{sqrt}(1-S)^{‘} \operatorname{dis}=\operatorname{sqrt}(1-\operatorname{sim})$
4.- ${ }^{`}-\log (\mathrm{s}){ }^{\text {d }} \mathrm{dis}=-1 * \log (\mathrm{sim})$
5.- ' $1 / \mathrm{S}-1$ ' dis=1/sim -1
6.- ${ }^{\prime} \operatorname{sqrt}(2(1-S))^{‘} \operatorname{dis}==\operatorname{sqrt}(2 *(1-\operatorname{sim}))$
7.- ' $1-(\mathrm{S}+1) / 2$ ' dis=1-(sim+1)/2
8.- ' $1-\mathrm{abs}(\mathrm{S})$ ' dis=1-abs(sim)
9.- ' $1 /(\mathrm{S}+1)^{\text {' }}$ dis=1/(sim)+1

Note that, after transformation the similarities are converted to distances except for "Identity". Not all the transformations are suitable for all the coefficients. Use them at your own risk. The default values are admissible combinations.

Value

An object of class proximities. This has components:
TypeData Binary, Continuous or Mixed. Binary in this case.
Coefficient Coefficient used to calculate the proximities
Transformation
Transformation used to calculate the proximities
Data Data used to calculate the proximities
SupData Supplementary Data, if any
Proximities Proximities among rows of x. May be similarities or dissimilarities depending on the transformation
SupProximities
Proximities among rows of x and y.

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

See Also

BinaryDistances, Dataframe2BinaryMatrix

Examples

```
data(spiders)
D=BinaryProximities(spiders, coefficient="Jaccard", transformation="sqrt(1-S)")
D2=BinaryProximities(spiders, coefficient=3, transformation=3)
```


Description

Adds a Biplot to a Partial Lest Squares (plsr) object.

Usage

Biplot.PLSR(plsr)

Arguments

plsr A plsr object from the PLSR function

Details

Adds a Biplot to a Partial Lest Squares (plsr) object. The biplot is constructed with the matrix of predictors, the dependent variable is projected onto the biplot as a continuous supplementary variable.

Value

An object of class ContinuousBiplot with the dependent variables as supplemntary.

Author(s)

Jose Luis Vicente Villardon

References

Oyedele, O. F., \& Lubbe, S. (2015). The construction of a partial least-squares biplot. Journal of Applied Statistics, 42(11), 2449-2460.

See Also

PLSR

Examples

```
X=as.matrix(wine[,4:21])
y=as.numeric(wine[,2])-1
mifit=PLSR(y,X, Validation="None")
mibip=Biplot.PLSR(mifit)
plot(mibip, PlotVars=TRUE, IndLabels = y, ColorInd=y+1)
```


Description

Biplot for a PLSR model with a binary response

Usage

Biplot.PLSR1BIN(plsr)

Arguments

plsr An object of class PLSR1BIN.

Details

Biplot for a PLSR model with a binary response

Value

The biplot for the independent variables with the response as supplementary binary variable.

Author(s)

Jose Luis Vicente Villardon

References

Ugarte-Fajardo, J., Bayona-Andrade, O., Criollo-Bonilla, R., Cevallos-Cevallos, J., MariduenaZavala, M., Ochoa-Donoso, D., \& Vicente-Villardon, J. L. (2020). Early detection of black Sigatoka in banana leaves using hyperspectral images. Applications in plant sciences, 8(8), e11383.

See Also

PLSR1Bin

Examples

\# Not Yet

BootstrapDistance Bootstrap on the distance matrices used for Principal Coordinates Analysis (PCoA)

Description

Obtains bootstrap replicates of a distance matrix using ramdom samples or permuatations of the residual matrix from a Principal Coordinates (Components) Analysis. The object is to estimate the sampling variability of absorbed variances, coordinates and qualities of representation in a PCoA.

Usage

BootstrapDistance(D, W=diag(nrow(D)), nB=200, dimsol=2,
ProcrustesRot=TRUE, method=c("Sampling", "Permutation"))

Arguments

D A distance matrix
W A diagonal matrix containing waiths for the rows of D
nB Number of Bootstrap replications
dimsol Dimension of the solution
ProcrustesRot Should each replication be rotated to match the initial solution?
method The replications are obtained "Sampling" or "Permutating" the residuals.

Details

The function calculates bootstrap confidence intervals for the inertia, coordinates and qualties of representation of a Principal Coordinates Analysis using a distance matrix as a basis. The funcion uses random sampling or permutations of the residuals to obtain the bootstrap replications. The procedure preserves the length of the points in the multidimensional space perturbating only the angles among the vectors. It is done so to preserve the property of positiveness of the diagonal elements of the scalar product matrices. The procedure may result into a scalar product that does not have an euclidean configuration and then has some negative eigenvalues; to avoid this problem the negative eigenvalues are removed to approximate the perturbated matrix by the closest with the required properties.
It is well known that the eigenvectors of a matrix are unique except for reflections, that is, if we change the sign of each component of the eigenvector we have the same solution. If that happens, an unwanted increase in the variability due to this artifact may invalidate the results. To avoid this we can calculate the scalar product of each eigenvector of the initial matrix with the corresponding eigenvector of the bootstrap replicate and change the signs of the later if the result is negative.
Another artifact of the procedure may arise when the dimension of the solution is higher than 1 because the eigenvectors of a replicate may generate the same subspace although are not in the same directions, i. e., the subspace is referred to a different system. That also may produce an unwanted increase of the variability that invalidates the results. To avoid this, every replicate may be rotated to match as much as possible the subspace generated by the eigenvectors of the initial
matrix. This is done by Procrustes Analysis, taking the rotated matrix as solution. The solution to this problem is also a sulution to the reflection, then only this problem is considered.

Value

Returns an object of class "PCoABootstrap" with the information for each bootstrap replication.

Eigenvalues A matrix with dimensions in rows and replicates in columns containing the eigenvalues of each replicate in columns

Inertias A matrix with dimensions in rows and replicates in columns containing the inertias of each replicate in columns

Coordinates A list with a component for each object. A component contains the coordinates of an object for each replicate (in columns)

Values-Table A list with a component for each object. A component contains the qualities of an object for each replicate (in columns)

NReplicates Number of bootstrap replicates

Author(s)

Jose L. Vicente-Villardon

References

Efron, B.; Tibshirani, RJ. (1993). An introduction to the bootstrap. New York: Chapman and Hall. 436p.

Ringrose, T. J. (1992). Bootstrapping and correspondence analysis in archaeology. Journal of Archaeological Science, 19(6), 615-629.
MILAN, L., \& WHITTAKER, J. (1995). Application of the parametric bootstrap to models that incorporate a singular value decomposition. Applied statistics, 44(1), 31-49.

See Also

BootstrapScalar, ~~~

Examples

```
data(spiders)
D=BinaryProximities(spiders, coefficient="Jaccard", transformation="sqrt(1-S)")
DB=BootstrapDistance(D$Proximities)
```


Description

Obtains bootstrap replicates of a scalar products matrix using ramdom samples or permuatations of the residual matrix from a Principal Coordinates (Components) Analysis. The object is to estimate the sampling variability of absorbed variances, coordinates and qualities of representation in a PCoA.

Usage

BootstrapScalar(B, W=diag(nrow(B)), nB=200, dimsol=2,
ProcrustesRot=TRUE, method=c("Sampling", "Permutation"))

Arguments

B A scalar product matrix
W A diagonal matrix containing waiths for the rows of D
nB Number of Bootstrap replications
dimsol Dimension of the solution
ProcrustesRot Should each replication be rotated to match the initial solution?
method The replications are obtained "Sampling" or "Permutating" the residuals.

Details

The function calculates bootstrap confidence intervals for the inertia, coordinates and qualties of representation of a Principal Coordinates Analysis using a distance matrix as a basis. The funcion uses random sampling or permutations of the residuals to obtain the bootstrap replications. The procedure preserves the length of the points in the multidimensional space perturbating only the angles among the vectors. It is done so to preserve the property of positiveness of the diagonal elements of the scalar product matrices. The procedure may result into a scalar product that does not have an euclidean configuration and then has some negative eigenvalues; to avoid this problem the negative eigenvalues are removed to approximate the perturbated matrix by the closest with the required properties.
It is well known that the eigenvectors of a matrix are unique except for reflections, that is, if we change the sign of each component of the eigenvector we have the same solution. If that happens, an unwanted increase in the variability due to this artifact may invalidate the results. To avoid this we can calculate the scalar product of each eigenvector of the initial matrix with the corresponding eigenvector of the bootstrap replicate and change the signs of the later if the result is negative.
Another artifact of the procedure may arise when the dimension of the solution is higher than 1 because the eigenvectors of a replicate may generate the same subspace although are not in the same directions, i. e., the subspace is referred to a different system. That also may produce an unwanted increase of the variability that invalidates the results. To avoid this, every replicate may
be rotated to match as much as possible the subspace generated by the eigenvectors of the initial matrix. This is done by Procrustes Analysis, taking the rotated matrix as solution. The solution to this problem is also a sulution to the reflection, then only this problem is considered.

Value

Returns an object of class "PCoABootstrap" with the information for each bootstrap replication.

Eigenvalues A matrix with dimensions in rows and replicates in columns containing the eigenvalues of each replicate in columns

Inertias A matrix with dimensions in rows and replicates in columns containing the inertias of each replicate in columns

Coordinates A list with a component for each object. A component contains the coordinates of an object for each replicate (in columns)

Values-Table A list with a component for each object. A component contains the qualities of an object for each replicate (in columns)

NReplicates Number of bootstrap replicates

Author(s)

Jose L. Vicente-Villardon

References

Efron, B.; Tibshirani, RJ. (1993). An introduction to the bootstrap. New York: Chapman and Hall. 436p.

Ringrose, T. J. (1992). Bootstrapping and correspondence analysis in archaeology. Journal of Archaeological Science, 19(6), 615-629.

Milan, L., \& Whittaker, J. (1995). Application of the parametric bootstrap to models that incorporate a singular value decomposition. Applied statistics, 44(1), 31-49.

See Also

BootstrapScalar

Examples

\#\# Not yet

Description

Obtains bootstrap replicates of a distance matrix using ramdom samples or permuatations of a distance matrix. The object is to estimate the sampling variability of the results of the Smacof algorithm.

Usage

BootstrapSmacof(D, W=NULL, Model=c("Identity", "Ratio", "Interval", "Ordinal"), dimsol=2, maxiter=100, maxerror=0.000001, StandardizeDisparities=TRUE, ShowIter=TRUE, nB=200, ProcrustesRot=TRUE, method=c("Sampling", "Permutation"))

Arguments

D	A distance matrix
W	A diagonal matrix containing waiths for the rows of D
Model	Mesurement level of the distances
dimsol	Dimension of the solution
maxiter	Maximum number of iterations for the smacof algorithm
maxerror	Tolerance for the smacof algorithm
StandardizeDisparities	
	Should the disparities be standardized in the smacof algorithm?
ShowIter	Should the information on each ieration be printed on the screen? nB
ProcrustesRot	Number of Bootstrap replications
method	Should each replication be rotated to match the initial solution?
	The replications are obtained "Sampling" or "Permutating" the residuals.

Details

The function calculates bootstrap confidence intervals for coordinates and different stress measures using a distance matrix as a basis. The funcion uses random sampling or permutations of the residuals to obtain the bootstrap replications. The procedure preserves the length of the points in the multidimensional space perturbating only the angles among the vectors. It is done so to preserve the property of positiveness of the diagonal elements of the scalar product matrices. The procedure may result into a scalar product that does not have an euclidean configuration and then has some negative eigenvalues; to avoid this problem the negative eigenvalues are removed to approximate the perturbated matrix by the closest with the required properties.
It is well known that the eigenvectors of a matrix are unique except for reflections, that is, if we change the sign of each component of the eigenvector we have the same solution. If that happens, an unwanted increase in the variability due to this artifact may invalidate the results. To avoid this
we can calculate the scalar product of each eigenvector of the initial matrix with the corresponding eigenvector of the bootstrap replicate and change the signs of the later if the result is negative.
Another artifact of the procedure may arise when the dimension of the solution is higher than 1 because the eigenvectors of a replicate may generate the same subspace although are not in the same directions, i. e., the subspace is referred to a different system. That also may produce an unwanted increase of the variability that invalidates the results. To avoid this, every replicate may be rotated to match as much as possible the subspace generated by the eigenvectors of the initial matrix. This is done by Procrustes Analysis, taking the rotated matrix as solution. The solution to this problem is also a sulution to the reflection, then only this problem is considered.

Value

Returns an object of class "PCoABootstrap" with the information for each bootstrap replication.

Info	Information about the procedure
InitialDistance	
	Initial distance
RawStress	A vector containing the raw stress for all the bootstrap replicates
stress1	A vector containing the value of the stress 1 formula for all the bootstrap replicates
stress2	A vector containing the value of the stress 2 formula for all the bootstrap replicates
sstress1	A vector containing the value of the sstress 1 formula for all the bootstrap replicates
sstress2	A vector containing the value of the sstress 2 formula for all the bootstrap replicates
Coordinates	A list with a component for each object. A component contains the coordinates of an object for all the bootstrap replicates (in columns)
NReplicates	Number of bootstrap replicates

Author(s)

Jose L. Vicente-Villardon

References

Efron, B.; Tibshirani, RJ. (1993). An introduction to the bootstrap. New York: Chapman and Hall. 436p.
Ringrose, T. J. (1992). Bootstrapping and correspondence analysis in archaeology. Journal of Archaeological Science, 19(6), 615-629.

MILAN, L., \& WHITTAKER, J. (1995). Application of the parametric bootstrap to models that incorporate a singular value decomposition. Applied statistics, 44(1), 31-49.

Jacoby, W. G., \& Armstrong, D. A. (2014). Bootstrap Confidence Regions for Multidimensional Scaling Solutions. American Journal of Political Science, 58(1), 264-278.

See Also

BootstrapScalar

Examples

```
data(spiders)
D=BinaryProximities(spiders, coefficient="Jaccard", transformation="sqrt(1-S)")
DB=BootstrapDistance(D$Proximities)
```

BoxPlotPanel Panel of box plots

Description

Panel of box plots for a set of numerical variables and a grouping factor.

Usage

BoxPlotPanel(X, groups $=$ NULL, nrows $=$ NULL, panel $=$ TRUE,
notch $=$ FALSE, GroupsTogether $=$ TRUE, ...)

Arguments

X	The matrix of continuous variables
groups	The grouping factor
nrows	Number of rows of the panel.
panel	Should the plots be organized into a panel? (or separated)
notch	Should notches be used in the box plots?
GroupsTogether	Should all the groups be together in the same plot?
\ldots	Other graphical arguments

Details

Panel of box plots for a set of numerical variables and a grouping factor.

Value

The box plot panel

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
BoxPlotPanel(wine[,4:7], groups = wine$Origin, nrows = 2, ylab="")
```

CA Correspondence Analysis

Description

Correspondence Analysis for a frequency or abundace data matrix.

Usage

CA(x, dim $=2$, alpha $=1$)

Arguments

$x \quad$ The frequency or abundance data matrix.
dim Dimension of the final solution
alpha Alpha to determine the kind of biplot to use.

Details

Calculates Correspondence Analysis for a tww-way frequency or abundance table

Value

Correspondence analysis solution

Author(s)

Jose Luis Vicente Villardon

References

Benzécri, J. P. (1992). Correspondence analysis handbook. New York: Marcel Dekker.
Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press.

Examples

```
data(SpidersSp)
cabip=CA(SpidersSp)
plot(cabip)
```


Description

Calculates a canonical biplot with confidence regions for the means.

Usage

Canonical.Variate.Analysis(X, group, InitialTransform = 5)

Arguments

X
A data matrix
group A factor containing the groups
InitialTransform
Initial transformation of the data matrix

Details

The Biplot method (Gabriel, 1971; Galindo, 1986; Gower and Hand, 1996) is becoming one of the most popular techniques for analysing multivariate data. Biplot methods are techniques for simultaneous representation of the n rows and n columns of a data matrix \mathbf{X}, in reduced dimensions, where the rows represent individuals, objects or samples and the columns the variables measured on them. Classical Biplot methods are a graphical representation of a Principal Components Analysis (PCA) that it is used to obtain linear combinations that successively maximize the total variability. PCA is not considered an appropriate approach where there is known a priori group structure in the data. The most general methodology for discrimination among groups, using multiple observed variables, is Canonical Variate Analysis (CVA). CVA allows us to derive linear combinations that successively maximize the ratio of "between-groups"" to "pooled within-group" sample variance. Several authors propose a Biplot representation for CVA called Canonical Biplot (CB) (VicenteVillardon, 1992 and Gower \& Hand, 1996) when it is oriented to the discrimination between groups or MANOVA-Biplot Gabriel $(1972,1995)$ when the aim is to study the variables responsible for the discrimination. The main advantage of the Biplot version of the technique is that it is possible not only to establish the differences between groups but also to characterise the variables responsible for them. The methodology is not yet widely used mainly because it is still not available in the major statistical packages. Amaro, Vicente-Villardon \& Galindo (2004) extend the methodology for two-way designs and propose confidence circles based on univariate and multivariate tests to perform post-hoc analysis of each variable.

Value

An object of class "Canonical.Biplot"

Author(s)

Jose Luis Vicente Villardon

References

Amaro, I. R., Vicente-Villardon, J. L., \& Galindo-Villardon, M. P. (2004). Manova Biplot para arreglos de tratamientos con dos factores basado en modelos lineales generales multivariantes. Interciencia, 29(1), 26-32.
Vicente-Villardón, J. L. (1992). Una alternativa a las técnicas factoriales clásicas basada en una generalización de los métodos Biplot (Doctoral dissertation, Tesis. Universidad de Salamanca. España. 248 pp.[Links]).
Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453-467.
Gabriel, K. R. (1995). MANOVA biplots for two-way contingency tables. WJ Krzanowski (Ed.), Recent advances in descriptive multivariate analysis, Oxford University Press, Toronto. 227-268.

Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Qüestiió. 1986, vol. 10, núm. 1.
Gower y Hand (1996): Biplots. Chapman \& Hall.
Varas, M. J., Vicente-Tavera, S., Molina, E., \& Vicente-Villardon, J. L. (2005). Role of canonical biplot method in the study of building stones: an example from Spanish monumental heritage. Environmetrics, 16(4), 405-419.

Santana, M. A., Romay, G., Matehus, J., Villardon, J. L., \& Demey, J. R. (2009). simple and low-cost strategy for micropropagation of cassava (Manihot esculenta Crantz). African Journal of Biotechnology, 8(16).

Examples

```
data(wine)
X=wine[,4:21]
canbip=CanonicalBiplot(X, group=wine$Group)
plot(canbip, mode="s")
```

CanonicalBiplot Biplot representation of a Canonical Variate Analysis or a Manova (Canonical-Biplot or MANOVA-Biplot)

Description

Calculates a canonical biplot with confidence regions for the means.

Usage

CanonicalBiplot(X, group, SUP $=$ NULL, InitialTransform $=5$, LDA=FALSE, MANOVA $=$ FALSE)

Arguments

X	A data matrix
group	A factor containing the groups
SUP	Supplementary observations to project on the biplot
InitialTransform	
	Initial transformation of the data matrix
LDA	A logical to indicate if the discriminant analysis should also be included
MANOVA	A logical to indicate if MANOVA should also be included

Details

The Biplot method (Gabriel, 1971; Galindo, 1986; Gower and Hand, 1996) is becoming one of the most popular techniques for analysing multivariate data. Biplot methods are techniques for simultaneous representation of the n rows and n columns of a data matrix \mathbf{X}, in reduced dimensions, where the rows represent individuals, objects or samples and the columns the variables measured on them. Classical Biplot methods are a graphical representation of a Principal Components Analysis (PCA) that it is used to obtain linear combinations that successively maximize the total variability. PCA is not considered an appropriate approach where there is known a priori group structure in the data. The most general methodology for discrimination among groups, using multiple observed variables, is Canonical Variate Analysis (CVA). CVA allows us to derive linear combinations that successively maximize the ratio of "between-groups"" to "pooled within-group" sample variance. Several authors propose a Biplot representation for CVA called Canonical Biplot (CB) (VicenteVillardon, 1992 and Gower \& Hand, 1996) when it is oriented to the discrimination between groups or MANOVA-Biplot Gabriel $(1972,1995)$ when the aim is to study the variables responsible for the discrimination. The main advantage of the Biplot version of the technique is that it is possible not only to establish the differences between groups but also to characterise the variables responsible for them. The methodology is not yet widely used mainly because it is still not available in the major statistical packages. Amaro, Vicente-Villardon \& Galindo (2004) extend the methodology for two-way designs and propose confidence circles based on univariate and multivariate tests to perform post-hoc analysis of each variable.

Value

An object of class "Canonical.Biplot"

Author(s)

Jose Luis Vicente Villardon

References

Amaro, I. R., Vicente-Villardon, J. L., \& Galindo-Villardon, M. P. (2004). Manova Biplot para arreglos de tratamientos con dos factores basado en modelos lineales generales multivariantes. Interciencia, 29(1), 26-32.

Vicente-Villardón, J. L. (1992). Una alternativa a las técnicas factoriales clásicas basada en una generalización de los métodos Biplot (Doctoral dissertation, Tesis. Universidad de Salamanca. España. 248 pp.[Links]).

Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453-467.
Gabriel, K. R. (1995). MANOVA biplots for two-way contingency tables. WJ Krzanowski (Ed.), Recent advances in descriptive multivariate analysis, Oxford University Press, Toronto. 227-268.
Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Qüestiió. 1986, vol. 10, núm. 1.
Gower y Hand (1996): Biplots. Chapman \& Hall.
Varas, M. J., Vicente-Tavera, S., Molina, E., \& Vicente-Villardon, J. L. (2005). Role of canonical biplot method in the study of building stones: an example from Spanish monumental heritage. Environmetrics, 16(4), 405-419.
Santana, M. A., Romay, G., Matehus, J., Villardon, J. L., \& Demey, J. R. (2009). simple and low-cost strategy for micropropagation of cassava (Manihot esculenta Crantz). African Journal of Biotechnology, 8(16).

Examples

```
data(wine)
X=wine[,4:21]
canbip=CanonicalBiplot(X, group=wine$Group)
plot(canbip, mode="s")
```

CanonicalDistanceAnalysis
MANOVA and Canonical Analysis of Distances

Description

Performs a MANOVA and a Canonical Analysis based on of Distance Matrices (usally for continuous data)

Usage

CanonicalDistanceAnalysis(Prox, group, dimens $=2$, Nsamples = 1000, PCoA = "Standard", ProjectInd = TRUE)

Arguments

Prox

A object containing proximities
group A factor with the group structure of the rows
dimens The dimension of the solution
Nsamples Number of samples for the permutation test. Number of permutations.
PCoA Type of Principal Coordinates for the Canonical Analysis calculated from the Principal coordinates of the Mean Matrix. "Standard" : Standard Principal Coordinates Analysis, "Weighted": Weighted Principal Coordinates Analysis, "WPCA")
ProjectInd Should the individual points be Projected onto the representation For the moment only available for Continuous Data.

Details

Performs a MANOVA and a Canonical Analysis based on of Distance Matrices (usally for continuous data). The MANOVA statistics is calculated from a decomposition of the distance matrix based on a factor of a external classification. The significance of the test is calculated using a premutation test. The approach depens only on the distances and then is useful with any kind of data.
The Canonical Representation is calculated from a Principal Coordinates Analysis od the distance matrix among the means. Thus, it is only possible for continuous data. The PCoA representation can be "Standard" using the means directly, "Weighted" weighting each group with its sample size or using weighted Princiopal Components Analysis of the matrix of means.

A measure of the quality of representation of the groups is provided. When possible, the measure is also provided for the individual points.
Soon, a biplot representation will also be developed.

Value

An object of class "CanonicalDistanceAnalysis" with:

Distances	The Matrix of Distances from which the Analysis has been made
Groups	A factor containing the group struture of the individuals
TSS	Total sum of squares
BSS	Between groups sum of squares
WSS	Within groups sum of squares
Fexp	Experimental pseudo F-value
pvalue	p value based on the permutation test
Nsamples	p value based on the permutation test
ExplainedVariance	
	Variances explained by the PCoA
MeanCoordinates	
	Coordinates of the groups for the graphical representation
Qualities	Qualities of the representation of the groups
CummulativeQualities	
	Cummulative qualities of the representation of the groups
RowCoordinates	
	Coordinates of the individuals for the graphical representation

Note
The MANOVA and the representation of the means can be applied to any Distance althoug the projection of the individuals can be made only for continuous data.

Author(s)

Jose Luis Vicente Villardon

References

Gower, J. C., \& Krzanowski, W. J. (1999). Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance. Journal of the Royal Statistical Society: Series C (Applied Statistics), 48(4), 505-519.
Krzanowski, W. J. (2004). Biplots for multifactorial analysis of distance. Biometrics, 60(2), 517524.

Examples

```
data(iris)
group=iris[,5]
X=as.matrix(iris[1:4])
D=ContinuousProximities(X, coef = 1)
CDA=CanonicalDistanceAnalysis(D, group, dimens=2)
summary(CDA)
plot(CDA)
```

CanonicalStatisBiplot CANONICAL STATIS-ACT for multiple tables with common rows and
its associated Biplot

Description

The procedure performs STATIS-ACT methodology for multiple tables with common rows and its associated biplot

Usage

CanonicalStatisBiplot(X, Groups, InitTransform = "Standardize columns", dimens = 2, SameVar = FALSE)

Arguments

X	A list containing multiple tables with common rows
Groups	A factor containing the groups
InitTransform	Initial transformation of the data matrices
dimens	Dimension of the final solution
SameVar	Are the variables the same for all occasions?

Details

The procedure performs Canonical STATIS-ACT methodology for multiple tables with common rows and its associated biplot. When the variables are the same for all occasions trajectories for the variables can also be plotted.

Value

An object of class StatisBiplot

Author(s)

Jose Luis Vicente Villardon

References

Vallejo-Arboleda, A., Vicente-Villardon, J. L., \& Galindo-Villardon, M. P. (2007). Canonical STATIS: Biplot analysis of multi-table group structured data based on STATIS-ACT methodology. Computational statistics \& data analysis, 51(9), 4193-4205.

Abdi, H., Williams, L.J., Valentin, D., \& Bennani-Dosse, M. (2012). STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat, 4, 124-167.
Efron, B.,Tibshirani, RJ. (1993). An introduction to the bootstrap. New York: Chapman and Hall. 436p.

Escoufier, Y. (1976). Operateur associe a un tableau de donnees. Annales de laInsee, 22-23, 165178.

Escoufier, Y. (1987). The duality diagram: a means for better practical applications. En P. Legendre \& L. Legendre (Eds.), Developments in Numerical Ecology, pp. 139-156, NATO Advanced Institute, Serie G. Berlin: Springer.

L'Hermier des Plantes, H. (1976). Structuration des Tableaux a Trois Indices de la Statistique. [These de Troisieme Cycle]. University of Montpellier, France.
Ringrose, T.J. (1992). Bootstrapping and Correspondence Analysis in Archaeology. Journal of Archaeological Science. 19:615-629.

Examples

```
data(Chemical)
x= Chemical[37:144,5:9]
weeks=as.factor(as.numeric(Chemical$WEEKS[37:144]))
levels(weeks)=c("W2" , "W3", "W4")
X=Convert2ThreeWay(x,weeks, columns=FALSE)
Groups=Chemical$Treatment[1:36]
canstbip=CanonicalStatisBiplot(X, Groups, SameVar = TRUE)
plot(canstbip, mode="s", PlotVars=TRUE, ShowBox=TRUE)
```

CategoricalDistances Distances among individuals using nominal variables.

Description

Distances among individuals using nominal variables.

Usage

CategoricalDistances($x, y=$ NULL, coefficient $=$ "GOW", transformation = "sqrt(1-S)")

Arguments

$x \quad$ Matrix of Categorical Data
$y \quad$ A second matrix of categorical data with the same variables as x
coefficient Similarity coefficient to use (see details)
transformation Transformation of the similarity into a distance

Details

The function calculates similarities and dissimilarities among a set ob ogjects characterized by a set of nominal variables. The function uses similarities and converts into dissimilarities using a variety of transformations controled by the user.

Value

A matrix with distances among the rows of x and y. If y is NULL the interdistances among the rows of x are calculated.

Author(s)

Jose Luis Vicente Villardon

References

dos Santos, T. R., \& Zarate, L. E. (2015). Categorical data clustering: What similarity measure to recommend?. Expert Systems with Applications, 42(3), 1247-1260.
Boriah, S., Chandola, V., \& Kumar, V. (2008). Similarity measures for categorical data: A comparative evaluation. red, 30(2), 3.

Examples

\#\#---- Should be DIRECTLY executable !! ----

```
CategoricalProximities
```

Proximities among individuals using nominal variables.

Description

Proximities among individuals using nominal variables.

Usage

CategoricalProximities(Data, SUP = NULL, coefficient = "GOW", transformation = 3, ...)

Arguments

Data	A data frame containing categorical (nominal) variables
SUP	Supplementary data (Used to project supplementary individuals onto the PCoA configuration, for example)
coefficient	Similarity coefficient to use (see details)
transformation	Transformation of the similarity into a distance
\ldots	Extra parameters

Details

The function calculates similarities and dissimilarities among a set ob ogjects characterized by a set of nominal variables. The function uses similarities and converts into dissimilarities using a variety of transformations controled by the user.

Value

A list of Values

Author(s)

Jose Luis Vicente Villardon

References

dos Santos, T. R., \& Zarate, L. E. (2015). Categorical data clustering: What similarity measure to recommend?. Expert Systems with Applications, 42(3), 1247-1260.
Boriah, S., Chandola, V., \& Kumar, V. (2008). Similarity measures for categorical data: A comparative evaluation. red, $30(2), 3$.

Examples

```
data(Doctors)
Dis=CategoricalProximities(Doctors, SUP=NULL, coefficient="GOW" , transformation=3)
pco=PrincipalCoordinates(Dis)
plot(pco, RowCex=0.7, RowColors=as.integer(Doctors[[1]]), RowLabels=as.character(Doctors[[1]]))
```

```
CCA Canonical Correspondence Analysis
```


Description

Calculates the solution of a Canonical Correspondence Analysis Biplot

Usage

$\operatorname{CCA}(P, Z$, alpha $=1$, dimens $=4)$

Arguments

P
Z
alpha
dimens

Abundance Matrix of sites by species.
Environmental variables measured at the same sites
Alpha for the biplot decomposition [0,1]. With alpha=1 the emphasis is on the sites and with alpha=0 the emphasis is on the species
Dimension of the solution

Details

A pair of ecological tables, made of a species abundance matrix and an environmental variables matrix measured at the same sampling sites, is usually analyzed by Canonical Correspondence Analysis (CCA) (Ter BRAAK, 1986). CCA can be considered as a Correspondence Analysis (CA) in which the ordination axis are constrained to be linear combinations of the environmental variables. Recently the procedure has been extended to other disciplines as Sociology or Psichology and it is potentially useful in many other fields.

Value

A CCA solution object

Author(s)

Jose Luis vicente Villardon

References

Ter Braak, C. J. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167-1179.

Johnson, K. W., \& Altman, N. S. (1999). Canonical correspondence analysis as an approximation to Gaussian ordination. Environmetrics, 10(1), 39-52.
Graffelman, J. (2001). Quality statistics in canonical correspondence analysis. Environmetrics, 12(5), 485-497.

Graffelman, J., \& Tuft, R. (2004). Site scores and conditional biplots in canonical correspondence analysis. Environmetrics, 15(1), 67-80.

Greenacre, M. (2010). Canonical correspondence analysis in social science research (pp. 279-286). Springer Berlin Heidelberg.

Examples

```
data(riano)
Sp=riano[,3:15]
Env=riano[,16:25]
ccabip=CCA(Sp, Env)
plot(ccabip)
```

CheckBinaryMatrix Checks if a data matrix is binary

Description

Checks if a data matrix is binary

Usage

CheckBinaryMatrix(x)

Arguments

x Matrix to check.

Details

Checks if all the entries of the matix are either 0 or 1 .

Value

TRUE if the matrix is binary.

Author(s)

Jose Luis Vicente-Villardon

Examples

```
data(spiders)
sp=Dataframe2BinaryMatrix(spiders)
CheckBinaryMatrix(sp)
```

CheckBinaryVector Checks if a vector is binary

Description

Checks if all the entries of a vector are 0 or 1

Usage

CheckBinaryVector (x)

Arguments

X he vector to check

Value

The logical result

Author(s)

Jose luis Vicente Villardon

Examples

$\mathrm{x}=\mathrm{c}(0,0,0,0,1,1,1,2)$
CheckBinaryVector(x)

Chemical Chemical data

Description

Ecological data

Usage

data("Chemical")

Format

A data frame with 324 observations on the following 16 variables.
Treatment a factor with levels F0N0 F0N1 F0N2 F0N3 F1N0 F1N1 F1N2 F1N3 F2N0 F2N1 F2N2 F2N3
FISH a factor with levels F0 F1 F2
NUTRIENTS a factor with levels N0 N1 N2 N3
WEEKS a factor with levels W1 W2 W3 W4 W5 W6 W7 W8 W9
TEMPERATURE a numeric vector
pH a numeric vector
ALKALINITYmeql a numeric vector
CO2free a numeric vector
NNH4mgl a numeric vector
NNO3mgl a numeric vector
SRPmglP a numeric vector
TPmgl a numeric vector
TSSmgl a numeric vector
CONDUCTIVITYmScm a numeric vector
TSPmglP a numeric vector
Chlorophyllamgl a numeric vector

Details

Chemical Data

Source

Department of Ecology. University of Leon. (Spain)

References

To add

Examples

data(Chemical)
\#\# maybe str(Chemical) ; plot(Chemical) ...

> Circle Draws a circle

Description

Draws a circle for a given radius at the specified center with the given color

Usage

Circle(radius $=1$, origin $=c(0,0)$, col $=1, \ldots)$

Arguments

radius	radius of the circle
origin	Centre of the circle
col	Color od the circle
\ldots	Aditional graphical parameters

Details

Draws a circle for a given radius at the specified center with the given color

Value

No value is returned

Author(s)

Jose Luis Vicente Villardon

Examples

plot(0,0)
Circle(1, c(0,0))

```
Coinertia Coinertia Analysis.
```


Description

Calculates a Coinertia Analysis for two matrices of continuous data

Usage

Coinertia(X, Y, ScalingX = 5, ScalingY = 5, dimsol = 3)

Arguments

X
The first matrix in the analysis
Y
The second matrix in the analysis
ScalingX Transformation of the X matrix
ScalingY Transformation of the Y matrix
dimsol Dimension of the solution

Details

Coinertia analysis for two continuous data matrices.

Value

An object of class Coinertia.SOL

Author(s)

Jose Luis Vicente Villardon

References

Doledec, S., \& Chessel, D. (1994). Co-inertia analysis: an alternative method for studying speciesenvironment relationships. Freshwater biology, 31(3), 277-294.

Examples

```
SSI$Year == "a2006"
SSI2D=SSI[SSI$Year == "a2006",3:23]
rownames(SSI2D)=as.character(SSI$Country[SSI$Year == "a2006"])
SSIHuman2D=SSI2D[,1:9]
SSIEnvir2D=SSI2D[,10:16]
SSIEcon2D=SSI2D[,17:21]
Coin=Coinertia(SSIHuman2D, SSIEnvir2D)
```


ColContributionPlot Plots the contributios of a biplot

Description

Plots the contributios of a biplot

Usage

ColContributionPlot(bip, A1 = 1, A2 = 2, Colors = NULL, Labs = NULL, MinQuality = 0, CorrelationScale = FALSE, ContributionScale = TRUE, AddSigns2Labs = TRUE, ...)

Arguments

bip	An object of class ContinuousBiplot
A1	First dimension to plot
A2	Second dimension to plot
Colors	Colors for the variables
Labs	Labels for the variables
MinQuality	Min quality to plot
CorrelationScale	
ContributionScale	
	Scales for correlation
AddSigns2Labs	Add the siggns of the correlations to the labels
\ldots	Any other graphical parameter

Details

Plots the contributions on a plot that sows also the sum for both axes-

Value

The contribution plot

Author(s)

Jose Luis Vicente Villardon

Examples

```
## Simple Biplot with arrows
data(Protein)
bip=PCA.Biplot(Protein[,3:11])
# Plot of the Variable Contributions
ColContributionPlot(bip, cex=1)
```

ConcEllipse Concentration ellipse for a se of two-dimensional points

Description

The function calculates a non-parametric concentration ellipse for a set of two-dimensional points.

Usage

ConcEllipse(data, confidence=1, npoints=100)

Arguments

data The set of two-dimensional points
confidence Percentage of points to be included in the ellipse
npoints Number of points to draw the eelipse contour. The hier the number of points the smouther is the ellipse.

Details

The procedre uses the Mahalanobis distances to determine the points that will be used for the calculations.

Value

A list with the following fields

data	Data Used for the calculations
confidence	The confidence level used
ellipse	The points on the ellipse contour to be plotted
center	The center of the points

Author(s)

Jose Luis Vicente Villardon

References

Meulman, J. J., \& Heiser, W. J. (1983). The display of bootstrap solutions in multidimensional scaling. Murray Hill, NJ: Bell Laboratories.
Linting, M., Meulman, J. J., Groenen, P. J., \& Van der Kooij, A. J. (2007). Stability of nonlinear principal components analysis: An empirical study using the balanced bootstrap. Psychological Methods, 12(3), 359.

Examples

```
data(iris)
dat=as.matrix(iris[1:50,1:2])
plot(iris[,1], iris[,2],col=iris[,5], asp=1)
E=ConcEllipse(dat, 0.95)
plot(E)
```

ConfidenceInterval Confidence Interval for the mean

Description

Calculates Confidence Interval for the mean of a Numerical Variable.

Usage

ConfidenceInterval(x, Desv $=$ NULL, $\mathrm{df}=$ NULL, Confidence $=0.95$)

Arguments

x	The numerical variable
Desv	Standard deviation. If NULL, the sd is calculated from the data
df	Degrees of freedom
Confidence	Confidence Level

Details

Calculates Confidence Interval for the mean of a Numerical Variable.

Value

The confidence Interval for the mean

Author(s)

Jose Luis Vicente Villardon

Examples

ConstrainedLogisticBiplot
Constrained Binary Logistic Biplot

Description

Constrained Binary Logistic Biplot or Redundancy Analysis for Binary Data based on logistic responses

Usage

ConstrainedLogisticBiplot(Y, X, dim = 2, Scaling = 5, tolerance = 1e-05, maxiter $=100$, penalization $=0.1$)

Arguments

Y
X

dim

Scaling
tolerance Tolerance for the algorithm
maxiter Maximum number of iterations.
penalization Penalization for the fit (ridge)

Details

Constrained Binary Logistic Biplot or Redundancy Analysis for Binary Data based on logistic responses.

Value

A logistic Biplot with the reponse and the predictive variables projected onto it.

Author(s)

Jose Luis Vicente-Villardon

References

Vicente-Villardon, J. L., \& Vicente-Gonzalez, L. Redundancy Analysis for Binary Data Based on Logistic Responses in Data Analysis and Rationality in a Complex World. Springer.

Examples

\# not yet

ConstrainedOrdinalLogisticBiplot

Description

Constrained Ordinal Logistic Biplot or Redundancy Analysis for Ordinal Data based on logistic responses

Usage

ConstrainedOrdinalLogisticBiplot(Y, X, dim $=2$, Scaling $=5$, tolerance $=1 \mathrm{e}-05$, maxiter $=100$, penalization $=0.1$, show $=$ FALSE)

Arguments

$\mathrm{Y} \quad$ A binary data matrix
$X \quad$ A matrix of predictors
dim Dimension of the Solution
Scaling Transformation of the columns of the predictor matrix.
tolerance Tolerance for the algorithm
maxiter Maximum number of iterations.
penalization Penalization for the fit (ridge)
show

Details

Constrained Ordinal Logistic Biplot or Redundancy Analysis for Ordinal Data based on logistic responses.

Value

An ordinal logistic Biplot with the reponse and the predictive variables projected onto it.

Author(s)

Jose Luis Vicente-Villardon

References

Vicente-Villardon, J. L., \& Vicente-Gonzalez, L. Redundancy Analysis for Binary Data Based on Logistic Responses in Data Analysis and Rationality in a Complex World. Springer.

Examples

\# not yet

ContinuousDistances Distances for Continuous Data

Description

Calculates distances among rows of a continuous data matrix or among the rows of two continuous matrices.

Usage

```
ContinuousDistances(x, y = NULL, coef = "Pythagorean", r = 1)
```


Arguments

$x \quad$ Main data matrix. Distances among rows are calculated if $y=N U L L$.
$y \quad$ Supplementary data matrix. If not NULL the distances among the rows of x and y are calculated
coef Distance coefficient. Use the name or the number(see details)
$r \quad$ Exponent for the Minkowsky

Details

The following coefficients are calculated
1.- Pythagorean $=\operatorname{sqrt}\left(\operatorname{sum}\left((y[i,]-x[j,])^{\wedge} 2\right) / p\right)$
2.- $\operatorname{Taxonomic}=\operatorname{sqrt}\left(\operatorname{sum}\left(\left((y[i,]-x[j,])^{\wedge} 2\right) / r^{\wedge} 2\right) / p\right)$
3.- City $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]) / r) /$,
4.- Minkowski $=\left(\operatorname{sum}\left((\operatorname{abs}(y[i,]-x[j,]) / r)^{\wedge} t\right) / p\right)^{\wedge}(1 / t)$
5.- Divergence $=\operatorname{sqrt}\left(\operatorname{sum}\left((y[i,]-x[j,])^{\wedge} 2 /(y[i,]+x[j,])^{\wedge} 2\right) / p\right)$
6.- dif_sum $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j],) / a b s(y[i]+,x[j])) /$,
7.- $\operatorname{Camberra}=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]) /,(a b s(y[i])+,\operatorname{abs}(x[j]))$,
8.- Bray_Curtis $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]),) / \operatorname{sum}(y[i]+,x[j]$,
9.- $\operatorname{Soergel}=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]),) / \operatorname{sum}(\operatorname{apply}(\operatorname{rbind}(y[i],, x[j]), 2,, \max))$
10.- Ware_hedges $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]),) / \operatorname{sum}(\operatorname{apply}(\operatorname{rbind}(y[i],, x[j]), 2,, \max))$

Value

A list with:
Data A matrix with the initial data (x matrix).
SupData A matrix with the supplementary data (y matrix).
D
The matrix of distances
Coefficient The coefficient used.

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

See Also

PrincipalCoordinates

Examples

```
data(wine)
dis=ContinuousDistances(wine[,4:21])
```


ContinuousProximities Proximities for Continuous Data

Description

Calculates proximities among rows of a continuous data matrix or among the rows of two continuous matrices.

Usage

ContinuousProximities(x, y = NULL, ysup = FALSE, transpose $=$ FALSE, coef = "Pythagorean", r = 1)

Arguments

$x \quad$ Main data matrix. Distances among rows are calculated if $y=N U L L$.
y Supplementary data matrix. If not NULL the distances among the rows of x and y are calculated
ysup
transpose Transpose rows and columns
coef Distance coefficient. Use the name or the number(see details)
r
Exponent for the Minkowsky

Details

The following coefficients are calculated
1.- Pythagorean $=\operatorname{sqrt}\left(\operatorname{sum}\left((y[i,]-x[j,])^{\wedge} 2\right) / p\right)$
2.- $\operatorname{Taxonomic}=\operatorname{sqrt}\left(\operatorname{sum}\left(\left((y[i,]-x[j,])^{\wedge} 2\right) / r^{\wedge} 2\right) / p\right)$
3.- City $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]) / r) /$,
4.- Minkowski $=\left(\operatorname{sum}\left((\operatorname{abs}(y[i,]-x[j,]) / r)^{\wedge} t\right) / p\right)^{\wedge}(1 / t)$
5.- Divergence $=\operatorname{sqrt}\left(\operatorname{sum}\left((y[i,]-x[j,])^{\wedge} 2 /(y[i,]+x[j,])^{\wedge} 2\right) / p\right)$
6.- dif_sum $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j],) / a b s(y[i]+,x[j])) /$,
7.- $\operatorname{Camberra}=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]) /,(a b s(y[i])+,\operatorname{abs}(x[j]))$,
8.- Bray_Curtis $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]),) / \operatorname{sum}(y[i]+,x[j]$,
9.- $\operatorname{Soergel}=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]),) / \operatorname{sum}(\operatorname{apply}(\operatorname{rbind}(y[i],, x[j]), 2,, \max))$
10.- Ware_hedges $=\operatorname{sum}(\operatorname{abs}(y[i]-,x[j]),) / \operatorname{sum}(\operatorname{apply}(\operatorname{rbind}(y[i],, x[j]), 2,, \max))$

Value

Data A matrix with the initial data (x matrix).
SupData A matrix with the supplementary data (y matrix).
D The matrix of distances
Coefficient The coefficient used.

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

Examples

```
data(wine)
dis=ContinuousProximities(wine[,4:21])
```


Description

Converts a two-dimensional matrix into a list where each cell is the two dimensional data matrix for an occasion or group.

Usage

Convert2ThreeWay (x, groups, columns = FALSE, RowNames = NULL)

Arguments

x
The two dimensional matrix
groups
columns
RowNames Names for the rows of each table.

Details

Converts a two dimensional matrix into a multitable list according to the groups provided by the user. Each field of the list has the name of the corresponding group.

Value

A Multitable list. Ech filed is the data matrix for a group.
X
The multitable list

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(Chemical)
x= Chemical[,5:16]
X=Convert2ThreeWay(x,Chemical$WEEKS, columns=FALSE)
```

ConvertFactors2Integers Convert a factor to integer numbers

Description

Convert a factor to integer numbers

Usage

ConvertFactors2Integers(x)

Arguments

x
A vector with a factor

Details

Convert a factor to integer numbers

Value

a vector with the converted values

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

```
CorrelationCircle Circle of correlations
```


Description

Circle of correlations among the manifiest variables and the principal comonents (or dimensions of any biplot).

Usage

CorrelationCircle(bip, A1 = 1, A2 = 2, Colors = NULL, Labs = NULL, ...)

Arguments

bip	an biplot object of any kind.
A1	First dimension for the representation
A2	Second dimension for the representation
Colors	Colors of the variables
Labs	Labels of the variables
\ldots	Any other graphical parameters

Details

Circle of correlations among the manifiest variables and the principal comonents (or dimensions of any biplot).

Value

The plot of the circle of correlations

Author(s)

Jose Luis Vicente Villardon

Examples

```
bip=PCA.Biplot(wine[,4:21])
CorrelationCircle(bip)
```

CrissCross Alternated Least Squares Biplot

Description

Alternated Least Squares Biplot with any choice of weigths for each element of the data matrix

Usage

CrissCross(x, w = matrix(1, $\operatorname{dim}(x)[1], \operatorname{dim}(x)[2])$, dimens = 2, a0 = NULL, b0 = NULL, maxiter = 100, tol = 1e-04, addsvd = TRUE, lambda = 0)

Arguments

x
w
dimens
a0

Data Matrix to be analysed
Weights matrix. Must be of the same size as X.
Dimension of the solution.
Starting row coordinates. Random coordinates are calculated if the argument is NULL.

b0	Starting column coordinates. Random coordinates are calculated if the argument is NULL.
maxiter	Maximum number of iterations
tol	Tolerance for the algorithm to converge. addsvd
Calculate an additional SVD at the end of the algorithm. That meakes the final	
solution more readable	

Details

The function calculates Alternated Least Squares Biplot with any choice of weigths for each element of the data matrix. The function is useful when we want a low rank approximation of a data matrix in which each element of the matrix has a different weight, for example, all the weights are 1 except for the missing elements that are 0 , or to model the logarithms of a frequency table using the frequencies as weights.

Value

An object of class .Biplot" with the following components:

n	Number of Rows
p	Number of Columns
dim	Dimension of the Biplot
EigenValues	Eigenvalues
Inertia	Explained variance (Inertia)
CumInertia	Cumulative Explained variance (Inertia)
RowCoordinates	Coordinates for the rows
ColCoordinates	Coordinates for the columns
RowContributions	Contributions for the rows
ColContributions	

Author(s)

Jose Luis Vicente Villardon

References

GABRIEL, K.R. and ZAMIR, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights. Technometrics, 21: 489-498.

See Also

LogFrequencyBiplot

Examples

```
data(Protein)
X=as.matrix(Protein[,3:11])
X = InitialTransform(X, transform=5)$X
bip=CrissCross(X)
```

CumSum Cummulative sums

Description

Cummulative sums

Usage

CumSum (X, dimens = 1)

Arguments

X
Data Matrix
dimens Dimension for summing

Details

Cummulative sums within rows (dimens=1) or columns (dimens=2) of a data matrix

Value

A matrix of the same size as X with cummulative sums within each row or each column

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
X=wine[,4:21]
CumSum(X,1)
CumSum(X,2)
```

```
Dataframe2BinaryMatrix
```

 Converts a Data Frame into a Binary Data Matrix

Description

Converts a Data Frame into a Binary Data Matrix

Usage

Dataframe2BinaryMatrix(dataf, cuttype = "Median", cut = NULL, BinFact = TRUE)

Arguments

dataf	data.frame to be converted
cuttype	Type of cut point for continuous variables. Must be "Median" or "Mean". Does not have any effect for factors
cut	Personalized cut value for continuous variables.
BinFact	Should I treat a factor with two levels as binary. This means that only a single dummy rather than two is used

Details

The function converts a data frame into a Binary Data Matrix (A matrix with entries either 0 or 1).
Factors with two levels are directly transformed into a column of $0 / 1$ entries.
Factors with more than two levels are converted into a binary submatrix with as many rows as x and as many columns as levels or categories. (Indicator matrix)
Integer Variables are treated as factors
Continuous Variables are converted into binary variables using a cut point that can be the median, the mean or a value provided by the user.

Value

A Binary Data Matrix.

Author(s)

Jose Luis Vicente Villardon

Examples

data(spiders)
Dataframe2BinaryMatrix(spiders)

```
DataFrame2Matrix4Regression
```

Prepares a matrix for regression from a data frame

Description

Prepares a matrix for regression from a data frame

Usage

DataFrame2Matrix4Regression(X, last = TRUE, Intercept = FALSE)

Arguments

X	A data frame
last	Logical to use the last category of nominal variabless as baseline.
Intercept	Logical to tell the function if a constant must be present

Details

Nominal variables are converted to a matrix of dummy variables for regression.

Value

A matrix ready to use as independent variables in a regression

Author(s)

Jose Luis Vicente Vilardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

DensityBiplot

Adds Non-parametric densities to a biplot. Separated densities are calculated for different clusters

Description

Adds Non-parametric densities to a biplot. Separated densities are calculated for different clusters

Usage

DensityBiplot(X, y = NULL, grouplabels = NULL, ncontours = 6, groupcolors = NULL, ncolors=20, ColorType=4)

Arguments

X Two dimensional coordinates of the points in a biplot (or any other)
$y \quad$ A factor containing clusters or groups for separate densities.
grouplabels Labels for the groups
ncontours Number of contours to represent on the biplot
groupcolors Colors for the groups
ncolors Number of colors for the density patterns
ColorType One of the following: "1" = rainbow, "2" = heat.colors, " 3 " = terrain.colors, " 4 " = topo.colors, "5" = cm.colors

Details

Non parametric densities are used to investigate the concentration of row points on different areas of the biplot representation. The densities can be calculated for different groups or clusters in order to investigate if individuals with differnt characteristics are concentrated on particular areas of the biplot. The procedure is particularly useful with a high number of individuals.

Value

No value returned. It has effect on the graph.

Author(s)

Jose Luis Vicente Villardon

References

Gower, J. C., Lubbe, S. G., \& Le Roux, N. J. (2011). Understanding biplots. John Wiley \& Sons.

Examples

bip=PCA.Biplot(iris[,1:4])
plot(bip, mode="s", CexInd=0.1)
Dhats Calculation of Disparities

Description

Calculation of Disparities for a MDS model

Usage

```
Dhats(P, D, W, Model = c("Identity", "Ratio", "Interval", "Ordinal"), Standardize = TRUE)
```


Arguments

P A matrix of proximities (usually dissimilarities)
D A matrix of distances obtained from an euclidean configuration
W A matrix of weights
Model Measurement level of the proximities
Standardize Should the Disparities be standardized?

Details

Calculation of disparities using standard or monotone regression depending on the MDS model.

Value

Returns the proximities.

Author(s)

Jose L. Vicente Villardon

References

Borg, I., \& Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer.

Examples

\#\# Function is used inside MDS or smacof
diagonal Diagonal matrix from a vector

Description

Creates a diagonal matrix from a vector

Usage

diagonal(d)

Arguments

d
A numerical vector

Value

A diagonal matrix wirh the values of vector in the diagonal a zeros elsewhere

Author(s)

Jose Luis Vicente Villardon

Examples

```
diag(c(1, 2, 3, 4, 5))
```

DimensionLabels
Labels for the selected dimensions in a biplot

Description

Creates a character vector with labels for the dimensions of the biplot

Usage

DimensionLabels(dimens, Root = "Dim")

Arguments

dimens	Number of dimensions
Root	Root of the label

Details

An auxiliary function to cretae labels for the dimensions. Useful to label the matrices of results

Value

Returns a vector of labels

Author(s)

Jose Luis Vicente Villardon

Examples

DimensionLabels(dimens=3, Root = "Dim")
dlines Connects two sets of points by lines

Description

Connects two sets of points by lines in a rowwise manner. Adapted from Graffelman(2013)

Usage

dlines(SetA, SetB, lin = "dotted", color = "black", ...)

Arguments

SetA	First set of points
SetB	Second set of points
lin	Line style.
color	Line color
\ldots	Any other graphical parameters

Details

Connects two sets of points by lines

Value

NULL

Author(s)

Based on Graffelman (2013)

References

Jan Graffelman (2013). calibrate: Calibration of Scatterplot and Biplot Axes. R package version 1.7.2. http://CRAN.R-project.org/package=calibrate

Examples

```
## No examples
```

Doctors Data set extracted from the Careers of doctorate holders survey carried out by Spanish Statistical Office in 2008.

Description

The sample data, as part of a large survey, corresponds to 100 people who have the PhD degree and it shows the level of satisfaction of the doctorate holders about some issues.

Usage

data(Doctors)

Format

This data frame contains 100 observation for the following 5 ordinal variables, with four categories each: (1= "Very Satisfied", 2= "Somewhat Satisfied", $3=$ "Somewhat dissatisfied", 4="Very dissatisfied")

Salary
Benefits
Job Security
Job Location
Working conditions

Source

Spanish Statistical Institute. Survey of PDH holders, 2006. URL: http://www.ine.es.

Examples

```
data(Doctors)
```

\#\# maybe str(Doctors) ; plot(Doctors) ...

Description

Plots a panel of error bars to compare the means of several variables in the levels of a factor using confidence intervals.

Usage

ErrorBarPlotPanel(X, groups = NULL, nrows = NULL, panel = TRUE, GroupsTogether $=$ TRUE, Confidence $=0.95$, p.adjust.method $=$ "None", UseANOVA = FALSE, Colors = "blue", Title = "Error Bar Plot", sort = TRUE, ...)

Arguments

X
groups A factor defining groups of individuals
nrows Number of rows of the panel. The function calculates the number of columns needed.
panel The plots are shown on a panel (TRUE) or in separated graphs (FALSE)
GroupsTogether The groups appear together on the same plot
Confidence Confidence levels for the error bars (confidence intervals)
p.adjust.method

Method for adjusting the p-value to cope with multiple comparisons.
UseANOVA If TRUE the function uses the residual variance of the ANOVA to calculate the confidence interval. ("None", "Bonferroni" or "Sidak")
Colors Colors to identyfy the groups
Title Title of the graph
sort Should short the means before plotting
... Other graphical parameters

Details

The funtion plots a panel of error bars plots to compare several groups for several variables.

Value

A panel of error bars plots.

Author(s)

Jose Luis Vicente Villardon

Examples

ErrorBarPlotPanel(wine[4:9], wine\$Group, UseANOVA=TRUE, Title="", sort=FALSE)

EuclideanDistance Classical Euclidean Distance (Pythagorean Distance)

Description

Calculates the eucliden distances among the rows of an euclidean configurations in any dimensions

Usage

EuclideanDistance(x)

Arguments

$x \quad$ A matrix containing the euclidean configuration

Details

eucliden distances among the rows of an euclidean configurations in any dimensions

Value

Returns the distance matrix

Author(s)

Jose Luis Vicente Villardon

Examples

$x=m a t r i x(\operatorname{runif}(20), 10,2)$
D=EuclideanDistance (x)

ExpandTable Expands a compressed table of patterns and frequencies

Description

Expands a compressed table of patterns and frequencies

Usage

ExpandTable(table)

Arguments

table
A compressed table of patterns and frequencies

Details

To simplify the calculations of some of the algorithms we compress the tables by searching for the distinct patterns and its frequencies. This function recovers the original data. It serves also to assign the corrdinates on the biplot to the original individuals.

Value

A matrix with the original data

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

```
ExternalBinaryLogisticBiplot
                                    External Logistic Biplot for binary Data
```


Description

Fits an External Logistic Biplot to the results of a Principal Coordinates Analysis obtained from binary data.

Usage

ExternalBinaryLogisticBiplot(Pco, IncludeConst=TRUE, penalization=0.2, freq=NULL, tolerance $=1 \mathrm{e}-05$, maxiter $=100$)

Arguments

Pco An object of class "Principal.Coordinates"
IncludeConst Should the logistic fit include the constant term?
penalization Penalization for the ridge regression
freq frequencies for each observation or pattern (usually 1)
tolerance Tolerance for convergence
maxiter Maximum number of iterations

Details

Let \mathbf{X} be the matrix of binary data scored as present or absent (1 or 0), in which the rows correspond to n individuals or entries (for example, genotypes) and the columns to p binary characters (for example alleles or bands), let $\mathbf{S}=\left(s_{i j}\right)$ be a matrix containing the similarities among rows, obtained from the binary data matrix, and let $\Delta=\left(\delta_{i j}\right)$ be the corresponding dissimilarity/distance matrix, taking for example $\delta_{i j}=\sqrt{1-s_{i j}}$. Despite the fact that, in Cluster Analysis and Principal Coordinates Analysis, interpretation of the variables responsible for grouping or ordination is not straightforward, those methods are normally used to classify individual in which binary variables have been measured. we use a combination of Principal Coordinates Analysis (PCoA), Cluster Analysis (CA) and External Logistic Regression (ELB), as a better way to interpret the binary variables associated to the classification of genotypes. The combination of three standard techniques with some new ideas about the geometry of the procedures, allows to construct a External Logistic Regression (ELB), that helps the interpretation of the variables responsible for the classification or ordination. Suppose we have obtained an euclidean configuration Y obtained from the Principal Coordinates (PCoA) of the similarity matrix. To search for the variables associated to the ordination obtained in PCoA, we can look for the directions in the ordination diagram that better predict the probability of presence of each allele. More formally, if we defined $\pi_{i j}=E\left(x_{i j}\right)=\frac{1}{1+\exp \left(-\left(b_{j 0}+\sum_{s=1}^{k} b_{j s} y_{i s}\right)\right)}$ as the expected probability that the allele j be present at genotype for a genotype with coordinates $y_{i s}$ $(i=1, \ldots, n ; s=1, \ldots, k)$ on the ordination diagram, as where $\operatorname{bjs}(j=1, \ldots, p)$ are the logistic regression coefficients that correspond to the jth variable (alleles or bands) in the sth dimension. The model is a generalized linear model having the logit as a link function. where and, y's and b's define a biplot in logit scale. This is called External Logistic Biplot because the coordinates of the genotypes are calculated in an external procedure (PCoA). Given that the y's are known from PCoA, obtaining the b^{\prime} s is equivalent to performing a logistic regression using the j -th column of X as a response variable and the columns of y as regressors.

Value

An object of class External.Binary.Logistic.Biplot with the fields of the Principal.Coordinates object with the following fields added.

ColumnParameters
Parameters resulting from fitting a logistic regression to each column of the original binary data matrix
VarInfo Information of the fit for each variable
VarInfo\$Deviances
A vector with the deviances of each variable calculated as the difference with the null model
VarInfo\$Dfs A vector with degrees of freedom for each variable
VarInfo\$pvalues
A vector with the p values each variable
VarInfo\$Nagelkerke
A vector with the Nagelkerke pseudo R-squared for each variable
VarInfo\$PercentsCorrec
A vector with the percentage of correct classifications for each variable
DevianceTotal Total Deviance as the difference with the null model

```
p p value for the complete representation
TotalPercent Total percentage of correct classification
```


Author(s)

Jose Luis Vicente Villardon

References

Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M \& Blasius, J, Eds, Chapman and Hall, Boca Raton.

Examples

```
data(spiders)
x2=Dataframe2BinaryMatrix(spiders)
colnames(x2)=colnames(spiders)
dist=BinaryProximities(x2)
pco=PrincipalCoordinates(dist)
pcobip=ExternalBinaryLogisticBiplot(pco)
```

ExtractTable Extracts unique patterns and its frequencies for a discrete data matrix (numeric)

Description

Extracts the patterns and the frequencies of a discrete data matrix reducing the size of the data matrix in order to accelerate calculations in some techniques.

Usage

ExtractTable(x)

Arguments

x
A matrix of integers containing information of discrete variables. The input matrix must be numerical for the procedure to work properly.

Details

For any numerical matrix, calculates the different patterns and the frequencies associated to each pattern The result contains the pattern matrix, a vector with the frequencies, a list with rows sharing the same pattern. The final pattern matrix has different ordering than the original matrix.

Value

OriginalNames Names before grouping the equal rows
Patterns The reduced table with only unique patterns
EqualRows A list with as many components as unique patterns specifying the original rows with each pattern. That will allow for the reconstruction of the initial matrix

Author(s)

Jose Luis Vicente-Villardon

Examples

data(spiders)
spidersbin=Dataframe2BinaryMatrix(spiders)
spiderstable=ExtractTable(spidersbin)

FA.Biplot Biplot for Factor Analysis.

Description

Biplot used as a graphical representation of Factor Analysis.

Usage

FA.Biplot(X, dimension = 3, Extraction="PC", Rotation="varimax", InitComunal="A1", normalize=FALSE, Scores= "Regression", MethodArgs=NULL, sup.rows $=$ NULL, sup.cols $=$ NULL, \ldots)

Arguments

X	Data Matrix
dimension	Dimension of the solution Extraction Method for the extraction of the factors. Can be "PC", "IPF" or "ML" ("Principal Components", "Iterated Principal Factor" or "Maximum Likelihood")
Rotation	Method for the rotation of the factors. Can be "PC", "IPF" or "ML"
InitComunal	Initial communalities for the iterated principal factor method. Can be "A1", "HSC" or "MC" ("All 1", "Highest Simple Correlation" or "Multiple Correla- tion")
normalize	Should the loadings be normalized
Scores	Method to calculate the Row Scores. Must be "Regression" or "Bartlett". MethodArgs
Aditional arguments associated to the rotation method. sup. rows	Supplementary or illustrative rows, if any. sup.cols
Supplementary or illustrative rows, if any.	
.	Additional arguments for the rotation procedure.

Details

Biplots represent the rows and columns of a data matrix in reduced dimensions. Usually rows represent individuals, objects or samples and columns are variables measured on them. The most classical versions can be thought as visualizations associated to Principal Components Analysis (PCA) or Factor Analysis (FA) obtained from a Singular Value Decomposition or a related method. From another point of view, Classical Biplots could be obtained from regressions and calibrations that are essentially an alternated least squares algorithm equivalent to an EM-algorithm when data are normal This routine Calculates a biplot as a graphical representation of a classical Factor Analysis alowing for different extraction methods and different rotations.

Value

An object of class "ContinuousBiplot" with the following components:

Title	A general title
Non_Scaled_Data	
	Original Data Matrix
Means	Means of the original Variables
Medians	Medians of the original Variables
Deviations	Standard Deviations of the original Variables
Minima	Minima of the original Variables
Maxima	Maxima of the original Variables
P25	25 Percentile of the original Variables
P75	75 Percentile of the original Variables
Gmean	Global mean of the complete matrix
Sup.Rows	Supplementary rows (Non Transformed)
Sup.Cols	Supplementary columns (Non Transformed)
Scaled_Data	Transformed Data
Scaled_Sup.Rows	
	Supplementary rows (Transformed)
Scaled_Sup.Cols	
	Supplementary columns (Transformed)
n	Number of Rows
p	Number of Columns
nrowsSup	Number of Supplementary Rows
ncolsSup	Number of Supplementary Columns
dim	Dimension of the Biplot
EigenValues	Eigenvalues
Inertia	Explained variance (Inertia)
CumInertia	Cumulative Explained variance (Inertia)
EV	EigenVectors

Structure Correlations of the Principal Components and the Variables
RowCoordinates Coordinates for the rows, including the supplementary
ColCoordinates Coordinates for the columns, including the supplementary
RowContributions
Contributions for the rows, including the supplementary
ColContributions
Contributions for the columns, including the supplementary
Scale_Factor Scale factor for the traditional plot with points and arrows. The row coordinates are multiplied and the column coordinates divided by that scale factor. The look of the plot is better without changing the inner product. For the HJ-Biplot the scale factor is 1 .

Author(s)

Jose Luis Vicente Villardon

References

Gabriel, K.R.(1971): The biplot graphic display of matrices with applications to principal component analysis. Biometrika, 58, 453-467.

Gabriel, K. R. AND Zamir, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights. Technometrics, 21(21):489-498, 1979.

Gabriel, K.R.(1998): Generalised Bilinear Regression. Biometrika, 85, 3, 689-700.
Gower y Hand (1996): Biplots. Chapman \& Hall.
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez-Zaballos, A. (2006). Logistic Biplots. Multiple Correspondence Analysis and related methods 491-509.

See Also

InitialTransform

Examples

```
data(Protein)
X=Protein[,3:11]
bip=FA.Biplot(X, Extraction="ML", Rotation="oblimin")
plot(bip, mode="s", margin=0.05, AddArrow=TRUE)
```


Description

Converts a factor into a binary matrix with as many columns as categories of the factor

Usage

Factor2Binary(y, Name = NULL)

Arguments

y	A factor
Name	Name to use in the final matrix

Value

An indicator binary matrix

Author(s)

Jose Luis Vicente Villardon

Examples

$y=\operatorname{factor}(c(1,1,2,2,2,2,3,3,3,3,2,2,2,1,1,1))$
Factor2Binary(y)

Fraction Selection of a fraction of the data

Description

Selects a percentage of the data eliminating the observations with higher Mahalanobis distances to the center.

Usage

Fraction(data, confidence = 1)

Arguments

data	Two dimensional data set
confidence	Percentage to retain. (0-1)

Details

The function is used to select a fraction of the data to be plotted for example when clusters are used. The function eliminates the extreme values.

Value

An object of class fraction with the following fields

data	The originaldata
fraction	The selected data
confidence	The percentage selected

Author(s)

Jose Luis Vicente Villardon

References

Meulman, J. J., \& Heiser, W. J. (1983). The display of bootstrap solutions in multidimensional scaling. Murray Hill, NJ: Bell Laboratories.

Linting, M., Meulman, J. J., Groenen, P. J., \& Van der Kooij, A. J. (2007). Stability of nonlinear principal components analysis: An empirical study using the balanced bootstrap. Psychological Methods, 12(3), 359.

See Also

ConcEllipse, AddCluster2Biplot

Examples

```
a=matrix(runif(50), 25,2)
a2=Fraction(a, 0.7)
```

Games_Howell Games-Howell post-hoc tests for Welch's one-way analysis

Description

This function produces results from Games-Howell post-hoc tests for Welch's one-way analysis of variance (ANOVA) for a matrix of numeric data and a grouping variable.

Usage

Games_Howell(data, group)

Arguments

data	The matrix of continuous data.
group	The grouping variable

Details

This function produces results from Games-Howell post-hoc tests for Welch's one-way analysis of variance (ANOVA) for a matrix of numeric data and a grouping variable.

Value

The tests for each column of the data matrix

Author(s)

Jose Luis Vicente Villardon

References

Ruxton, G. D., \& Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral ecology, 19(3), 690-693.

Examples

\# Not yet

Description

Biplot for continuous data based on gradient descent methods.

Usage

```
GD.Biplot(X, dimension = 2, Scaling = 5,
    lambda = 0.01, OptimMethod = "CG",
    Orthogonalize = FALSE, Algorithm = "Alternated",
    sup.rows = NULL, sup.cols = NULL,
    grouping = NULL, tolerance = 1e-04,
    num_max_iters = 300, Initial = "random")
```


Arguments

X	A data matrix with continuous variables.
dimension	Dimension of the final solution.
Scaling	Transformation of the raw data matrix before the calculation of the biplot. lambda OptimMethod
Constant for the ridge Penalization Optimization method passed to the optimr function. By default is CG (Conju- gate Gradient).	
Orthogonalize	Should the solution be ortogonalized.
Algorithm	Algorithm to calculate the Biplot. (Alternated, Joint, Recursive)
sup.rows	Supplementary Rows. (not working now)
sup.cols	Supplementary Columns. (not working now) grouping
Grouping factor for the within groups transformation.	
tolerance	Tolerance for convergence
num_max_iters	Maximum number of iterations.
Initial	Initial Configuration

Details

The function calculates a bilot using gradient descent methods. The function optimr is used to optimize the loss function. By default CG (Conjugate Gradient) method is used althoug other possibilities can be used.

Value

An object of class "ContinuousBiplot" is returned.

Author(s)

Jose Luis Vicente Villardon

Examples

```
data("Protein")
X=Protein[,3:11]
gdbip=GD.Biplot(X, dimension=2, Algorithm="Joint",
Orthogonalize=FALSE, lambda=0.3, Initial="random")
plot(gdbip)
summary(gdbip)
```


Description

Generalized Procrustes Analysis

Usage

GeneralizedProcrustes $(x$, tolerance $=1 e-05$, maxiter $=100$, Plot $=$ FALSE)

Arguments

x
Three dimensional array with the configurations. The first dimension contains the rows of the configurations, the second contains the columns and the third the number of configurations. So $x[,, \mathrm{i}]$ is the i-th configuration
tolerance Tolerance for the Procrustes algorithm.
maxiter Maximum number of iterations
Plot \quad Should the results be plotted?

Details

Generalized Procrustes Analysis for several configurations contained in a three-dimensional array.

Value

An object of class GenProcustes. This has components:
History History of Iterations
$X \quad$ Initial configurations in a three dimensional array
RotatedX Transformed configurations in a three dimensional array
Scale Scale factors for each configuration
Rotations Rotation Matrices in a three dimensional array
rss Residual Sum of Squares
Fit Goodness of fit as percent of expained variance

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J.C., (1975). Generalised Procrustes analysis. Psychometrika 40, 33-51.
Ingwer Borg, I. \& Groenen, P. J.F. (2005). Modern Multidimensional Scaling. Theory and Applications. Second Edition. Springer

See Also

PrincipalCoordinates

Examples

```
data(spiders)
n=dim(spiders)[1]
p=dim(spiders)[2]
prox=array (0,c(n, 2,4))
p1=BinaryProximities(spiders,coefficient=5)
prox[,,1]=PrincipalCoordinates(p1)$RowCoordinates
p2=BinaryProximities(spiders,coefficient=2)
prox[,,2]=PrincipalCoordinates(p2)$RowCoordinates
p3=BinaryProximities(spiders,coefficient=3)
prox[,,3]=PrincipalCoordinates(p3)$RowCoordinates
p4=BinaryProximities(spiders,coefficient=4)
prox[,,4]=PrincipalCoordinates(p4)$RowCoordinates
GeneralizedProcrustes(prox)
```

GetBiplotScales Calculates the scales for the variables on a linear biplot

Description

Calculates the scales for the variables on a linear prediction biplot There are several types of scales and values that can be shown on the graphical representation. See details.

Usage

GetBiplotScales(Biplot, nticks = 4, TypeScale = "Complete", ValuesScale = "Original")

Arguments

Biplot	Object of class PCA.Biplot
nticks	Number of ticks for the biplot axes
TypeScale	Type of scale to use : "Complete", "StdDev" or "BoxPlot"
ValuesScale	Values to show on the scale: "Original" or "Transformed"

Details

The function calculates the points on the biplot axes where the scales should be placed.
There are three types of scales when the transformations of the raw data are made by columns:
"Complete": Covers the whole range of the variable using the number of ticks specified in "nticks". A smaller number of points could be shown if some fall outsite the range of the scatter.
"StdDev": The mean $+/-1,2$ and 3 times the standard deviation.A smaller number of points could be shown if some fall outsite the range of the scatter.
"BoxPlot": Median, 25, 75 percentiles maximum and minimum values are shown. The extremes of the interquartile range are connected with a thicker line. A smaller number of points could be shown if some fall outsite the range of the scatter.
There are two kinds of values that can be shown on the biplot axis:
"Original": The values before transformation. Only makes sense when the transformations are for each column.
"Transformed": The values after transformation, for example, after standardization.
Although the function is public, the end used will not normally use it.

Value

A list with the following components:

Ticks	A list containing the ticks for each variable
Labels	A list containing the labels for each variable

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(iris)
bip=PCA.Biplot(iris[,1:4])
GetBiplotScales(bip)
```

GetCCAScales Calculates scales for plotting the environmental variables in a Canon- ical Correspondence Analysis

Description

Calculates scales for plotting the environmental variables in a Canonical Correspondence Analysis

Usage

GetCCAScales(CCA, nticks = 7, TypeScale = "Complete", ValuesScale = "Original")

Arguments

CCA	A CCA solution object
nticks	Number of ticks to represent
TypeScale	Type of scale to represent
ValuesScale	Values to represent (Original or Transformed)

Details

Calculates scales for plotting the environmental variables in a Canonical Correspondence Analysis

Value

Returns the points and the labels for each biplot axis

Author(s)

Jose Luis Vicente Villardon

References

Gower, J. C., \& Hand, D. J. (1995). Biplots (Vol. 54). CRC Press.
Gower, J. C., Lubbe, S. G., \& Le Roux, N. J. (2011). Understanding biplots. John Wiley \& Sons.
Vicente-Villardón, J. L., Galindo Villardón, M. P., \& Blázquez Zaballos, A. (2006). Logistic biplots. Multiple correspondence analysis and related methods. London: Chapman \& Hall, 503-521.

Examples

\# No examples yet
ginv Ginverse

Description

Calculates the g-inverse of a squared matrix using the eigen decomposition and removing the eigenvalues smaller than a tolerance.

Usage

$\operatorname{ginv}(X$, tol $=\operatorname{sqrt}($. Machine\$double.eps))

Arguments

$\begin{array}{ll}X & \text { Matrix to calculate the } g \text {-inverse } \\ \text { tol } & \text { Tolerance. }\end{array}$

Details

The function is useful to avoid singularities.

Value

Returns the g-inverse

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(iris)
x=as.matrix(iris[,1:4])
S= t(x)
ginv(S)
```


Description

Gower Dissimilarities for mixed types of data

Usage

GowerProximities ($x, y=$ NULL, Binary $=$ NULL, Classes $=$ NULL, transformation $=3$, IntegerAsOrdinal = FALSE, BinCoef
= "Simple_Matching", ContCoef = "Gower", NomCoef = "GOW", OrdCoef = "GOW")

Arguments

x
y

Binary A vector containing the binary variables.
Classes Vector with column types. If NULL the data frame types are used.
transformation Transformation for the similarities.
IntegerAsOrdinal
Should integer variables be used as ordinal?
BinCoef Coefficient for the binary data
ContCoef Coefficient for the continuous data
NomCoef Coefficient for the nominal data
OrdCoef Coefficient for the ordinal data

Details

The transformation sqrt $(1-S)$ is applied to the similarity.

Value

An object of class proximities.This has components:
comp1 Description of

Author(s)

Jose Luis Vicente-Villardon

References

J. C. Gower. (1971) A General Coefficient of Similarity and Some of its Properties. Biometrics, Vol. 27, No. 4, pp. 857-871.

Examples

data(spiders)

Description

Gower Dissimilarities for mixed types of data

Usage

GowerSimilarities(x, y = NULL, Classes = NULL, transformation =
"sqrt(1-S)", BinCoef = "Simple_Matching", ContCoef = "Gower", NomCoef = "GOW", OrdCoef = "GOW")

Arguments

$x \quad$ Main data. Distances among rows are calculated if $y=N U L L$. Must be a data frame.
y Suplementary data matrix. If not NULL the distances among the rows of x and y are calculated. Must be a data frame with the same columns as x .
Classes Vector containing the classes of each variable.
transformation Transformation to apply to the similarities.
BinCoef Coefficient for the binary data
ContCoef Coefficient for the continuous data
NomCoef Coefficient for the nominal data
OrdCoef Coefficient for the ordinal data

Details

Gower Dissimilarities for mixed types of data. The transformation sqrt(1-S) is applied to the similarity by default.

Value

An object of class proximities.This has components:
comp1 Description of

Author(s)

Jose Luis Vicente-Villardon

References

J. C. Gower. (1971) A General Coefficient of Similarity and Some of its Properties. Biometrics, Vol. 27, No. 4, pp. 857-871.

Examples

data(spiders)

Hermquad Gauss-Hermite quadrature

Description

Find the Gauss-Hermite abscissae and weights.

Usage

Hermquad (N)

Arguments

N
Number of nodes of the quadrature

Details

Find the Gauss-Hermite abscissae and weights.

Value

$X \quad$ A column vector containing the abscissae.
W
A vector containing the corresponding weights.

Author(s)

Jose Luis Vicente Villardon (translated from a Matlab function by Greg von Winckel))

References

Press, W. H., Teukolsky, S. A., Vetterling, W. T., \& Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing (New York. Cambridge University Press, 636-9.
http://www.mathworks.com/matlabcentral/fileexchange/8836-hermite-quadrature/content/hermquad.m

Examples

Hermquad(10)

HistogramPanel Panel of histograms

Description

Panel of histograms for a set of numerical variables.

Usage

HistogramPanel (X, nrows $=$ NULL, separated $=$ FALSE,...$)$

Arguments

$X \quad$ The matrix of continuous variables
nrows Number of rows of the panel.
separated Should the plots be organized into a panel? (or separated)
... Aditional graphical arguments

Details

Jose Luis Vicente Villardon

Value

The histogram panel.

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
HistogramPanel(wine[,4:7], nrows = 2, xlab="")
```


Description

HJ Biplot with added features.

Usage

HJ.Biplot(X, dimension = 3, Scaling = 5, sup. rows = NULL, sup.cols $=$ NULL, grouping $=$ NULL)

Arguments

X
dimension Dimension of the solution
Scaling Transformation of the original data. See InitialTransform for available transformations.
sup.rows Supplementary or illustrative rows, if any.
sup.cols Supplementary or illustrative rows, if any.
grouping factor to stadadize with the within groups variability

Details

Biplots represent the rows and columns of a data matrix in reduced dimensions. Usually rows represent individuals, objects or samples and columns are variables measured on them. The most classical versions can be thought as visualizations associated to Principal Components Analysis (PCA) or Factor Analysis (FA) obtained from a Singular Value Decomposition or a related method. From another point of view, Classical Biplots could be obtained from regressions and calibrations that are essentially an alternated least squares algorithm equivalent to an EM-algorithm when data are normal.

Value

An object of class ContinuousBiplot with the following components:

Title	A general title			
Non_Scaled_Data		\quad	Original Data Matrix	
:---	:---			
Means	Means of the original Variables			
Medians	Medians of the original Variables			
Deviations	Standard Deviations of the original Variables			
Minima	Minima of the original Variables			
Maxima	Maxima of the original Variables			

P25	25 Percentile of the original Variables
P75	75 Percentile of the original Variables
Gmean	Global mean of the complete matrix
Sup.Rows	Supplementary rows (Non Transformed)
Sup.Cols	Supplementary columns (Non Transformed)
Scaled_Data	Transformed Data
Scaled_Sup.Rows	
	Supplementary rows (Transformed)
Scaled_Sup.Cols	
	Supplementary columns (Transformed)
n	Number of Rows
p	Number of Columns
nrowsSup	Number of Supplementary Rows
ncolsSup	Number of Supplementary Columns
dim	Dimension of the Biplot
EigenValues	Eigenvalues
Inertia	Explained variance (Inertia)
CumInertia	Cumulative Explained variance (Inertia)
EV	EigenVectors
Structure	Correlations of the Principal Components and the Variables
RowCoordinates	Coordinates for the rows, including the supplementary
ColCoordinates	Coordinates for the columns, including the supplementary
RowContributions	
	Contributions for the rows, including the supplementary
ColContributions	
	Contributions for the columns, including the supplementary
Scale_Factor	Scale factor for the traditional plot with points and arrows. The row coordinates are multiplied and the column coordinates divided by that scale factor. The look of the plot is better without changing the inner product. For the HJ-Biplot the scale factor is 1 .

Author(s)

Jose Luis Vicente Villardon

References

Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Questiio. 1986, vol. 10, núm. 1.

See Also
InitialTransform

Examples

```
## Simple Biplot with arrows
data(Protein)
bip=HJ.Biplot(Protein[,3:11])
plot(bip)
```

InBox \quad Checks if a point is inside a box.

Description

Checks if a point is inside a box. The point is specified bi its x and y coordinates and the bom with the minimum and maximum values on both coordinate axis: xmin, xmax, ymin, ymax. The vertices of the box are then (xmin, ymin), (xmax, ymin), (xmax, ymax) and (xmin, ymax)

Usage

InBox (x, y, xmin, xmax, ymin, ymax)

Arguments

x	x coordinate of the point
y	x coordinate of the point
$x \min$	minimum value of X
$x \max$	maximum value of X
$y \min$	minimum value of Y
$y \max$	maximum value of Y

Value

Returns a logical value : TRUE if the point is inside the box and FALSE otherwise.

Author(s)

Jose Luis Vicente Villardon

Examples

InBox (0, 0, -1, 1, -1, 1)

Description

Initial transformation of data before the construction of a biplot. (or any other technique)

Usage

InitialTransform(X, sup.rows = NULL, sup.cols = NULL, InitTransform = "None", transform = "Standardize columns", grouping = NULL)

Arguments

X
Original Raw Data Matrix
sup.rows Supplementary or illustrative rows.
sup.cols Supplementary or illustrative columns.
InitTransform Pevious transformation (to use. See details)none or log.
transform Transformation to use. See details.
grouping factor to stadadize with the within groups variability

Details

Possible Transformations are:
1.- "Raw Data": When no transformation is required.
2.- "Substract the global mean": Eliminate an eefect common to all the observations
3.- "Double centering" : Interaction residuals. When all the elements of the table are comparable. Useful for AMMI models.
4.- "Column centering": Remove the column means.
5.- "Standardize columns": Remove the column means and divide by its standard deviation.
6.- "Row centering": Remove the row means.
7.- "Standardize rows": Divide each row by its standard deviation.
8.- "Divide by the column means and center": The resulting dispersion is the coefficient of variation.
9.- "Normalized residuals from independence" for a contingency table.

The transformation can be provided to the function by using the string beetwen the quotes or just the associated number.

The supplementary rows and columns are not used to calculate the parameters (means, standard deviations, etc). Some of the transformations are not compatible with supplementary data.

Value

A list with the following components

X	Transformed data matrix
sup. rows	Transformed supplementary rows
sup. rows	Transformed supplementary columns

Author(s)

Jose Luis Vicente Villardon

References

M. J. Baxter (1995) Standardization and Transformation in Principal Component Analysis, with Applications to Archaeometry. Journal of the Royal Statistical Society. Series C (Applied Statistics). Vol. 44, No. 4 (1995), pp. 513-527
Kroonenberg, P. M. (1983). Three-mode principal component analysis: Theory and applications (Vol. 2). DSWO press. (Chapter 6)

Examples

```
data(iris)
x=as.matrix(iris[,1:4])
x=InitialTransform(x, transform=4)
x
```


Description

Transforms an Integer Variable into a Binary Variable

Usage

Integer2Binary(y, name = "My_Factor")

Arguments

y	Vector with the factor
name	name of the factor

Details

Transforms an Integer vector into a Binary Indicator Matrix

Value

A Binary Data Matrix

Author(s)

Jose Luis Vicente-Villardon

Examples

dat $=\mathrm{c}(1,2,2,4,1,1,4,2,4)$
Integer2Binary(dat, "Myfactor")

Kruskal.Wallis.Tests Kruskal Wallis Tests

Description

Kruskal Wallis Tests for a matrix of continuous variables and a grouping factor.

Usage

Kruskal.Wallis.Tests(X, groups, posthoc = "none", alternative = "two.sided", digits = 4)

Arguments

X	The matrix of continuous variables
groups	The factor with the groups
posthoc	Method used for multipe comparisons in the Dunn test
alternative	Kind of alternative hypothesis
digits	number of digitd for he output

Details

Kruskal Wallis Tests for a matrix of continuous variables and a grouping factor, including the Dunn test for multiple comparisons.

Value

the organized output.

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
Kruskal.Wallis.Tests(wine[,4:7], wine$Group, posthoc = "bonferroni")
```


Description

Levene Tests for a matrix of continuous variables and a grouping factor.

Usage

Levene.Tests(X, groups = NULL)

Arguments

X The matrix of continuous variables
groups The factor with the groups

Details

Levene Tests for a matrix of continuous variables and a grouping factor.

Value

The organized output

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
Levene.Tests(wine[,4:7], wine$Group)
```

LogFrequencyBiplot Weighted Biplot for a table of frequencies

Description

Biplot for the logarithms of the frequencies of a contingency table using the frequencies as weights.

Usage

LogFrequencyBiplot(x, Scaling = 2, logoffset = 1, freqoffset = logoffset, ...)

Arguments

X
Scaling Transformation of the matrix after the logarithms
logoffset Constant to add to the frequencies before calculating the logarithms. This is to avoid calculating the logaritm of zero, so, a covenient value for this argument is 1.
freqoffset Constant to add to the frequencies before calculating the weigths. This is usually the same as the offset used to add to the frequencies but may be different when we do not want the frequencies zero to influence the biplot, i. e., we want zero weigths.
... Any other parameter for the CrissCross procedure.

Details

Biplot for the logarithms of the frequencies of a contingency table using the frequencies as weigths.

Value

An object of class .Biplot" with the following components:

Title	A general title			
Non_Scaled_Data		\quad	Original Data Matrix	
:---	:---			
Means	Means of the original Variables			
Medians	Medians of the original Variables			
Deviations	Standard Deviations of the original Variables			
Minima	Minima of the original Variables			
Maxima	Maxima of the original Variables			
P25	25 Percentile of the original Variables			
P75	75 Percentile of the original Variables			
Gmean	Supplementary rows (Non Transformed)			
Sup.Rows	Supplementary columns (Non Transformed)			
Sup.Cols	Transformed Data			
Scaled_Data Scaled_Sup.Rows				
	Supplementary rows (Transformed)			
Scaled_Sup.Cols				

dim	Dimension of the Biplot		
EigenValues	Eigenvalues		
Inertia	Explained variance (Inertia)		
CumInertia	Cumulative Explained variance (Inertia)		
EV	EigenVectors		
Structure	Correlations of the Principal Components and the Variables		
RowCoordinates	Coordinates for the rows, including the supplementary		
ColCoordinates	Coordinates for the columns, including the supplementary		
RowContributions		\quad	Contributions for the rows, including the supplementary
:---	:---		

Author(s)

Jose Luis Vicente Villardon

References

Gabriel, K. R., Galindo, M. P. \& Vicente-Villardon, J. L. (1995) Use of Biplots to Diagnose Independence Models in Three-Way Contingency Tables. in: M. Greenacre \& J. Blasius. eds. Visualization of Categorical Data. Academis Press. London.

GABRIEL, K.R. and ZAMIR, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights. Technometrics, 21: 489-498.

See Also

CrissCross, ~~~

Examples

```
data(smoking)
logbip=LogFrequencyBiplot(smoking, Scaling=1, logoffset=0, freqoffset=0)
```

| logit \quad Logit function |
| :--- | :--- |

Description

Calculates the logit of a probability

Usage

$\operatorname{logit}(p)$

Arguments

p
A probability

Details

Calculates the logit of a probability

Value

The lo git of the provided probebility

Author(s)

Jose Luis Vicente Villardón
Matrix2Proximities Matrix to Proximities

Description

Converts a matrix of proximities into a Proximities object as used in Principal Coordinates or MDS

Usage

Matrix2Proximities(x, TypeData = "User Provided",
Type = c("dissimilarity", "similarity", "products"),
Coefficient = "None", Transformation = "None", Data = NULL)

Arguments

X
TypeData
Type Type of proximity: dissimilarity, similarity or scalar product. If not provided, the default is dissimilarity

Coefficient Name of the procedure to calculate the proximities (if any).
Transformation Transformation used to calculate dissimilarities from similarities (if any)
Data Raw data used to calculate the proximity (if any).

Details

Converts a matrix of proximities into a Proximities object as used in Principal Coordinates or MDS aading some extra information about the procedure used to obtain the proximities. Is mainly used when the proximities matrix has been provided by the user and not calculated from raw data using BinaryProximities, ContinuousDistances or any other function.

Value

An object of class Proximities containing the proximities matrix and some extra information about it.

Author(s)

Jose Luis Vicente Villardon
matrixsqrt Matrix squared root

Description

Matrix square root of a matrix using the eigendecomposition.

Usage

matrixsqrt(S, tol $=$ sqrt(.Machine\$double.eps))

Arguments

S
tol
A squered matrix
Tolerance for the igenvalues

Details

Matrix square root of a matrix using the eigendecomposition and removing the eigenvalues smaller than a tolerance

Value

The matrix square root of the argument

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(iris)
x=as.matrix(iris[,1:4])
S= t(x)
matrixsqrt(S)
```

matrixsqrtinv Inverse of the Matrix squared root

Description

Inverse of the Matrix square root of a matrix using the eigendecomposition.

Usage

matrixsqrtinv(S, tol $=\operatorname{sqrt}($. Machine\$double.eps))

Arguments

S
A squered matrix
tol Tolerance for the igenvalues

Details

Inverse of the Matrix square root of a matrix using the eigendecomposition and removing the eigenvalues smaller than a tolerance

Value

The inverse matrix square root of the argument

Author(s)

Jose Luis Vicente Villardon

See Also

ginv

Examples

```
data(iris)
x=as.matrix(iris[,1:4])
S= t(x)
matrixsqrtinv(S)
```


Description

Multidimensional Scaling using SMACOF algorithm and Bootstraping the coordinates.

Usage

MDS(Proximities, $W=$ NULL, Model = c("Identity", "Ratio", "Interval", "Ordinal"), dimsol = 2, maxiter = 100, maxerror = 1e-06, Bootstrap = FALSE, nB = 200, ProcrustesRot = TRUE, BootstrapMethod = c("Sampling", "Permutation"), StandardizeDisparities $=$ FALSE, ShowIter = FALSE)

Arguments

Proximities An object of class proximities
W A matrix of weigths
Model MDS model. "Identity", "Ratio", "Interval" or "Ordinal".
dimsol Dimension of the solution
maxiter Maximum number of iterations of the algorithm
maxerror Tolerance for convergence of the algorithm
Bootstrap Should Bootstraping be performed?
nB Number of Bootstrap samples.
ProcrustesRot Should the bootstrap replicates be rotated to match the initial configuration using Procrustes?
BootstrapMethod
The bootstrap is performed by samplig or permutaing the residuals?
StandardizeDisparities
Should the disparities be standardized
ShowIter Show the iteration proccess

Details

Multidimensional Scaling using SMACOF algorithm and Bootstraping the coordinates. MDS performs multidimensional scaling of proximity data to find a least- squares representation of the objects in a low-dimensional space. A majorization algorithm guarantees monotone convergence for optionally transformed, metric and nonmetric data under a variety of models.

Value

An object of class Principal.Coordinates and MDS. The function adds the information of the MDS to the object of class proximities. Together with the information about the proximities the object has:

Analysis	The type of analysis performed, "MDS" in this case
Model	MDS model used
RowCoordinates	Coordinates for the objects in the MDS procedure
RawStress	Raw Stress values
stress1	stress formula 1
stress2	stress formula 2
sstress1	sstress formula 1
sstress2	sstress formula 2
rsq	Squared correlation between disparities and distances
Spearman	Spearman correlation between disparities and distances
Kendall	Kendall correlation between disparities and distances
BootstrapInfo	The result of the bootstrap calculations

Author(s)

Jose Luis Vicente Villardon

References

Commandeur, J. J. F. and Heiser, W. J. (1993). Mathematical derivations in the proximity scaling (PROXSCAL) of symmetric data matrices (Tech. Rep. No. RR-93-03). Leiden, The Netherlands: Department of Data Theory, Leiden University.
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 28-42.

De Leeuw, J. \& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/i03/
Borg, I., \& Groenen, P. J. F. (2005). Modern Multidimensional Scaling (2nd ed.). Springer.
Borg, I., Groenen, P. J. F., \& Mair, P. (2013). Applied Multidimensional Scaling. Springer.
Groenen, P. J. F., Heiser, W. J. and Meulman, J. J. (1999). Global optimization in least squares multidimensional scaling by distance smoothing. Journal of Classification, 16, 225-254.

Groenen, P. J. F., van Os, B. and Meulman, J. J. (2000). Optimal scaling by alternating lengthconstained nonnegative least squares, with application to distance-based analysis. Psychometrika, 65, 511-524.

See Also

BootstrapSmacof

Examples

```
    data(spiders)
    Dis=BinaryProximities(spiders)
    MDSSol=MDS(Dis, Bootstrap=FALSE)
    plot(MDSSol)
```

MGC Mixture Gaussian Clustering

Description

Model based clustering using mixtures of gaussian distriutions.

Usage

MGC(x, NG = 2, init = "km", RemoveOutliers=FALSE, ConfidOutliers=0.995, tolerance $=1 \mathrm{e}-07$, maxiter $=100$, show=TRUE, ...)

Arguments

x
The data matrix
NG Number of groups or clusters to obtain
init Initial centers can be obtained from k-means ("km") or at random ("rd")
RemoveOutliers Should the extreme values be removed to calculate the clusters?
ConfidOutliers Percentage of the points to keep for the calculations when RemoveOutliers is true.
tolerance Tolerance for convergence
maxiter Maximum number of iterations
show Should the likelihood at each iteration be shown?
... Maximum number of iterationsAny other parameter that can affect k-means if that is the initial configuration

Details

A basic algorithm for clustering with mixtures of gaussians with no restrictions on the covariance matrices

Value

Clusters

Author(s)

Jose Luis Vicente Villardon

References

Me falta

Examples

```
X=as.matrix(iris[, 1:4])
mod1=MGC(X,NG=3)
plot(iris[,1:4], col=mod1$Classification)
table(iris[,5],mod1$Classification)
```

MonotoneRegression Weighted Isotonic Regression (Weighted Monotone Regression)

Description

Performs weighted isotonic (monotone) regression using the non-negative weights in w . The function is a direct translation of the matlab function lsqisotonic.

Usage

MonotoneRegression(x, y, w = NULL)

Arguments

X
y The dependent variable vector
w A vector of weigths

Details

YHAT $=$ MonotoneRegression (X, Y) returns a vector of values that minimize the sum of squares $(\mathrm{Y}-\mathrm{YHAT}) . \wedge 2$ under the monotonicity constraint that $\mathrm{X}(\mathrm{I})>\mathrm{X}(\mathrm{J})=>\mathrm{YHAT}(\mathrm{I})>=\mathrm{YHAT}(\mathrm{J})$, i.e., the values in YHAT are monotonically non-decreasing with respect to X (sometimes referred to as "weak monotonicity"). LSQISOTONIC uses the "pool adjacent violators" algorithm.
If $\mathrm{X}(\mathrm{I})==\mathrm{X}(\mathrm{J})$, then $\mathrm{YHAT}(\mathrm{I})$ may be $<,==$, or $>\operatorname{YHAT}(\mathrm{J})$ (sometimes referred to as the "primary approach"). If ties do occur in X, a plot of YHAT vs. X may appear to be non-monotonic at those points. In fact, the above monotonicity constraint is not violated, and a reordering within each group of ties, by ascending YHAT, will produce the desired appearance in the plot.

Value

The fitted values after the monotone regression

Note

The function is a direct translation of the matlab function lsqisotonic.

Author(s)

Jose L. Vicente Villardon (from a matlab functiom)

References

Kruskal, J.B. (1964) "Nonmetric multidimensional scaling: a numerical method", Psychometrika 29:115-129.

Cox, R.F. and Cox, M.A.A. (1994) Multidimensional Scaling, Chapman\&Hall.

Examples

\#\# Used inside MDS

```
    moth Moth data
```


Description

Moth data

Usage

data("moth")

Format

A data frame with 12 observations on the following 14 variables.
s1 a numeric vector
s2 a numeric vector
s3 a numeric vector
s4 a numeric vector
s5 a numeric vector
s6 a numeric vector
s7 a numeric vector
s8 a numeric vector
s9 a numeric vector
s10 a numeric vector
s11 a numeric vector
s12 a numeric vector
s13 a numeric vector
s14 a numeric vector

Details

Moth data

Source

Withaker

References

Application of the Parametric Bootstrap to Models that Incorporate a Singular Value Decomposition Luis Milan; Joe Whittaker Applied Statistics, Vol. 44, No. 1. (1995), pp. 31-49.

Examples

data(moth)
\#\# maybe str(moth) ; plot(moth) ...

Multiquad Multidimensional Gauss-Hermite quadrature

Description

Multidimensional Gauss-Hermite quadrature

Usage

Multiquad(nnodes, dims)

Arguments

nnodes
dims

Details

Multidimensional Gauss-Hermite quadrature

Value

Multidimensional Gauss-Hermite quadrature

Author(s)

Jose Luis Vicente Villardon

References

Jackel, P. (2005). A note on multivariate Gauss-Hermite quadrature. http://www.awdz65.dsl.pipex.com/ANoteOnMultivariat

Examples

Multiquad(5, 3)

MultiTableStatistics Statistics for multiple tables

Description

Statistics for multiple tables

Usage

MultiTableStatistics(X, dual = FALSE)

Arguments

X
dual

A multiple table
Is the transformation for the dual versions?

Details

Statistics for multiple tables

Value

A list with vectors of statistics for each table

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

Description

Initial Transformation of a multi table object

Usage

MultiTableTransform(X, InitTransform = "Standardize columns", dual = FALSE)

Arguments

X Multi-table object
InitTransform Initial Transformattion
dual Is the transformation for the dual versions?

Details

Initial Transformation of a multi table object

Value

he table transformed

Author(s)

Jose Luis Vicente Villardon
NiceNumber Nice numbers: simple decimal numbers

Description

Calculates a close nice number, i. e. a number with simple decimals.

Usage

NiceNumber (x = 6, round = TRUE)

Arguments

x
round

A number
Should the number be rounded?

Details

Calculates a close nice number, i. e. a number with simple decimals.

Value

A number with simple decimals

Author(s)

Jose Luis Vicente Villardon

References

Heckbert, P. S. (1990). Nice numbers for graph labels. In Graphics Gems (pp. 61-63). Academic Press Professional, Inc..

See Also

PrettyTicks

Examples

NiceNumber (0.892345)

NIPALS.Biplot Biplot using the NIPALS algorithm

Description

Biplot using the NIPALS algorithm including a truncated and a sparse version.

Usage

NIPALS.Biplot(X, alpha = 1, dimension = 3, Scaling = 5, Type = "Regular", grouping = NULL, ...)

Arguments

X
alpha
dimension
...

Scaling Transformation of the original data. See InitialTransform for available transformations.
Type Type of biplot (Regular, Truncated or Sparse)
grouping Grouping fartor when the scaling is made with the within groups variability
The data matrix
A number between 0 and 1.0 for GH -Biplot, 1 for JK-Biplot and 0.5 for SQRTBiplot. Use 2 or any other value not in the interval [0,1] for HJ-Biplot.
Dimension of the solution Aditional arguments for the different types of biplots.

Details

Biplot using the NIPALS algorithm including a truncated and a sparse version.

Value

An object of class ContinuousBiplot with the following components:

Title	A general title
Type	NIPALS
call	call
Non_Scaled_Data	

Original Data Matrix
Means Means of the original Variables
Medians Medians of the original Variables
Deviations Standard Deviations of the original Variables
Minima Minima of the original Variables
Maxima Maxima of the original Variables
P25 25 Percentile of the original Variables
P75 75 Percentile of the original Variables
Gmean Global mean of the complete matrix
Sup.Rows Supplementary rows (Non Transformed)
Sup.Cols Supplementary columns (Non Transformed)
Scaled_Data Transformed Data
Scaled_Sup.Rows
Supplementary rows (Transformed)
Scaled_Sup.Cols
Supplementary columns (Transformed)
$\mathrm{n} \quad$ Number of Rows
p Number of Columns
nrowsSup Number of Supplementary Rows
ncolsSup Number of Supplementary Columns
dim Dimension of the Biplot
EigenValues Eigenvalues
Inertia Explained variance (Inertia)
CumInertia Cumulative Explained variance (Inertia)
EV EigenVectors
Structure Correlations of the Principal Components and the Variables
RowCoordinates Coordinates for the rows, including the supplementary
ColCoordinates Coordinates for the columns, including the supplementary

RowContributions

Contributions for the rows, including the supplementary
ColContributions
Contributions for the columns, including the supplementary
Scale_Factor Scale factor for the traditional plot with points and arrows. The row coordinates are multiplied and the column coordinates divided by that scale factor. The look of the plot is better without changing the inner product. For the HJ-Biplot the scale factor is 1 .

Author(s)

Jose Luis Vicente Villardon

References

Wold, H. (1966). Estimation of principal components and related models by iterative least squares. Multivariate analysis. ACEDEMIC PRESS. 391-420.

Examples

bip1=NIPALS.Biplot(wine[,4:21], Type="Sparse", lambda=0.15)
plot(bip1)

NIPALSPCA NIPALS algorithm for PCA

Description

Classical NIPALS algorithm for PCA and Biplot.

Usage

NIPALSPCA(X, dimens $=2$, tol $=1 \mathrm{e}-06$, maxiter $=1000$)

Arguments

X
dimens
tol Tolerance of the algorithm.
maxiter Maximum number of iteratios.

Details

Classical NIPALS algorithm for the singular value decomposition that allows for the construction of PCA and Biplot.

Value

The singular value decomposition
$\mathrm{u} \quad$ The coordinates of the rows (standardized)
d The singuklar values
$v \quad$ The coordinates of the columns (standardized)

Author(s)

Jose Luis Vicente Villardon

References

Wold, H. (1966). Estimation of principal components and related models by iterative least squares. Multivariate analysis. ACEDEMIC PRESS. 391-420.

Examples

\# Not yet

Description

This function computes several measures of distance (or similarity) among individuals from a nominal data matrix.

Usage

NominalDistances(X, method = 1, diag = FALSE, upper = FALSE, similarity = TRUE)

Arguments	
X	Matrix or data.frame with the nominal variables.
method	An integer between 1 and 6. See details
diag	A logical value indicating whether the diagonal of the distance matrix should be printed.
upper	a logical value indicating whether the upper triangle of the distance matrix should be printed.
similarity	A logical value indicating whether the similarity matrix should be computed.

Details

Let be the table of nominal data. All these distances are of type $d=\sqrt{1-s}$ with s a similarity coefficient.

1 = Overlap method The overlap measure simply counts the number of attributes that match in the two data instances.
$\mathbf{2}=$ Eskin Eskin et al. proposed a normalization kernel for record-based network intrusion detection data. The original measure is distance-based and assigns a weight of $\frac{2}{n_{k}^{2}}$ for mismatches; when adapted to similarity, this becomes a weight of $\frac{n_{k}^{2}}{n_{k}^{2}+2}$. This measure gives more weight to mismatches that occur on attributes that take many values.
3=IOF (Inverse Occurrence Frequency .) This measure assigns lower similarity to mismatches on more frequent values. The IOF measure is related to the concept of inverse document frequency which comes from information retrieval, where it is used to signify the relative number of documents that contain a spe- cific word.
$\mathbf{4}=\mathbf{O F}$ (Ocurrence Frequency) This measure gives the opposite weighting of the IOF measure for mismatches, i.e., mismatches on less frequent values are assigned lower similarity and mismatches on more frequent values are assigned higher similarity
$\mathbf{5}=\mathbf{G o o d a l l} 3$ This measure assigns a high similarity if the matching values are infrequent regardless of the frequencies of the other values.
$\mathbf{6}=\mathbf{L i n}$ This measure gives higher weight to matches on frequent values, and lower weight to mismatches on infrequent values.

Value

An object of class distance

Author(s)

Jose L. Vicente-Villardon

References

Boriah, S., Chandola, V. \& Kumar,V.(2008). Similarity measures for categorical data: A comparative evaluation. In proceedings of the eight SIAM International Conference on Data Mining, pp 243-254.

See Also

BinaryDistances,ContinuousDistances

Examples

```
## Not run:
data(Env)
Distance<-NominalDistances(Env,upper=TRUE,diag=TRUE,similarity=FALSE,method=1)
## End(Not run)
```


Description

Normality tests foor the columns of a matrix and a grouping variable.

Usage

NormalityTests(X, groups = NULL, plot = FALSE, SortByGroups = FALSE)

Arguments

$X \quad$ A data frame or a matrix containing several numerical variables
groups A factor with the groups
plot If TRUE the qqnorm plots are shown
SortByGroups Should the results be sorted by groups?

Details

Normality tests foor the columns of a matrix and a grouping variable.

Value

The normality tests and the plots

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(wine)
```

NormalityTests(wine[,4:6], groups = wine\$Origin, plot=TRUE)

Description

Converts a numeric variable into a binary one using a cut point

Usage

Numeric2Binary(y, name= "MyVar", cut = NULL)

Arguments

$y \quad$ Vector containing the numeric values
name \quad Name of the variable
cut Cut point to cut the values of the variable. If is NULL the median is used.

Details

Converts a numeric variable into a binary one using a cut point. If the cut is NULL the median is used.

Value

A binary Variable

Author(s)

Jose Luis Vicente-Villardon

See Also

Dataframe2BinaryMatrix

Examples

$y=c(1,1.2,3.2,2.4,1.7,2.2,2.7,3.1)$
Numeric2Binary (y)

```
    ones Matrix of ones
```


Description

Square matrix of ones

Usage

ones(n)

Arguments

$n \quad$ Order of the matrix

Details

Square matrix of ones

Value

A matrix of ones of order n.

Author(s)

Jose Luis Vicente Villardon

Examples

ones(6)

OrdinalLogisticFit Fits an ordinal logistic regression with ridge penalization

Description

This function fits a logistic regression between a dependent ordinal variable y and some independent variables x , and solves the separation problem using ridge penalization.

Usage

OrdinalLogisticFit(y, x, penalization $=0.1$, tol $=1 \mathrm{e}-04$, maxiter $=200$, show $=$ FALSE $)$

Arguments

$y \quad$ Dependent variable.
$x \quad$ A matrix with the independent variables.
penalization Penalization used to avoid singularities.
tol Tolerance for the iterations.
maxiter Maximum number of iterations.
show Should the iteration history be printed?.

Details

The problem of the existence of the estimators in logistic regression can be seen in Albert (1984); a solution for the binary case, based on the Firth's method, Firth (1993) is proposed by Heinze(2002). All the procedures were initially developed to remove the bias but work well to avoid the problem of separation. Here we have chosen a simpler solution based on ridge estimators for logistic regression Cessie(1992).

Rather than maximizing $L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)$ we maximize

$$
L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)-\lambda\left(\left\|\mathbf{b}_{j 0}\right\|+\left\|\mathbf{B}_{j}\right\|\right)
$$

Changing the values of λ we obtain slightly different solutions not affected by the separation problem.

Value

An object of class "pordlogist". This has components:

nobs	Number of observations
J	Maximum value of the dependent variable
nvar	Number of independent variables
fitted.values	Matrix with the fitted probabilities
pred	Predicted values for each item
Covariances	Covariances matrix
clasif	Matrix of classification of the items
PercentClasif	Percent of good classifications
coefficients	Estimated coefficients for the ordinal logistic regression
thresholds	Thresholds of the estimated model
logLik	Logarithm of the likelihood
penalization	Penalization used to avoid singularities
Deviance	Deviance of the model
DevianceNull	Deviance of the null model
Dif	Diference between the two deviances values calculated
df	Degrees of freedom

pval	p-value of the contrast
CoxSnell	Cox-Snell pseudo R squared
Nagelkerke	Nagelkerke pseudo R squared
MacFaden	Nagelkerke pseudo R squared
iter	Number of iterations made

Author(s)

Jose Luis Vicente-Villardon

References

Albert,A. \& Anderson,J.A. (1984),On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71(1), 1-10.
Bull, S.B., Mak, C. \& Greenwood, C.M. (2002), A modified score function for multinomial logistic regression, Computational Statistics and dada Analysis 39, 57-74.
Firth, D.(1993), Bias reduction of maximum likelihood estimates, Biometrika 80(1), 27-38
Heinze, G. \& Schemper, M. (2002), A solution to the problem of separation in logistic regression, Statistics in Medicine 21, 2109-2419

Le Cessie, S. \& Van Houwelingen, J. (1992), Ridge estimators in logistic regression, Applied Statistics 41(1), 191-201.

Examples

\# No examples yet

OrdLogBipEM Alternated EM algorithm for Ordinal Logistic Biplots

Description

This function computes, with an alternated algorithm, the row and column parameters of an Ordinal Logistic Biplot for ordered polytomous data. The row coordinates (E-step) are computed using multidimensional Gauss-Hermite quadratures and Expected a posteriori (EAP) scores and parameters for each variable or items (M-step) using Ridge Ordinal Logistic Regression to solve the separation problem present when the points for different categories of a variable are completely separated on the representation plane and the usual fitting methods do not converge. The separation problem is present in almost avery data set for which the goodness of fit is high.

Usage

OrdLogBipEM(Data, freq=NULL, dim = 2, nnodes = 15,
tol $=0.0001$, maxiter $=100$, maxiterlogist $=100$,
penalization $=0.2$, show $=$ FALSE, initial $=1$, alfa $=1$,
Orthogonalize=TRUE, Varimax=TRUE, ...)

Arguments

Data	Data frame with the ordinal data. All the variables must be ordered factors.
freq	Frequencies for compacted tables
dim	Dimension of the solution
nnodes	Number of nodes for the multidimensional Gauss-Hermite quadrature
tol	Value to stop the process of iterations.
maxiter	Maximum number of iterations for the biplot procedure.
maxiterlogist	Maximum number of iterations for the logistic regression step or the Mirt initial configuration.
penalization	Penalization used in the diagonal matrix to avoid singularities.
show	Boolean parameter to specify if the user wants to see every iteration. initial
Method used to choose the initial ability in the algorithm. Default value is 1.	

Value

An object of class "Ordinal.Logistic.Biplot".This has components:
RowCoordinates Coordinates for the rows or the individuals
ColumnParameters
List with information about the Ordinal Logistic Models calculated for each variable including: estimated parameters with thresholds,percents of correct classifications, and pseudo-Rsquared
loadings factor loadings
LogLikelihood Logarithm of the likelihood
r2 R squared coefficient
Ncats Number of the categories of each variable

Author(s)

Jose Luis Vicente-Villardon

References

Bock,R. \& Aitkin,M. (1981),Marginal maximum likelihood estimation of item parameters: Aplication of an EM algorithm, Phychometrika 46(4), 443-459.

Examples

```
## Not run:
        data(Doctors)
        olb = OrdLogBipEM(Doctors,dim = 2, nnodes = 10, initial=4,
        tol = 0.001, maxiter = 100, penalization = 0.1, show=TRUE)
        olb
        summary(olb)
        PlotOrdinalResponses(olb)
## End(Not run)
```

OrdVarBiplot Plots an ordinal variable on the biplot

Description

Plots an ordinal variable on the biplot from its fitted parameters

Usage

OrdVarBiplot(bi1, bi2, threshold, xmin $=-3$, xmax $=3$, ymin $=-3$,
ymax = 3, label = "Point", mode = "a", CexMarks = 0.7, CexPoint = 0.8,
PchPoint = 1, Color = "green", tl = 0.03, textpos = 1, ...)

Arguments

bi1	Slope for the first dimension to plot
bi2	Slope for the second dimension to plot
threshold	Thresholds for each category of the variable
xmin	Minimum value of the X on the plot
xmax	Maximum value of the X on the plot
ymin	Minimum value of the Y on the plot
ymax	Maximum value of the X on the plot
label	Label of the variable
mode	Mode of the plot (as in a regular biplot)
CexMarks	Size of the tick marks
CexPoint	Size of the point
PchPoint	Mark for the point
Color	Color
tl	Tick Length
textpos	Position of the label
\ldots	Any aditional graphical parameter

Details

Plots an ordinal variable on the biplot from its fitted parameters. The plot uses the same parameters as any other biplot.

Value

Returns a graphical representation of the ordinal variable on the current plot

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardon, J. L., \& Sanchez, J. C. H. (2014). Logistic Biplots for Ordinal Data with an Application to Job Satisfaction of Doctorate Degree Holders in Spain. arXiv preprint arXiv:1405.0294.

Examples

\#\#---- Should be DIRECTLY executable !! ----

OrdVarCoordinates Coordinates of an ordinal variable on the biplot.

Description

Coordinates of an ordinal variable on the biplot.

Usage

OrdVarCoordinates(tr, b $=c(1,1), \inf =-12$, sup $=12$, step $=0.01$, plotresponse = FALSE, label = "Item", labx = "z", laby = "Probability", catnames = NULL, Legend = TRUE, LegendPos = 1)

Arguments

tr A vector containing the thresholds of the model, that is, the constatn for each category of the ordinal variable
b
inf Vector containing the common slopes for all categories of the ordinal variable The inferior limit of the values to be sampled on the biplot axis (it depends on the scale of the biplot).
sup The superior limit of the values to be sampled on the biplot axis (it depends on the scale of the biplot).
step Increment (step) of the squence
plotresponse Should the item be plotted

label	Label of the item.
labx	Label for the X axis in the summary of the item.
laby	Label for the Y axis in the summary of the item.
catnames	Names of the categories.
Legend	Should a legend be plotted
LegendPos	Position of the legend.

Details

The function calculates the coordinates of the points that define the separation among the categories of an ordinal variable projected onto an ordinal logistic biplot.

Value

An object of class OrdVarCoord
z Values of the cut points on the scale of the biplot axis (not used)
points \quad The points for the marks to be represented on the biplot.
labels The labels for the points
hidden Are there any hidden categories? (Categories whose probability is never hier than the probabilities of the rest)
cathidden \quad Number of the hidden cateories

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardon, J. L., \& Sanchez, J. C. H. (2014). Logistic Biplots for Ordinal Data with an Application to Job Satisfaction of Doctorate Degree Holders in Spain. arXiv preprint arXiv:1405.0294.

Examples

\# No examples

Description

Orthogonalize a set of Scores calculated by other procedure

Usage

OrthogonalizeScores(scores)

Arguments

scores A matrix containing the scores

Details

Orthogonalize a set of Scores calculated by other procedure proyecting onto the dimensions defined by the eigenvectors of the covariance matrix

Value

The orthogonalised scores.

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

$$
\text { PCA.Analysis } \quad \text { Classical PCA Biplot with added features. }
$$

Description

Classical PCA Biplot with added features.

Usage

PCA.Analysis(X, dimension $=3$, Scaling $=5, \ldots$)

Arguments

X
Data Matrix
dimension
Scaling Transformation of the original data. See InitialTransform for available transformations.
... Any other useful argument

Details

Biplots represent the rows and columns of a data matrix in reduced dimensions. Usually rows represent individuals, objects or samples and columns are variables measured on them. The most classical versions can be thought as visualizations associated to Principal Components Analysis (PCA) or Factor Analysis (FA) obtained from a Singular Value Decomposition or a related method. From another point of view, Classical Biplots could be obtained from regressions and calibrations that are essentially an alternated least squares algorithm equivalent to an EM-algorithm when data are normal.

Value

An object of class ContinuousBiplot with the following components:

Title	A general title
Non_Scaled_Data	
	Original Data Matrix
Means	Means of the original Variables
Medians	Medians of the original Variables
Deviations	Standard Deviations of the original Variables
Minima	Minima of the original Variables
Maxima	Maxima of the original Variables
P25	25 Percentile of the original Variables
P75	75 Percentile of the original Variables
Gmean	Global mean of the complete matrix
Sup.Rows	Supplementary rows (Non Transformed)
Sup.Cols	Supplementary columns (Non Transformed)
Scaled_Data	Transformed Data
Scaled_Sup.Rows	
Scaled_Sup.Cols	Supplementary rows (Transformed)
n	Supplementary columns (Transformed)
p	Number of Rows
nrowsSup	Number of Columns

ncolsSup	Number of Supplementary Columns
dim	Dimension of the Biplot
EigenValues	Eigenvalues
Inertia	Explained variance (Inertia)
CumInertia	Cumulative Explained variance (Inertia)
EV	EigenVectors
Structure	Correlations of the Principal Components and the Variables
RowCoordinates	Coordinates for the rows, including the supplementary
ColCoordinates	Coordinates for the columns, including the supplementary
RowContributions	

Author(s)

Jose Luis Vicente Villardon

References

Gabriel, K.R.(1971): The biplot graphic display of matrices with applications to principal component analysis. Biometrika, 58, 453-467.

Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Questiio. 1986, vol. 10, núm. 1.

Gabriel, K. R. AND Zamir, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights. Technometrics, 21(21):489-498, 1979.
Gabriel, K.R.(1998): Generalised Bilinear Regression. Biometrika, 85, 3, 689-700.
Gower y Hand (1996): Biplots. Chapman \& Hall.
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez-Zaballos, A. (2006). Logistic Biplots. Multiple Correspondence Analysis and related methods 491-509.

Demey, J., Vicente-Villardon, J. L., Galindo, M. P. and Zambrano, A. (2008). Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics 24 2832-2838.

See Also

```
InitialTransform
```


Examples

```
## Simple Biplot with arrows
data(Protein)
bip=PCA.Biplot(Protein[,3:11])
plot(bip)
## Biplot with scales on the variables
plot(bip, mode="s", margin=0.2)
# Structure plot (Correlations)
CorrelationCircle(bip)
# Plot of the Variable Contributions
ColContributionPlot(bip, cex=1)
```

PCA.Biplot

Description

Classical PCA Biplot with added features.

Usage

PCA.Biplot(X, alpha = 1, dimension = 3, Scaling = 5, sup.rows = NULL, sup.cols $=$ NULL, grouping $=$ NULL)

Arguments

X
alpha
dimension Dimension of the solution
Scaling Transformation of the original data. See InitialTransform for available transformations.
sup.rows Supplementary or illustrative rows, if any.
sup.cols Supplementary or illustrative rows, if any.
grouping A factor to standardize with the variability within groups

Details

Biplots represent the rows and columns of a data matrix in reduced dimensions. Usually rows represent individuals, objects or samples and columns are variables measured on them. The most classical versions can be thought as visualizations associated to Principal Components Analysis (PCA) or Factor Analysis (FA) obtained from a Singular Value Decomposition or a related method. From another point of view, Classical Biplots could be obtained from regressions and calibrations that are essentially an alternated least squares algorithm equivalent to an EM-algorithm when data are normal.

Value

An object of class ContinuousBiplot with the following components:

Title	A general title
Non_Scaled_Data	
	Original Data Matrix
Means	Means of the original Variables
Medians	Medians of the original Variables
Deviations	Standard Deviations of the original Variables
Minima	Minima of the original Variables
Maxima	Maxima of the original Variables
P25	25 Percentile of the original Variables
P75	75 Percentile of the original Variables
Gmean	Global mean of the complete matrix
Sup.Rows	Supplementary rows (Non Transformed)
Sup.Cols	Supplementary columns (Non Transformed)
Scaled_Data	Transformed Data
Scaled_Sup.Rows	
	Supplementary rows (Transformed)
Scaled_Sup.Cols	
	Supplementary columns (Transformed)
n	Number of Rows
p	Number of Columns
nrowsSup	Number of Supplementary Rows
ncolsSup	Number of Supplementary Columns
dim	Dimension of the Biplot
EigenValues	Eigenvalues
Inertia	Explained variance (Inertia)
CumInertia	Cumulative Explained variance (Inertia)
EV	EigenVectors
Structure	Correlations of the Principal Components and the Variables

RowCoordinates Coordinates for the rows, including the supplementary
ColCoordinates Coordinates for the columns, including the supplementary
RowContributions
Contributions for the rows, including the supplementary
ColContributions
Contributions for the columns, including the supplementary
Scale_Factor Scale factor for the traditional plot with points and arrows. The row coordinates are multiplied and the column coordinates divided by that scale factor. The look of the plot is better without changing the inner product. For the HJ-Biplot the scale factor is 1 .

Author(s)

Jose Luis Vicente Villardon

References

Gabriel, K.R.(1971): The biplot graphic display of matrices with applications to principal component analysis. Biometrika, 58, 453-467.
Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Questiio. 1986, vol. 10, núm. 1.
Gabriel, K. R. AND Zamir, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights. Technometrics, 21(21):489-498, 1979.
Gabriel, K.R.(1998): Generalised Bilinear Regression. Biometrika, 85, 3, 689-700.
Gower y Hand (1996): Biplots. Chapman \& Hall.
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez-Zaballos, A. (2006). Logistic Biplots. Multiple Correspondence Analysis and related methods 491-509.
Demey, J., Vicente-Villardon, J. L., Galindo, M. P. and Zambrano, A. (2008). Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics 24 2832-2838.

See Also

```
InitialTransform
```


Examples

```
## Simple Biplot with arrows
data(Protein)
bip=PCA.Biplot(Protein[,3:11])
plot(bip)
## Biplot with scales on the variables
plot(bip, mode="s", margin=0.2)
# Structure plot (Correlations)
CorrelationCircle(bip)
```

\# Plot of the Variable Contributions
ColContributionPlot(bip, cex=1)
PCA.Bootstrap Principal Components Analysis with bootstrap confidence intervals.

Description

Calculates a Principal Components Analysis with bootstrap confidence intervals for its parameters

Usage

PCA.Bootstrap(X, dimens $=2$, Scaling = "Standardize columns", B = 1000, type = "np")

Arguments

X
The original raw data matrix
dimens Desired dimension of the solution.
Scaling Transformation that should be applied to the raw data.
B
Number of Bootstrap samples to draw.
type Type of Bootstrap ("np", "pa", "spper", "spres")

Details

The types of bootstrap used are:

- "np : "Non Parametric
- "pa : "parametric (data is obtained from a Multivariate Normal Distribution)
- "spper : "Semi-parametric Residuals are permutated
- "spres : "Semi-parametric Residuals are resampled

For the moment, only the non-parametric bootstrap is implemented.
The Principal Components (eigenvectors) are obtained using bootstrap samples.
The Row scotes are obtained projecting the completen data matrix into the bootstrap Principal Components. In this way all the individulas have the same number of replications.

Value

Type	The type of Bootstrap used
InitTransform	Transformation of the raw data
InitData	Initial data provided to the function'
TransformedData	
	Transformed Data
InitialSVD	Singular value decomposition of the transformed data
InitScores	Row Scores for the initial Data
InitCorr	Correlation among variables and Principal Components for the Initial Data
Samples	Matrix containing the members of the Bootstrap Samples
EigVal	Matrix containing the eigenvalues (columns) for each bootstrap sample (columns)
Inertia	Matrix containing the proportions of accounted variance (columns) for each bootstrap sample (columns)
Us	Three-dimensional array containing the left singular vectors for each bootstrap sample
Vs	Three-dimensional array containing the right singular vectors for each bootstrap sample
As	Projection of the bootstrap sampled matrix onto the bottstrap principal components
Bs	Projection of the bootstrap sampled matrix onto the bottstrap principal coordinates
Scores	Projection of the original matrix onto the bootstrap principal components
Struct	Correlation of the Initial Variabblñes and the PCs for each bootstrap sample

Author(s)

Jose Luis Vicente Villardon

References

Daudin, J. J., Duby, C., \& Trecourt, P. (1988). Stability of principal component analysis studied by the bootstrap method. Statistics: A journal of theoretical and applied statistics, 19(2), 241-258.

Chateau, F., \& Lebart, L. (1996). Assessing sample variability in the visualization techniques related to principal component analysis: bootstrap and alternative simulation methods. COMPSTAT, Physica-Verlag, 205-210.
Babamoradi, H., van den Berg, F., \& Rinnan, Å. (2013). Bootstrap based confidence limits in principal component analysis-A case study. Chemometrics and Intelligent Laboratory Systems, 120, 97-105.

Fisher, A., Caffo, B., Schwartz, B., \& Zipunnikov, V. (2016). Fast, exact bootstrap principal component analysis for $\mathrm{p}>1$ million. Journal of the American Statistical Association, 111(514), 846-860.

See Also

PCA.Biplot

Examples

```
## Not run: X=wine[,4:21]
grupo=wine$Group
rownames(X)=paste(1:45, grupo, sep="-")
pcaboot=PCA.Bootstrap(X, dimens=2, Scaling = "Standardize columns", B=1000)
plot(pcaboot, ColorInd=as.numeric(grupo))
summary(pcaboot)
## End(Not run)
```

plot.Binary.Logistic.Biplot

Plots the results of a Binary Logistic Biplot

Description

Plots the results of a Binary Logistic Biplot

Usage

```
## S3 method for class 'Binary.Logistic.Biplot'
plot(x, F1 = 1, F2 = 2, ShowAxis = FALSE, margin = 0,
PlotVars = TRUE, PlotInd = TRUE, WhatRows = NULL, WhatCols = NULL,
LabelRows = TRUE, LabelCols = TRUE, ShowBox = FALSE, RowLabels = NULL,
ColLabels = NULL, RowColors = NULL, ColColors = NULL, Mode = "s",
TickLength = 0.01, RowCex = 0.8, ColCex = 0.8, SmartLabels = FALSE,
MinQualityRows = 0, MinQualityCols = 0, dp = 0, PredPoints = 0,
SizeQualRows = FALSE, SizeQualCols = FALSE, ColorQualRows = FALSE,
ColorQualCols = FALSE, PchRows = NULL, PchCols = NULL, PlotClus = FALSE,
TypeClus = "ch", ClustConf = 1, Significant = TRUE, alpha = 0.05,
Bonferroni = TRUE, PlotSupVars = TRUE, AbbreviateLabels = FALSE, ...)
```


Arguments

x
F1
F2 Dimension for the second axis of the representation. Default $=2$
ShowAxis Should the axis of the representation be shown?
margin Margin of the plot as a percentage. It gets some space for the labels.
PlotVars Should the variables be plotted?
PlotInd \quad Should the individuals be plotted?
WhatRows What Rows should be plotted. A binary vector containing which rows (individuals) should be plotted (1) and which should not (0).
WhatCols What Columns should be plotted. A binary vector containing which columns (variables) should be plotted (1) and which should not (0).
plot.Binary.Logistic.Biplot

LabelRows	Should the individuals be labeled? LabelCols ShowBox
Should the individuals be labeled?	
RowLabels	Should a box around the points be plotted?
ColLabels	A vector of row labels. If NULL the labels contained in the object will be used.
A vector of column labels. If NULL the labels contained in the object will be	
used.	

Details

Plots a biplot for binary data. The Biplot for binary data is taken as the basis of the plot. If there are a mixture of different types of variables (binary, nominal, abundance, ...) are added to the biplot as supplementary parts.

There are several modes for plotting the biplot. " p ".- Points (Rows and Columns are represented by points)
"a" .- Arrows (The traditional representation with points for rows and arrows for columns)
" b " .- The arrows for the columns are extended to both extremes of the plot and labeled outside the plot area.
" h " .- The arrows for the columns are extended to the positive extreme of the plot and labeled outside the plot area.
"ah" .- Same as arrows but labeled outside the plot area.
"s" .- The directions (or biplot axes) have a graded scale for prediction of the original values.

Value

The plot of the biplot.

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M \& Blasius, J, Eds, Chapman and Hall, Boca Raton.

Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.

Examples

```
data(spiders)
X=Dataframe2BinaryMatrix(spiders)
logbip=BinaryLogBiplotGD(X,penalization=0.1)
plot(logbip, Mode="a")
summary(logbip)
```

```
    plot.CA.sol Plot the solution of a Coorespondence Analysis
```


Description

Plots the solution of a Correspondence Analysis

Usage

\#\# S3 method for class 'CA.sol'
plot(x, ...)

Arguments

x
A CA.sol object
... Any other biplot and graphical parameters

Details

Plots the solution of a Correspondence Analysis

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

References

Add some references here

See Also

plot.ContinuousBiplot

Examples

```
data(riano)
Sp=riano[,3:15]
cabip=CA(Sp)
plot(cabip)
```


Description

Plots a Canonical Biplot

Usage

```
\#\# S3 method for class 'Canonical.Biplot'
plot(x, A1 = 1, A2 = 2, ScaleGraph = TRUE, PlotGroups =
TRUE, PlotVars = TRUE, PlotInd = TRUE, WhatInds =
    NULL, WhatVars = NULL, WhatGroups = NULL, IndLabels =
    NULL, VarLabels = NULL, GroupLabels = NULL,
    AbbreviateLabels = FALSE, LabelInd = TRUE, LabelVars =
    TRUE, CexGroup = 1, PchGroup = 16, margin = 0.1,
    AddLegend = FALSE, ShowAxes = FALSE, LabelAxes =
    FALSE, LabelGroups = TRUE, PlotCircle = TRUE,
    ConvexHulls = FALSE, TypeCircle = "M", ColorGroups =
    NULL, ColorVars = NULL, LegendPos = "topright",
    ColorInd = NULL, voronoi = TRUE, mode = "a", TypeScale
    = "Complete", ValuesScale = "Original", MinQualityVars
    \(=0, \mathrm{dpg}=0, \mathrm{dpi}=0, \mathrm{dp}=0\), PredPoints \(=0\),
    PlotAxis = FALSE, CexInd = NULL, CexVar = NULL, PchInd
    = NULL, PchVar = NULL, ColorVar = NULL, ShowAxis =
    FALSE, VoronoiColor = "black", ShowBox = FALSE,
    ShowTitle = TRUE, PlotClus = FALSE, TypeClus = "ch",
    ClustConf \(=1\), ClustCenters = FALSE, UseClusterColors
    = TRUE, CexClustCenters = 1, ...)
```


Arguments

x
A1
A2
ScaleGraph Reescale the coordinates to optimal matching.
PlotGroups Shoud the group centers be plotted?
PlotVars \quad Should the variables be plotted?
PlotInd Should the individuals be plotted?
WhatInds Logical vector to control what individuals (Rows) are plotted. (Can be also a binary vector)
WhatVars Logical vector to control what variables (Columns) are plotted. (Can be also a binary vector)
WhatGroups Logical vector to control what groups are plotted. (Can be also a binary vector)
plot.Canonical.Biplot

IndLabels	A set of labels for the individuals. If NULL the default object labels are used
VarLabels	A set of labels for the variables. If NULL the default object labels are used
GroupLabels	A set of labels for the groups. If NULL the default object labels are used
AbbreviateLabels	
	Should labels be abbreviated?
LabelInd	Should the individuals be labeled?
LabelVars	Should the variables be labeled?
CexGroup	Sizes of the points for the groups
PchGroup	Markers for the group
margin	margin for the graph
AddLegend	Should a legend with the groups be added?
ShowAxes	Should outside axes be shown?
LabelAxes	Should outside axes be labelled?
LabelGroups	Should the groups be labeled?
PlotCircle	Should the confidence regions for the groups be plotted?
ConvexHulls	Should the convex hulls containing the individuals for each group be plotted?
TypeCircle	Type of confidence region: Univariate (U), Bonferroni(B), Multivariate (M) or Classical (C)
ColorGroups	User colors for the groups. Default colors will be used if NULL.
ColorVars	User colors for the variables. Default colors will be used if NULL.
LegendPos	Position of the legend.
ColorInd	User colors for the individuals. Default colors will be used if NULL.
voronoi	Should the voronoi diagram with the prediction regións for each group be plotted?
mode	Mode of the biplot: "p", "a", "b", "h", "ah" and "s".
TypeScale	Type of scale to use : "Complete", "StdDev" or "BoxPlot"
ValuesScale	Values to show on the scale: "Original" or "Transformed"
MinQualityVars	Minimum quality of representation for a variable to be plotted
dpg	A set of indices with the variables that will show the projections of the gorups
dpi	A set of indices with the individuasl that will show the projections on the variables
dp	A set of indices with the variables that will show the projections of the individuals
PredPoints	A vector with integers. The group centers listed in the vector are projected onto all the variables.
PlotAxis	Not Used
CexInd	Size of the points for individuals.
CexVar	Size of the points for variables.
PchInd	Marhers of the points for individuals.

PchVar	Markers of the points for variables.
ColorVar	Colors of the points for variables.
ShowAxis	Should axis scales be shown?
VoronoiColor	Color for the Voronoi diagram ShowBox
Showld a box around the poitns be plotted?	
PlotClus Should the title be shown?	
TypeClus Should the clusters be plotted? ClustConf Type of plot for the clusters. ("ch"- Convex Hull, "el"- Ellipse or "st"- Star) Percent of points included in the cluster. only the ClusConf percent of the points nearest to the center will be used to calculate the cluster ClustCenters Should the cluster centers be plotted? UseClusterColors	
Should the cluster colors be used in the plot	
CexClustCenters	Size of the cluster centres

Details

The function plots the results of a Canononical Biplot. The coordinates for Groups, Individuals and Variables can be shown or not on the plot, each of the three can also be labeled separately. The are parameters to control the way each different set of coordinates is plotted and labeled.
There are several modes for plotting the biplot.
"p".- Points (Rows and Columns are represented by points)
"a" .- Arrows (The traditional representation with points for rows and arrows for columns)
"b" .- The arrows for the columns are extended to both extremes of the plot and labeled outside the plot area.
" h " .- The arrows for the columns are extended to the positive extreme of the plot and labeled outside the plot area.
"ah" .- Same as arrows but labeled outside the plot area.
"s" .- The directions (or biplot axes) have a graded scale for prediction of the original values.
The TypeScale argument applies only to the " s " mode. There are three types:
"Complete" .- An equally spaced scale covering the whole range of the data is calculates.
"StdDev" .- Mean with one, two and three stadard deviations
"BoxPlot" .- Box-Plot like Scale (Median, 25 and 75 percentiles, maximum and minimum values.)
The ValuesScale argument applies only to the " s " mode and controls if the labels show the Original ot Transformed values.

Some of the initial transformations are not compatible with some of the types of biplots and scales. For example, It is not possible to recover by projection the original values when you double centre de data. In that case you have the residuals for interaction and only the transformed values make sense.

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

References

Amaro, I. R., Vicente-Villardon, J. L., \& Galindo-Villardon, M. P. (2004). Manova Biplot para arreglos de tratamientos con dos factores basado en modelos lineales generales multivariantes. Interciencia, 29(1), 26-32.

Varas, M. J., Vicente-Tavera, S., Molina, E., \& Vicente-Villardon, J. L. (2005). Role of canonical biplot method in the study of building stones: an example from Spanish monumental heritage. Environmetrics, 16(4), 405-419.
Santana, M. A., Romay, G., Matehus, J., Villardon, J. L., \& Demey, J. R. (2009). simple and low-cost strategy for micropropagation of cassava (Manihot esculenta Crantz). African Journal of Biotechnology, 8(16).

Examples

```
data(wine)
X=wine[,4:21]
canbip=CanonicalBiplot(X, group=wine$Group)
plot(canbip, TypeCircle="U")
```


plot.CanonicalDistanceAnalysis

Plots a Canonical Distance Analysis

Description

Plots a Canonical Distance Analysis

Usage

```
## S3 method for class 'CanonicalDistanceAnalysis'
plot(x, A1 = 1, A2 = 2, ScaleGraph = TRUE,
ShowAxis = FALSE, ShowAxes = FALSE, LabelAxes = TRUE, margin = 0.1,
PlotAxis = FALSE, ShowBox = TRUE, PlotGroups = TRUE, LabelGroups = TRUE,
CexGroup = 1.5, PchGroup = 16, ColorGroup = NULL, voronoi = TRUE,
VoronoiColor = "black", PlotInd = TRUE, LabelInd = TRUE, CexInd = 0.8,
PchInd = 3, ColorInd = NULL, WhatInds = NULL, IndLabels = NULL,
PlotVars = TRUE, LabelVar = TRUE, CexVar = NULL, PchVar = NULL,
ColorVar = NULL, WhatVars = NULL, VarLabels = NULL, mode = "a",
TypeScale = "Complete", ValuesScale = "Original", SmartLabels = TRUE,
AddLegend = TRUE, LegendPos = "topright", PlotCircle = TRUE,
```

```
ConvexHulls = FALSE, TypeCircle = "M", MinQualityVars = 0, dpg = 0,
dpi = 0, PredPoints = 0, PlotClus = TRUE, TypeClus = "ch", ClustConf = 1,
CexClustCenters = 1, ClustCenters = FALSE, UseClusterColors = TRUE, ...)
```


Arguments

x	An object of class "CanonicalDistanceAnalysis"
A1	Dimension for the first axis. 1 is the default.
A2	Dimension for the second axis. 2 is the default.
ScaleGraph	Reescale the coordinates to optimal matching.
ShowAxis	Should the axis be shown?
ShowAxes	Not used
LabelAxes	Shoud the axis be labelled?
margin	Margin of the plot
PlotAxis	Should the axis be plotted?
ShowBox	Show a box around the plot
PlotGroups	Should the groups be plotted?
LabelGroups	Should the groups be labelled?
CexGroup	Sizes for the groups
PchGroup	Marks for the groups
ColorGroup	Colors for the groups
voronoi	Should a voronoi diagram separating the groups be plotted?
VoronoiColor	Color for the voronoi diagram
PlotInd	Should the individuals be plotted?
LabelInd	Should the individuals be labelled?
CexInd	Sizes for the individuals
PchInd	Marks for the individuals
ColorInd	Colors for the individuals
WhatInds	What indivduals are plotted
IndLabels	Labels for the individuals
PlotVars	Should the variables be plotted?
LabelVar	Should the variables be labelled?
CexVar	Sizes for the variables
PchVar	Marks for the variables
ColorVar	User colors for the variables. Default colors will be used if NULL "h", "ah" and "s". "StdDev" or "BoxPlot"

ValuesScale	Values to show on the scale: "Original" or "Transformed"
SmartLabels	
AddLegend	Should a legend be added?
LegendPos	Position of the legend
PlotCircle	Should the confidence regions for the groups be plotted?
ConvexHulls	Should the convex hulls containing the individuals for each group be plotted?
TypeCircle	Type of confidence region: Univariate (U), Bonferroni(B), Multivariate (M) or Classical (C)
MinQualityVars	Minimum quality of representation for a variable to be plotted
dpg	A set of indices with the variables that will show the projections of the gorups
dpi	A set of indices with the individuasl that will show the projections on the variables
PredPoints	A vector with integers. The group centers listed in the vector are projected onto all the variables.
PlotClus	Should the clusters be plotted?
TypeClus	Type of plot for the clusters. ("ch"- Convex Hull, "el"- Ellipse or "st"- Star)
ClustConf	Percent of points included in the cluster. only the ClusConf percent of the points nearest to the center will be used to calculate the cluster
CexClustCenters	
	SIze of the cluster centers.
ClustCenters	Should the cluster centers be plotted?
UseClusterColors	
	Should the cluster colors be used in the plot
	Any other graphical parameters

Details

Plots a Canonical Distance Analysis

Value

The plot of a Canonical Distance Analysis

Author(s)

Jose Luis Vicente Villardon

References

Gower, J. C. and Krzanowski, W. J. (1999). Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance. Journal of the Royal Statistical Society: Series C (Applied Statistics), 48(4):505-519.

See Also

plot.Canonical.Biplot

Examples

\# Not yet
plot.CCA.sol
Plots the solution of a Canonical Correspondence Analysisis

Description

Plots the solution of a Canonical Correspondence Analysisis using similar parameters to the continuous biplot

Usage

```
\#\# S3 method for class 'CCA.sol'
plot(x, A1 = 1, A2 = 2, ShowAxis = FALSE, margin = 0,
                PlotSites = TRUE, PlotSpecies = TRUE, PlotEnv = TRUE,
                LabelSites = TRUE, LabelSpecies = TRUE, LabelEnv =
                        TRUE, TypeSites = "wa", SpeciesQuality = FALSE,
                            MinQualityVars = 0.3, dp = 0, pr = 0, PlotAxis =
                            FALSE, TypeScale = "Complete", ValuesScale =
                        "Original", mode = "a", CexSites = NULL, CexSpecies =
                        NULL, CexVar \(=\) NULL, ColorSites \(=\) NULL, ColorSpecies \(=\)
                        NULL, ColorVar = NULL, PchSites = NULL, PchSpecies =
                        NULL, PchVar = NULL, SizeQualSites = FALSE,
                        SizeQualSpecies = FALSE, SizeQualVars = FALSE,
                        ColorQualSites = FALSE, ColorQualSpecies = FALSE,
                        ColorQualVars = FALSE, SmartLabels = FALSE, ...)
```


Arguments

x

A1
A2
ShowAxis
margin
PlotSites
PlotSpecies
PlotEnv
LabelSites
LabelSpecies
LabelEnv
TypeSites
SpeciesQuality

```
MinQualityVars
dp
pr
PlotAxis
TypeScale
ValuesScale
mode
CexSites
CexSpecies
CexVar
ColorSites
ColorSpecies
ColorVar
PchSites
PchSpecies
PchVar
SizeQualSites
SizeQualSpecies
SizeQualVars
ColorQualSites
ColorQualSpecies
ColorQualVars
SmartLabels
... Aditional graphical parameters.
```


Details

The plotting procedure is similar to the one used for continuous biplots including the calibration of the environmental variables.

Value

No value returned

Author(s)
Jose Luis Vicente Villardon

References

CCA

See Also

```
    plot.ContinuousBiplot
```


Examples

\#\#---- Should be DIRECTLY executable !! ----
plot.ContinuousBiplot Plots a biplot for continuous data.

Description

Plots a biplot for continuous data.

Usage

```
\#\# S3 method for class 'ContinuousBiplot'
plot(x, A1 = 1, A2 = 2, ShowAxis = FALSE, margin = 0,
    PlotVars = TRUE, PlotInd = TRUE, WhatInds = NULL,
    WhatVars = NULL, LabelVars = TRUE, LabelInd = TRUE,
    IndLabels = NULL, VarLabels = NULL, mode = "a", CexInd
    = NULL, CexVar \(=\) NULL, ColorInd = NULL, ColorVar =
    NULL, LabelPos = 1, SmartLabels = FALSE,
    AbbreviateLabels = FALSE, MinQualityInds = 0,
    MinQualityVars \(=0, \mathrm{dp}=0\), PredPoints \(=0\), PlotAxis \(=\)
    FALSE, TypeScale = "Complete", ValuesScale =
    "Original", SizeQualInd = FALSE, SizeQualVars = FALSE,
    ColorQualInd = FALSE, ColorQualVars = FALSE, PchInd =
    NULL, PchVar = NULL, PlotClus = FALSE, TypeClus =
    "ch", ClustConf = 1, ClustLegend = FALSE,
    ClustLegendPos = "topright", ClustCenters = FALSE,
    UseClusterColors = TRUE, CexClustCenters = 1,
    PlotSupVars = TRUE, SupMode = "a", ShowBox = FALSE,
    nticks = 5, NonSelectedGray = FALSE, PlotUnitCircle =
    TRUE, PlotContribFA = TRUE, AddArrow = FALSE,
    ColorSupContVars = NULL, ColorSupBinVars = NULL,
    ColorSupOrdVars = NULL, ...)
```


Arguments

x
A1
A2
ShowAxis

An object of class "Biplot"
Dimension for the first axis. 1 is the default.
Dimension for the second axis. 2 is the default.
Logical variable to control if the coordinate axes should appear in the plot. The default value is FALSE because for most of the biplots its presence is irrelevant.

margin	Margin for the labels in some of the biplot modes (percentage of the plot width). Default is 0 . Increase the value if the labels are not completely plotted.
PlotVars	Logical to control if the Variables (Columns) are plotted.
PlotInd	Logical to control if the Individuals (Rows) are plotted.
WhatInds	Logical vector to control what individuals (Rows) are plotted. (Can be also a binary vector)
WhatVars	Logical vector to control what variables (Columns) are plotted. (Can be also a binary vector)
LabelVars	Logical to control if the labels for the Variables are shown
LabelInd	Logical to control if the labels for the individuals are shown
IndLabels	A set of labels for the individuals. If NULL the default object labels are used
VarLabels	A set of labels for the variables. If NULL the default object labels are used
mode	Mode of the biplot: "p", "a", "b", "h", "ah" and "s".
CexInd	Size for the symbols and labels of the individuals. Can be a single common size for all the points or a vector with individual sizes.
CexVar	Size for the symbols and labels of the variables. Can be a single common size for all the points or a vector with individual sizes.
ColorInd	Color for the symbols and labels of the individuals. Can be a single common color for all the points or a vector with individual colors.
ColorVar	Color for the symbols and labels of the variables. Can be a single common color for all the points or a vector with individual colors.
LabelPos	Position of the labels in relation to the point. (Se the graphical parameter pos)
SmartLabels	Plot the labels in a smart way
AbbreviateLabels	
	Should labels be abbreviated?
MinQualityInds	Minimum quality of representation for an individual to be plotted.
MinQualityVars	Minimum quality of representation for a variable to be plotted.
dp	A set of indices with the variables that will show the projections of the individuals.
PredPoints	A vector with integers. The row points listed in the vector are projected onto all the variables.
PlotAxis	Not Used
TypeScale	Type of scale to use : "Complete", "StdDev" or "BoxPlot"
ValuesScale	Values to show on the scale: "Original" or "Transformed"
SizeQualInd	Should the size of the row points be related to their qualities of representation (predictiveness)?
SizeQualVars	Should the size of the column points be related to their qualities of representation (predictiveness)?
ColorQualInd	Should the color of the row points be related to their qualities of representation (predictiveness)?

ColorQualVars	Should the color of the column points be related to their qualities of representation (predictiveness)?
PchInd	Symbol for the row points. See help(points) for details.
PchVar	Symbol for the column points. See help(points) for details.
PlotClus	Should the clusters be plotted?
TypeClus	Type of plot for the clusters. ("ch"- Convex Hull, "el"- Ellipse or "st"- Star)
ClustConf	Percent of points included in the cluster. only the ClusConf percent of the points nearest to the center will be used to calculate the cluster
ClustLegend	Should a legend for the clusters be plotted? Default FALSE
ClustLegendPos	Position of the legend for the clusters. Default "topright"
ClustCenters	Should the cluster centers be plotted
UseClusterColors	
	Should the cluster colors be used in the plot
CexClustCenters	
	Size of the cluster centres
PlotSupVars	Should the supplementary variables be plotted?
SupMode	Mode of the supplementary variables.
ShowBox	Should a box around the poitns be plotted?
nticks	Number of ticks for the representation of the variables
NonSelectedGray	
	The nonselected individuals and variables aplotted in light gray colors
PlotUnitCircle	Plot the unit circle in the biplot for a Factor Analysis in which the lenght of the column arrows is smaller than 1 and is the quality of representation.
PlotContribFA	Plot circles in the biplot for a Factor Analysis with different values of the quality of representation.
AddArrow	Add an arrow to the representation of other modes of the biplot.
ColorSupContVars	
	Colors for the continuous supplementary variables.
ColorSupBinVars	
	Colors for the binary supplementary variables.
ColorSupOrdVars	
	Colors for the ordinal supplementary variables.
	Any other graphical parameters

Details

Plots a biplot for continuous data. The Biplot for continuous data is taken as the basis of the plot. If there are a mixture of different types of variables (binary, nominal, abundance, ...) are added to the biplot as supplementary parts.
There are several modes for plotting the biplot. "p".- Points (Rows and Columns are represented by points)
"a" .- Arrows (The traditional representation with points for rows and arrows for columns)
" b " .- The arrows for the columns are extended to both extremes of the plot and labeled outside the plot area.
" h " .- The arrows for the columns are extended to the positive extreme of the plot and labeled outside the plot area.
"ah" .- Same as arrows but labeled outside the plot area.
"s" .- The directions (or biplot axes) have a graded scale for prediction of the original values.
The TypeScale argument applies only to the " s " mode. There are three types:
"Complete" .- An equally spaced scale covering the whole range of the data is calculates.
"StdDev" .- Mean with one, two and three stadard deviations
"BoxPlot" .- Box-Plot like Scale (Median, 25 and 75 percentiles, maximum and minimum values.)
The ValuesScale argument applies only to the " s " mode and controls if the labels show the Original ot Transformed values.
Some of the initial transformations are not compatible with some of the types of biplots and scales. For example, It is not possible to recover by projection the original values when you double centre de data. In that case you have the residuals for interaction and only the transformed values make sense.
It is possible to associate the color and the size of the points with the quality of representation. Bigger points correspond to better representation quality.

Value

No value Returned

Author(s)

Jose Luis Vicente Villardon

References

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453-467.
Galindo Villardon, M. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Questiio. 1986, vol. 10, num. 1.
Vicente-Villardon, J. L., Galindo Villardon, M. P., \& Blazquez Zaballos, A. (2006). Logistic biplots. Multiple correspondence analysis and related methods. London: Chapman \& Hall, 503-521.

Gower, J. C., \& Hand, D. J. (1995). Biplots (Vol. 54). CRC Press.
Gower, J. C., Lubbe, S. G., \& Le Roux, N. J. (2011). Understanding biplots. John Wiley \& Sons.
Blasius, J., Eilers, P. H., \& Gower, J. (2009). Better biplots. Computational Statistics \& Data Analysis, 53(8), 3145-3158.

Examples

```
data(Protein)
bip=PCA.Biplot(Protein[, 3:11])
plot(bip, mode="s", margin=0.2, ShowAxis=FALSE)
```

```
    plot.CVA
    Plot of a Canonical Variate Analysis
```


Description

Plot of a Canonical Variate Analysis

Usage

\#\# S3 method for class 'CVA'
$\operatorname{plot}(x, A 1=1, A 2=2, \ldots$)

Arguments

x
A1 Dimension for the first axis of the representation
A2 Dimension for the second axis of the representation
... Additional arguments

Details

Plot of a Canonical Variate Analysis

Value

Te Vanonical variate plot

Author(s)

Jose Luis Vicente Villardon
plot.ellipse Plot a concentration ellipse.

Description

Plot a concentration ellipse obtained from ConcEllipse.

Usage

```
## S3 method for class 'ellipse'
plot(x, add=TRUE, labeled= FALSE ,
center=FALSE, centerlabel="Center", initial=FALSE, ...)
```


Arguments

x
add Should the ellipse be added to the current plot?
labeled Should the ellipse be labelled with the confidence level?
center Should the center be plotted?
centerlabel Label for the center.
initial Should the initial data be plotted?
$\ldots \quad$ Any other graphical parameter that can affects the plot (as color, etc ...)

Details

Plots an ellipse containing a specified percentage of the data.

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

References

Meulman, J. J., \& Heiser, W. J. (1983). The display of bootstrap solutions in multidimensional scaling. Murray Hill, NJ: Bell Laboratories.

Linting, M., Meulman, J. J., Groenen, P. J., \& Van der Kooij, A. J. (2007). Stability of nonlinear principal components analysis: An empirical study using the balanced bootstrap. Psychological Methods, 12(3), 359.

See Also

ConcEllipse, ~~~

Examples

```
data(iris)
dat=as.matrix(iris[1:50,1:2])
plot(iris[,1], iris[,2],col=iris[,5], asp=1)
E=ConcEllipse(dat, 0.95)
plot(E, labeled=TRUE, center=TRUE)
```

plot.External.Binary.Logistic.Biplot
Plots an External Logistic Biplot for binary data

Description

Plot of an External Binary Logistic Biplot with many arguments controling different aspects of the representation

Usage

Arguments

x
F1
F2 Latent factor to represent at the Y axis
ShowAxis Should the axis be plotted?
margin Margin for the labels in some of the biplot modes (percentage of the plot width). Default is 0 . Increase the value if the labels are not completely plotted.
PlotVars Should Variables be plotted
PlotInd Should Individuals be plotted
WhatRows A binary vector (0 and 1) that indicates if each individual row should be plotted or not
WhatCols A binary vector (0 and 1) that indicates if each individual column should be plotted or not
LabelRows Should Variables be labelled
LabelCols Should Individuals be labelled
plot.External.Binary.Logistic.Biplot

RowLabels	A vector of Labels for the rows if you do not want to use the data labels
ColLabels	A vector of Labels for the columns if you do not want to use the data labels
RowColors	A vector of colors for the rows
ColColors	A vector of colors for the rows
Mode	Mode of the biplot: "p", "a", "b", "ah" and "s". See details.
TickLength	Lenght of the tick marks. Depends on the scale of the graph.
RowCex	A scalar or a vector containing the sizes of the poitns ans labels for the rows. Default value is 0.8 if the sizes are not provided.
ColCex	A scalar or a vector containing the sizes of the poitns ans labels for the columns. Default value is 0.8 if the sizes are not provided.
SmartLabels	Plot the labels in a smart way
MinQualityRows	Minimum quality of representation for a row or individual to be plotted
MinQualityCols	Minimum quality of representation for a column or variable to be plotted
dp	"Drop Points" on the variables, a vector with integers. The row points are projected on the directions of the variables listed in the vector.
PredPoints	A vector with integers. The row points listed in the vector are projected onto all the variables.
SizeQualRows	Should the size of the row points be related to their qualities of representation (predictiveness)?
ShowBox	Should abox around the point be displayed?
SizeQualCols	Should the size of the column points be related to their qualities of representation (predictiveness)?
ColorQualRows	Should the color of the row points be related to their qualities of representation (predictiveness)?
ColorQualCols	Should the color of the column points be related to their qualities of representation (predictiveness)?
PchRows	Symbol for the row points. See help(points) for details.
PchCols	Symbol for the column points. See help(points) for details.
PlotClus	Should the clusters be plotted?
TypeClus	Type of plot for the clusters. ("ch"- Convex Hull, "el"- Ellipse or "st"- Star)
ClustConf	Percent of points included in the cluster. only the ClusConf percent of the points nearest to the center will be used to calculate the cluster
Significant	If TRUE, only the significant variables are plotted
alpha	Significance Level
Bonferroni	Should the Bonferroni correction be used
PlotSupVars	Should supplementary variables be plotted
	Any other graphical parameter you want to use

Details

The logistic regression equation predicts the probability that a caracter will be present in an individual. Geometrically the y's can be represented as point in the reduced dimension space and the b's are the vectors showing the directions that best predict the probability of presence of each allele . For a com-plete explanation of the geometrical properties of the ELB see Vicente-Villardón et al (2006). The prediction of the probabilities is made in the same way as in a linear Biplot, i. e., the projection of a genotype point on the direction of an variable vector predicts the probability of presence of that variable in the individual. To facilitate the interpretation of the graph, fixed prediction probabilities points are situated on each allele vector. To simplify the graph, in our ap-plication, a vector joining the points for 0.5 and 0.75 are placed; this shows the cut point for prediction of presence and the direction of increasing probabilities. The length of the vector can be interpreted as an inverse measure of the discriminatory power of the alleles or bands, in the sense that shorter vectors correspond to alleles that better differentiate individuals. Two alleles pointing in the same direction are highly correlated, two alleles pointing in opposite directions are negatively correlated, and two alleles forming an angle close to 90° are not correlated. A more complete scale with probabilities from 0.1 to 0.9 can also be plotted with this function. For each variable, the ordination diagram can be divided into two separate regions predicting presence or absence, the two regions are separated by the line that is perpendicular to the variable vector in the Biplot and cuts the vector in the point predicting 0.5 . The variables associated to the configuration are those that predict the presences adequately. In a practical situation not all the variables are associated to the ordination. Due to the high number usually studied, it is convenient to situate on the graph only those that are related to the configuration, i. e., those that have an adequate goodness of fit after adjusting the logistic regression.

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

References

Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Analysis And Related Methods. Grenacre, M \& Blasius, J, Eds, Chapman and Hall, Boca Raton.

See Also

ExternalBinaryLogisticBiplot

Examples

```
data(spiders)
dist=BinaryProximities(spiders)
```

```
pco=PrincipalCoordinates(dist)
pcobip=ExternalBinaryLogisticBiplot(pco)
plot(pcobip, Mode="s")
pcobip=AddCluster2Biplot(pcobip, NGroups=3, ClusterType="hi")
op <- par(mfrow=c(1,2))
plot(pcobip, Mode="s", PlotClus = TRUE)
plot(pcobip$Dendrogram)
par(op)
```

plot.fraction Plots a fraction of the data as a cluster

Description

Plots a convex hull or a star containing a specified percentage of the data. Used to plot clusters.

Usage

```
## S3 method for class 'fraction'
plot(x, add = TRUE, center = FALSE,
centerlabel = "Center", initial = FALSE, type = "ch", ...)
```


Arguments

x
add
center Should the center be plotted?
centerlabel Label for the center.
initial Should the initial data be plotted?
type Type of plot. Can be: "ch"- Convex Hull or "st" - Star (Joining each point with the center)
... Any other graphical parameter that can affects the plot (as color, etc ...)

Details

Plots a convex hull or a star containing a specified percentage of the data.

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

See Also

Fraction

Examples

```
a=matrix(runif(50), 25,2)
a2=Fraction(a, 0.7)
plot(a2, add=FALSE, type="ch", initial=TRUE, center=TRUE, col="blue")
plot(a2, add=TRUE, type="st", col="red")
```

plot.MGC

Plot the results of Model-Based Gaussian Clustering algorithms

Description

PLots an object of type MGC (Model-based Gaussian Clustering)

Usage

\#\# S3 method for class 'MGC'
plot (x, vars $=$ NULL, groups $=x \$ C l a s s i f i c a t i o n, C e x P o i n t s=0.2$, Confidence $=0.95, \ldots$)

Arguments

x	An object of type MGC
vars	A subset of indices of the variables to be plotted
groups	A factor containing groups to represent. Usually the clusters obtained from the algorithm.
CexPoints	Size of the points. Confidence
Confidence of the ellipses	
\ldots	Anay additional graphical parameters

Details

PLots an object of type MGC (Model-based Gaussian Clustering) using a splom plot.

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

Examples

data(iris)

```
plot.Ordinal.Logistic.Biplot
```


Plots an ordinal Logistic Biplot

Description

Plots an ordinal Logistic Biplot

Usage

```
## S3 method for class 'Ordinal.Logistic.Biplot'
plot(x, A1 = 1, A2 = 2,
ShowAxis = FALSE, margin = 0, PlotVars = TRUE, PlotInd = TRUE,
LabelVars = TRUE, LabelInd = TRUE, mode = "a", CexInd = NULL,
CexVar = NULL, ColorInd = NULL, ColorVar = NULL, SmartLabels = TRUE,
MinQualityVars = 0, dp = 0, PredPoints = 0, PlotAxis = FALSE,
TypeScale = "Complete", ValuesScale = "Original",
SizeQualInd = FALSE, SizeQualVars = FALSE, ColorQualInd = FALSE,
ColorQualVars = FALSE, PchInd = NULL, PchVar = NULL,
PlotClus = FALSE, TypeClus = "ch", ClustConf = 1,
ClustCenters = FALSE, UseClusterColors = TRUE, ClustLegend = TRUE,
ClustLegendPos = "topright", TextVarPos = 1, PlotSupVars = FALSE,...)
```


Arguments

x	Plots and object of type "Ordinal.Logistic.Biplot"
A1	First dimension to plot
A2	Second dimension to plot
ShowAxis	Should the axis be shown
margin	Margin for the graph (in order to have space for the variable levels)
PlotVars	Should the variables be plotted?
PlotInd	Should the individuals be plotted?
LabelVars	Should the variables be labelled?
LabelInd	Should the variables be labelled?
mode	Mode of the biplot (see the classical biplot)
CexInd	Type of marker used for the individuals
CexVar	Type of marker used for the variables
ColorInd	Colors used for the individuals
ColorVar	Colors used for the cariables
SmartLabels	Should smart placement for the labels be used?
MinQualityVars	Minimum quality of representation for a variable to be displayed
dp	Set of variables in which the individuals are projected

PredPoints	Set of points thet will be projected on all the variables
PlotAxis	Should the axis be plotted?
TypeScale	See continuous biplots
ValuesScale	See continuous biplots
SizeQualInd	Should the size of the labels and points be related to the quality of representation for individuals?
SizeQualVars	Should the size of the labels and points be related to the quality of representation for variables?
ColorQualInd	Should the intensity of the color of the labels and points be related to the quality of representation for individuals?
ColorQualVars	Should the intensity of the color of the labels and points be related to the quality of representation for variables?
PchInd	Markers for the individuals
PchVar	Markers for the individuals
PlotClus	Should the added clusters for the individuals be plotted?
TypeClus	Type of plot for the clusters. The types are "ch", "el" and "st" for "Convex Hull", "Ellipse" and "Star" repectively.
ClustConf	Confidence level for the cluster
ClustCenters	Should the centers of the clsters be plotted
UseClusterColors	
	Should the colors of the clusters be used to plot the individuals.
ClustLegend	Should a legend for the clusters be added?
ClustLegendPos	Position of the legend
TextVarPos	Position of the labels for the variables
PlotSupVars	Should the supplementary variables be plotted
	Any other aditional parameters

Details

Plots an ordinal Logistic Biplot

Value

The plot

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardón, J. L., \& Sánchez, J. C. H. (2014). Logistic Biplots for Ordinal Data with an Application to Job Satisfaction of Doctorate Degree Holders in Spain. arXiv preprint arXiv:1405.0294.

See Also

```
plot.ContinuousBiplot
```


Examples

```
data(Doctors)
    olb = OrdLogBipEM(Doctors,dim = 2, nnodes = 10, initial=4, tol = 0.001,
    maxiter = 100, penalization = 0.1, show=TRUE)
    plot(olb, mode="s", ColorInd="gray", ColorVar=1:5)
```

plot.PCA.Analysis Plots a Principal Component Analysis

Description

Plots the results of a Principal Component Analysis.

Usage

\#\# S3 method for class 'PCA.Analysis'
$\operatorname{plot}(x, A 1=1, A 2=2$, CorrelationCircle $=$ FALSE, \ldots)

Arguments

$x \quad$ The object with the results of a PCA
A1 Dimension for the first axis of the representation
A2 Dimension for the second axis of the representation
CorrelationCircle
Should the correlation circle be plotted? If false the scores plot is done.
... Any other arguments of the function plot.ContinuousBiplot

Details

Plots theresults of a Principal Component Analysis. The plot can be the correlation circle containing the correlations of the variables with the components or a plot of the scores of the individuals.

Value

The PCA plot.

Author(s)

Jose Luis Vicente Villardon

See Also

plot.ContinuousBiplot

Examples

\# Not yet

```
plot.PCA.Bootstrap
```

Plots the Bootstrap information for Principal Components Analysis (PCA)

Description

Plots an object of class "PCA.Bootstrap"

Usage

\#\# S3 method for class 'PCA.Bootstrap'
plot(x, Eigenvalues = TRUE, Inertia = FALSE, EigenVectors = TRUE, Structure = TRUE, Squared $=$ TRUE, Scores = TRUE, ColorInd = "black", TypeScores = "ch", ...)

Arguments

x	An object of class "PCA.Bootstrap"
Eigenvalues	Should the information for the eigenvalues be plotted?
Inertia	Should the information for the inertia be plotted?
EigenVectors	Should the information for the eigenvectors be plotted?
Structure	Should the information for the correlations (variables-dimensions) be plotted?
Squared	Should the information for the correlations (variables-dimensions) be plotted?
Scores	Should the row (individual) scores be plotted?
ColorInd	Colors for the rows
TypeScores	Type of plot for the scores
\ldots	Any other graphical argument

Details

For each parameter, box-plots and confidence intervals are plotted. The initial estimator and the bootstrap mean are plotted.
For the eigenvectors, loadings and contributions, the graph is divided into as many rows as dimensions, each row contains a plot of the hole set of variables.
The scores are plotted on a two dimensional

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

References

Daudin, J. J., Duby, C., \& Trecourt, P. (1988). Stability of principal component analysis studied by the bootstrap method. Statistics: A journal of theoretical and applied statistics, 19(2), 241-258.

Chateau, F., \& Lebart, L. (1996). Assessing sample variability in the visualization techniques related to principal component analysis: bootstrap and alternative simulation methods. COMPSTAT, Physica-Verlag, 205-210.

Babamoradi, H., van den Berg, F., \& Rinnan, Å. (2013). Bootstrap based confidence limits in principal component analysis: A case study. Chemometrics and Intelligent Laboratory Systems, 120, 97-105.

Fisher, A., Caffo, B., Schwartz, B., \& Zipunnikov, V. (2016). Fast, exact bootstrap principal component analysis for $\mathrm{p}>1$ million. Journal of the American Statistical Association, 111(514), 846-860.

See Also

PCA.Bootstrap

Examples

```
X=wine[,4:21]
grupo=wine$Group
rownames(X)=paste(1:45, grupo, sep="-")
pcaboot=PCA.Bootstrap(X, dimens=2, Scaling = "Standardize columns", B=1000)
plot(pcaboot, ColorInd=as.numeric(grupo))
summary(pcaboot)
```


Description

Plots an object of class PCoABootstrap

Usage

```
## S3 method for class 'PCoABootstrap'
plot(x, F1=1, F2=2, Move2Center=TRUE,
BootstrapPlot="Ellipse", confidence=0.95, Colors=NULL, ...)
```


Arguments

x
F1 First dimension to plot
F2 Second dimension to plot
Move2Center Translate the ellipse center to the coordinates
BootstrapPlot Type of Bootstrap plot to draw: "Ellipse", "ConvexHull", "Star"
confidence Confidence level for the bootstrap plot
Colors Colors of the objects
... Additional parameters for graphical representations

Details

Draws the bootstrap confidence regions for the coordinates of the points obtained from a Principal Coodinates Analysis

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

References

J.R. Demey, J.L. Vicente-Villardon, M.P. Galindo, A.Y. Zambrano, Identifying molecular markers associated with classifications of genotypes by external logistic biplot, Bioinformatics 24 (2008) 2832.

Examples

```
data(spiders)
Dis=BinaryProximities(spiders)
pco=PrincipalCoordinates(Dis, Bootstrap=TRUE, BootstrapType="Products")
plot(pco, Bootstrap=TRUE)
```

plot.Principal.Coordinates
Plots an object of class Principal.Coordinates

Description

Plots an object of class Principal.Coordinates

Usage

```
## S3 method for class 'Principal.Coordinates'
plot(x, A1 = 1, A2 = 2, LabelRows = TRUE,
WhatRows = NULL, RowCex = 1, RowPch = 16, Title = "", RowLabels = NULL,
RowColors = NULL, ColColors = NULL, ColLabels = NULL, SizeQualInd = FALSE,
SmartLabels = TRUE, ColorQualInd = FALSE, ColorQual = "black", PlotSup = TRUE,
Bootstrap = FALSE, BootstrapPlot = c("Ellipse", "CovexHull", "Star"),
margin = 0, PlotClus = FALSE, TypeClus = "ch", ClustConf = 1,
CexClustCenters = 1, LegendClust = TRUE, ClustCenters = FALSE,
UseClusterColors = TRUE, ShowAxis = FALSE, PlotBinaryMeans = FALSE,
MinIncidence = 0, ShowBox = FALSE, ColorSupContVars = NULL,
ColorSupBinVars = NULL, ColorSupOrdVars = NULL, TypeScale = "Complete",
SupMode = "s", PlotSupVars = FALSE, ...)
```


Arguments

\(\left.$$
\begin{array}{ll}\mathrm{x} & \text { Object of class "Principal.Coordinates" } \\
\text { A1 } & \text { First dimenssion of the plot } \\
\text { A2 } & \text { Second dimenssion of the plot } \\
\text { LabelRows } & \text { Controls if the points are labelled. Usually TRUE. } \\
\text { WhatRows } & \text { What Rows to plot. A vector of 0/1 elements. If NULL all rows are plotted } \\
\text { RowCex } & \begin{array}{l}\text { Size of the points. Can be a single number or a vector. } \\
\text { RowPch }\end{array} \\
\begin{array}{ll}\text { Symbols for the points. }\end{array}
$$

Title \& Title for the graph\end{array}\right]\)| Labels for the rows. If NULL row names of the data matrix are used. |
| :--- |
| RowColors |\quad| Colors for the rows. If NULL row deafault colors are assigned. Can be a single |
| :--- |
| value or avector of colors. |

```
ColorQualInd Controls if the color of the points depends on the quality of representation.
ColorQual Darker color for the quality scale.
PlotSup Controls if the supplementary points are plotted.
Bootstrap Controls if the bootstrap points are plotted.
BootstrapPlot Type of plot of the Bootstrap Information. The types are "Ellipse", "CovexHull"
    or "Star".
margin Margin for the graph.
PlotClus Should the clusters be plotted?
TypeClus Type of plot for the clusters. ("ch"- Convex Hull, "el"- Ellipse or "st"- Star)
ClustConf Percent of points included in the cluster. only the ClusConf percent of the points
    nearest to the center will be used to calculate the cluster
CexClustCenters
    Size of the cluster centers
LegendClust Legends for the clusters
ClustCenters Should the cluster centers be plotted
UseClusterColors
                            Should the cluster colors be used in the plot
ShowAxis
PlotBinaryMeans
MinIncidence
ShowBox
ColorSupContVars
ColorSupBinVars
ColorSupOrdVars
TypeScale
SupMode
PlotSupVars
... Additional parameters for graphical representations
```


Details

Graphical representation of an Principal coordinates Analysis controlling visual aspects of the plot as colors, symbols or sizes of the points.

Value

No value is returned

Author(s)

Jose Luis Vicente-Villardon

References

J.R. Demey, J.L. Vicente-Villardon, M.P. Galindo, A.Y. Zambrano, Identifying molecular markers associated with classifications of genotypes by external logistic biplot, Bioinformatics 24 (2008) 2832.

See Also

BinaryProximities

Examples

```
data(spiders)
dist=BinaryProximities(spiders)
pco=PrincipalCoordinates(dist)
plot(pco)
```

plot.Procrustes Plots an object of class "Procrustes"

Description

Plots Simple Procrustes Analysis

Usage

```
## S3 method for class 'Procrustes'
plot(x, F1=1, F2=2, ...)
```


Arguments

x	Object of class "Procrustes"
F1	First dimenssion of the plot
F2	Second dimenssion of the plot
\ldots	Additional parameters for graphical representations

Details

Graphical representation of an Orthogonal Procrustes Analysis.

Value

No value is returned

Author(s)

Jose Luis Vicente-Villardon

See Also

BinaryProximities

Examples

```
data(spiders)
dist=BinaryProximities(spiders)
pco=PrincipalCoordinates(dist)
plot(pco)
```

plot.StatisBiplot Plots a Statis Biplot Object

Description

Plots a Statis Biplot Object

Usage

```
## S3 method for class 'StatisBiplot'
plot(x, A1 = 1, A2 = 2, PlotType = "Biplot",
PlotRowTraj = FALSE, PlotVarTraj = FALSE, LabelTraj = "Begining",
VarColorType = "ByVar", VarColors = NULL, VarLabels = NULL,
RowColors = NULL, TableColors = NULL, RowRandomColors = FALSE,
TypeTraj = "line", ...)
```


Arguments

x	A Statis object		
A1	First dimension of the plot		
A2	Second dimension of the plot		
PlotType	Type of plot: Interstructure, Correlations, Contributions or Biplot		
PlotRowTraj	Should the row trajectories be plotted?		
PlotVarTraj	Should the variables trajectories be plotted?		
LabelTraj	Where the trajecories should be labelled: Begining or End.		
VarColorType	The colors for the variables should be set by table (ByTable) or by variable (ByVar)		
VarColors	Colors for the variables.		
VarLabels	Labels for the variables		
RowColors	Colors for the rows		
TableColors	Colors for each table		
RowRandomColors		\quad	Use random colors for the variables.
:---	:---		

Details

Plots a Statis Biplot Object. The arguments of the general biplot are as in a Continuous Biplot.

Value

A biplot

Author(s)

Jose Luis Vicente Villardon

References

Vallejo-Arboleda, A., Vicente-Villardon, J. L., \& Galindo-Villardon, M. P. (2007). Canonical STATIS: Biplot analysis of multi-table group structured data based on STATIS-ACT methodology. Computational statistics \& data analysis, 51(9), 4193-4205.

See Also

plot.ContinuousBiplot

Examples

```
data(Chemical)
x= Chemical[,5:16]
X=Convert2ThreeWay(x,Chemical$WEEKS, columns=FALSE)
stbip=StatisBiplot(X)
```

plot.Unfolding Plots an Unfolding Representation

Description

Plots an Unfolding Representation

Usage

```
## S3 method for class 'Unfolding'
plot(x, A1 = 1, A2 = 2, ShowAxis = FALSE,
margin = 0.1, PlotSites = TRUE, PlotSpecies = TRUE, PlotEnv = TRUE,
LabelSites = TRUE, LabelSpecies = TRUE, LabelEnv = TRUE,
SpeciesQuality = FALSE, MinQualityVars = 0, dp = 0,
PlotAxis = FALSE, TypeScale = "Complete", ValuesScale = "Original",
mode = "h", CexSites = NULL, CexSpecies = NULL, CexVar = NULL,
ColorSites = NULL, ColorSpecies = NULL, ColorVar = NULL,
PchSites = NULL, PchSpecies = NULL, PchVar = NULL,
SizeQualSites = FALSE, SizeQualSpecies = FALSE,
SizeQualVars = FALSE, ColorQualSites = FALSE,
```

```
ColorQualSpecies = FALSE, ColorQualVars = FALSE, SmartLabels = FALSE,
PlotTol = FALSE, ...)
```


Arguments

```
x An object of class Unfolding
A1 Axis 1 of the representation.
A2 Axis 1 of the representation.
ShowAxis Should the axis be shown?
margin Margin for the plot (precentage)
PlotSites Should the sites be plotted?
PlotSpecies Should the species be plotted?
PlotEnv Should the environmental variables be plotted?
LabelSites Should the sites be labelled?
LabelSpecies Should the species be labelled?
LabelEnv Should the environmental variables be labelled?
SpeciesQuality
MinQualityVars Minimum quality of a var to be plotted.
dp
PlotAxis
TypeScale
ValuesScale
mode
CexSites
CexSpecies
CexVar
ColorSites
ColorSpecies
ColorVar
PchSites
PchSpecies
PchVar
SizeQualSites
SizeQualSpecies
SizeQualVars
ColorQualSites
ColorQualSpecies
ColorQualVars
SmartLabels
PlotTol
```


Details

Plots an Unfolding Representation

Value

A plot of the unfolding representation

Author(s)

Jose Luis Vicente-Villardon

References

de Leeuw, J. (2005). Multidimensional unfolding. Encyclopedia of statistics in behavioral science.

Examples

\# Not yet
plot3d.ContinuousBiplot
Plots a classical biplot for continuous data

Description

Plots a classical biplot for continuous data.

Usage

```
## S3 method for class 'ContinuousBiplot'
plot3d(x, A1 = 1, A2 = 2, A3 = 3,
ShowAxis = TRUE, margin = 0, PlotVars = TRUE, PlotInd = TRUE,
WhatInds = NULL, WhatVars = NULL, LabelVars = TRUE,
LabelInd = TRUE, IndLabels = NULL, VarLabels = NULL,
mode = "a", CexInd = NULL, CexVar = NULL, ColorInd = NULL,
ColorVar = NULL, LabelPos = 1, SmartLabels = FALSE,
MinQualityInds = 0, MinQualityVars = 0.3, dp = 0,
PredPoints = 0, PlotAxis = FALSE, TypeScale = "Complete",
ValuesScale = "Original", SizeQualInd = FALSE,
SizeQualVars = FALSE, ColorQualInd = FALSE,
ColorQualVars = FALSE, PchInd = NULL, PchVar = NULL,
PlotClus = FALSE, TypeClus = "ch", ClustConf = 1,
ClustCenters = FALSE, UseClusterColors = TRUE,
PlotSupVars = TRUE, ...)
```


Arguments

X	An object of class "ContinuousBiplot""
A1	Dimension for the first axis. 1 is the default.
A2	Dimension for the second axis. 2 is the default.
A3	Dimension for the third axis. 3 is the default.
ShowAxis	Logical variable to control if the coordinate axes should appear in the plot. The default value is FALSE because for most of the biplots its presence is irrelevant.
margin	Margin for the labels in some of the biplot modes (percentage of the plot width). Default is 0 . Increase the value if the labels are not completely plotted.
PlotVars	Logical to control if the Variables (Columns) are plotted.
PlotInd	Logical to control if the Individuals (Rows) are plotted.
WhatInds	Logical vector to control what individuals (Rows) are plotted. (Can be also a binary vector)
WhatVars	Logical vector to control what variables (Columns) are plotted. (Can be also a binary vector)
LabelVars	Logical to control if the labels for the Variables are shown
LabelInd	Logical to control if the labels for the individuals are shown
IndLabels	A set of labels for the individuals. If NULL the default object labels are used
VarLabels	A set of labels for the variables. If NULL the default object labels are used
mode	Mode of the biplot: "p", "a", "b", "h", "ah" and "s".
CexInd	Size for the symbols and labels of the individuals
CexVar	Size for the symbols and labels of the variables
ColorInd	Color for the symbols and labels of the individuals
ColorVar	Color for the symbols and labels of the variables
LabelPos	Position of the labels in relation to the point. (Se the graphical parameter pos)
SmartLabels	Plot the labels in a smart way
MinQualityInds	Minimum quality of representation for an individual to be plotted
MinQualityVars	Minimum quality of representation for a variable to be plotted
dp	A set of indices with the variables that will show the projections of the individuals
PredPoints	A vector with integers. The row points listed in the vector are projected onto all the variables.
PlotAxis	Not Used
TypeScale	Type of scale to use : "Complete", "StdDev" or "BoxPlot"
ValuesScale	Values to show on the scale: "Original" or "Transformed"
SizeQualInd	Should the size of the row points be related to their qualities of representation (predictiveness)?
SizeQualVars	Should the size of the column points be related to their qualities of representation (predictiveness)?

ColorQualInd	Should the color of the row points be related to their qualities of representation (predictiveness)?
ColorQualVars	Should the color of the column points be related to their qualities of representa- tion (predictiveness)?
PchInd	Symbol for the row points. See help(points) for details. Symbol for the column points. See help(points) for details.
PchVar	Should the clusters be plotted?
PlotClus	Type of plot for the clusters. ("ch"- Convex Hull, "el"- Ellipse or "st"- Star)
TypeClus	Percent of points included in the cluster. only the ClusConf percent of the points nearest to the center will be used to calculate the cluster
ClustConf	Should the cluster centers be plotted

Details

The parameters are the same as the ones for the 2D biblot.

Value

A 3D Biplot

Author(s)

Jose Luis Vicente Villardon

See Also

plot.ContinuousBiplot

Examples

data(Protein)

bip=PCA.Biplot(Protein[, 3:11])
plot3d.ContinuousBiplot(bip, mode="s", margin=0.2, ShowAxis=FALSE)

Description

Plots a 3D Canonical Biplot

Usage

```
plot3dCanonicalBiplot(Bip, A1 = 1, A2 = 2, A3 = 3, ScaleGraph = TRUE,
PlotGroups = TRUE, PlotVars = TRUE, PlotInd = TRUE, LabelInd = TRUE,
CexGroup = 1, PchGroup = 16, margin = 0.1, AddLegend = FALSE,
ShowAxes = FALSE, LabelAxes = TRUE, LabelGroups = TRUE, PlotCircle = TRUE,
ConvexHulls = FALSE, TypeCircle = "M", ColorGroups = NULL, ColorVars = NULL,
LegendPos = "topright", ColorInd = NULL, mode = "a",
TypeScale = "Complete", ValuesScale = "Original", MinQualityVars = 0,
dpg = 0, dpi = 0, PredPoints = 0, PlotAxis = FALSE, CexInd = NULL,
CexVar = NULL, PchInd = NULL, PchVar = NULL, ColorVar = NULL,
ShowAxis = TRUE, ColorAxis = "gray", ...)
```


Arguments

Bip	An object of class "Canonical Biplot"
A1	Dimension for the first axis. 1 is the default.
A2	Dimension for the second axis. 2 is the default.
A3	Dimension for the third axis. 3 is the default.
ScaleGraph	Reescale the coordinates to optimal matching.
PlotGroups	Shoud the group centers be plotted?
PlotVars	Should the variables be plotted?
PlotInd	Should the individuals be plotted?
LabelInd	Should the individuals be labeled?
CexGroup	Sizes of the points for the groups
PchGroup	Markers for the group
margin	margin for the graph
AddLegend	Should a legend with the groups be added?
ShowAxes	Should outside axes be shown?
LabelAxes	Should outside axes be labelled?
LabelGroups	Should the groups be labeled?
PlotCircle	Should the confidence regions for the groups be plotted?
ConvexHulls	Should the convex hulls containing the individuals for each group be plotted?
TypeCircle	Type of confidence region: Univariate (U), Bonferroni(B), Multivariate (M) or Classical (C)

plot3dCanonicalBiplot

ColorGroups	User colors for the groups. Default colors will be used if NULL.
ColorVars	User colors for the variables. Default colors will be used if NULL.
LegendPos	Position of the legend.
ColorInd	User colors for the individuals. Default colors will be used if NULL.
mode	Mode of the biplot: "p", "a", "b", "h", "ah" and "s".
TypeScale	Type of scale to use : "Complete", "StdDev" or "BoxPlot"
ValuesScale	Values to show on the scale: "Original" or "Transformed"
MinQualityVars	Minimum quality of representation for a variable to be plotted
dpg	A set of indices with the variables that will show the projections of the gorups
dpi	A set of indices with the variables that will show the projections of the individuals
PredPoints	A vector with integers. The group centers listed in the vector are projected onto all the variables.
PlotAxis	Not Used
CexInd	Size of the points for individuals.
CexVar	Size of the points for variables.
PchInd	Marhers of the points for individuals.
PchVar	Markers of the points for variables.
ColorVar	Colors of the points for variables.
ShowAxis	Should axis scales be shown?
ColorAxis	Color of the axis
...	Any aditional graphical parameters

Details

The parameters are the same as in the 2D Canonical Biplot.

Value

A 3D Canonical Biplot

Author(s)

Jose Luis Vicente Villardon

See Also

```
plot.Canonical.Biplot
```


Examples

```
data(wine)
X=wine[,4:21]
canbip=CanonicalBiplot(X, group=wine$Group)
plot3dCanonicalBiplot(canbip, TypeCircle="M")
```


Description

Highlights several groups or clusters on a biplot representation.

Usage

PlotBiplotClusters(A, Groups = ones(c(nrow(A), 1)), TypeClus = "st",
ClusterColors $=$ NULL, ClusterNames $=$ NULL, centers $=$
TRUE, ClustConf $=1$, Legend $=$ FALSE, LegendPos =
"topright", CexClustCenters = 1, ...)

Arguments

A Coordinates of the points in the scattergram
Groups Factor defining the groups to be highlited
TypeClus Type of representation of the clusters. For the moment just a convex hull but in the future ellipses and stars will be added.

ClusterColors A vector of colors with as many elements as clusters. If NULL the function slects the raibow colors.
ClusterNames A vector of names with as many elements as clusters.
centers Logical variable to control if centres of the clusters are plotted
ClustConf Percent of points included in the cluster. only the ClusConf percent of the points nearest to the center will be used to calculate the cluster
Legend \quad Should a legend be plotted
LegendPos Position of the legend.
CexClustCenters
Size of the cluster centres.
.. Any other graphical parameters

Details

The clusters to plot should be added to the biplot object using the function AddCluster2Biplot.

Value

It takes effects on a plot

Author(s)

Jose Luis Vicente Villardon

See Also

AddCluster2Biplot

Examples

```
data(iris)
bip=PCA.Biplot(iris[,1:4])
bip=AddCluster2Biplot(bip, NGroups=3, ClusterType="us", Groups=iris[,5], Original=FALSE)
plot(bip, PlotClus = TRUE)
```

PlotOrdinalResponses Plot the response functions along the directions of best fit.

Description

Plot the response functions along the directions of best fit for the selected dimensions

Usage

PlotOrdinalResponses(olb, $A 1=1, A 2=2$, $\inf =-12$, sup $=12$, Legend = TRUE, WhatVars=NULL)

Arguments

olb	An object of class "Ordinal.Logistic.Biplot"
A1	First dimension of the plot.
A2	Second dimension of the plot
inf	Lower limit of the representation
sup	Upper limit of the representation
Legend	Should a legend be plotted
WhatVars	A vector with the numbers of the variables to be plotted. If NULL all the vari- ables are plotted.

Details

Plot the response functions along the directions of best fit for the selected dimensions

Value

A plot describing the behaviour of the variable

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(Doctors)
    olb = OrdLogBipEM(Doctors,dim = 2, nnodes = 10, initial=4, tol = 0.001,
    maxiter = 100, penalization = 0.1, show=TRUE)
    PlotOrdinalResponses(olb, WhatVars=c(1, 2, 3,4))
```

PLSR Partial Least Squares Regression

Description

Partial Least Squares Regression for numerical variables.

Usage

```
PLSR(Y, X, S = 2, InitTransform = 5, grouping = NULL,
centerY = TRUE, scaleY = TRUE, tolerance = 5e-06,
maxiter \(=100\), show \(=\) FALSE, Validation \(=\) NULL, nB = 500)
```


Arguments

Y	Matrix of Dependent Variables
X	Matrix of Independent Variables
S	Dimension of the solution
InitTransform	Initial transformation of the independent variables.
grouping	Fator when the init transformation is the standardization with the within groups deviation.
centerY	Should the dependent variables be centered? scaleY
Should the dependent variables be standadized?	
maxiter	Tolerance for the algorithm
show	Maximum number of iterations
Validation	Show the progress of the algorithm?
nB	Validation (None, Cross, Bootstrap)

Details

Partial Least Squares Regression for numerical variables.

Value

An object of class plsr with fiends

Method	PLSR
X	The X matrix
Y	The Y matrix
centerY	Is the Y matrix centered
scaleY	Is the Y matrix scaled
Initial_Transformation	
	Initial transformation of the Y matrix
ScaledX	Transformed X matrix
ScaledY	Transformed Y matrix
Intercept	Intercept of the model
XScores	Scores for the individals from the X matrix
XWeights	Weigths for the X set
XLoadings	Loadings for the X set
YScores	Scores for the individals from the Y matrix
YWeights	Weigths for the Y set
YLoadings	Loadings for the Y set
RegParameters	Final Regression Parameters
ExpectedY	Expected values of Y
R2	R-squared
XStructure	Relation of the X variables with its structure
YStructure	Relation of the Y variables with its structure
YXStructure	Relation of the Y variables with the X components

Author(s)

Jose Luis Vicente Villardon

References

H. Abdi, Partial least squares regression and projection on latent structure regression (PLS regression), WIREs Comput. Stat. 2 (2010), pp. 97-106.

See Also

Biplot.PLSR

Examples

```
X=as.matrix(wine[,4:21])
y=as.numeric(wine[,2])-1
mifit=PLSR(y,X, Validation="None")
```


Description

Fits Partial Least Squares Regression with Binary Response

Usage

```
PLSR1Bin(Y, X, S = 2, InitTransform = 5, grouping = NULL,
tolerance = 5e-06, maxiter = 100, show = FALSE, penalization = 0,
    cte = TRUE, Algorithm = 1, OptimMethod = "CG")
```


Arguments

Y	The response
X	The matrix of independent variables
S	The Dimension of the solution
InitTransform	Initial transform for the X matrix
grouping	
tolerance	Tolerance for convergence of the algorithm
maxiter	Maximum Number of iterations
show	Show the steps of the algorithm
penalization	Penalization for the Ridge Logistic Regression
cte	Should a constant be included in the model?
Algorithm	Algorithm used in the calculations
OptimMethod	Optimization methods from optimr

Details

The procedure uses the algorithm proposed by Bastien et al () to fit a Partial Lest Squares Regression when the response is Binary. The procedure will be later converted into a Biplot to visulize the results.

Value

Still to be finished

Author(s)

Jose Luis Vicente Villardon

Examples

\# No examples yet

```
PLSRfit
```

Partial Least Squares Regression (PLSR)

Description

Fits a Partial Least Squares Regression (PLSR) to two continuous data matrices

Usage

PLSRfit(Y, X, S = 2, tolerance = 5e-06, maxiter $=100$, show $=$ FALSE)

Arguments

Y	The matrix of dependent variables
X	The Matrix of Independent Variables
S	Dimension of the solution. The default is 2
tolerance	Tolerance for the algorithm.
maxiter	Maximum number of iterations for the algorithm.
show	Logical. Should the calculation process be shown on the screen

Details

Fits a Partial Least Squares Regression (PLSR) to a set of two continuous data matrices

Value

An object of class "PLSR"
Method PLSR1
$X \quad$ Independent Variables
Y Dependent Variables
center Are data centered?
scale Are data scaled?
ScaledX Scaled Independent Variables
ScaledY Scaled Dependent Variables
XScores Scores for the Independent Variables
XWeights Weights for the Independent Variables - coefficients of the linear combination
XLoadings Factor loadings for the Independent Variables
YScores Scores for the Dependent Variables
YWeights Weights for the Dependent Variables - coefficients of the linear combination
YLoadings Factor loadings for the Dependent Variables
XStructure Structure Correlations for the Independent Variables
YStructure Structure Correlations for the Dependent Variables
YXStructure Structure Correlations two groups

Author(s)

Jose Luis Vicente Villardon

References

Wold, S., Sjöström, M., \& Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2), 109-130.

PoliticalFigures Political Figures in the USA

Description

Does the American public actively differentiate political stimuli along ideological lines?. Dissimilarities among 13 political figurein the USA.

Usage

data("PoliticalFigures")

Format

A data frame with the dissimilarities among 13 political figures in the USA.
G._W._Bush a numeric vector with the dissimilarities with the other figures

John_Kerry a numeric vector with the dissimilarities with the other figures
Ralph_Nader a numeric vector with the dissimilarities with the other figures
Dick_Cheney a numeric vector with the dissimilarities with the other figures
John_Edwards a numeric vector with the dissimilarities with the other figures
Laura_Bush a numeric vector with the dissimilarities with the other figures
Hillary_Clinton a numeric vector with the dissimilarities with the other figures
Bill_Clinton a numeric vector with the dissimilarities with the other figures
Colin_Powell a numeric vector with the dissimilarities with the other figures
John_Ashcroft a numeric vector with the dissimilarities with the other figures
John_McCain a numeric vector with the dissimilarities with the other figures
Democ._Party a numeric vector with the dissimilarities with the other figures
Repub._Party a numeric vector with the dissimilarities with the other figures

Details

We have taken information from the 2004 CPS American National Election Study. Specifically 711 NES respondents' feeling thermometer ratings of thirteen prominent political figures from the period of the 2004 election: George W. Bush; John Kerry; Ralph Nader; Richard Cheney; John Edwards; Laura Bush; Hillary Clinton; Bill Clinton; Colin Powell; John Ashcroft; John McCain; the Democratic party; and the Republican party. With the respondent scores, a dissimilarity among each pair of figures

Source

Jacoby, W. G., \& Armstrong, D. A. (2014). Bootstrap Confidence Regions for Multidimensional Scaling Solutions. American Journal of Political Science, 58(1), 264-278.

References

Jacoby, W. G., \& Armstrong, D. A. (2014). Bootstrap Confidence Regions for Multidimensional Scaling Solutions. American Journal of Political Science, 58(1), 264-278.

Examples

```
# Not yet
```

PrettyTicks Calculates loose axis ticks and labels using nice numbers

Description

Calculates axis ticks and labels using nice numbers

Usage

PrettyTicks(min = -3, max = 3, ntick = 5)

Arguments

\min	Minimum value on the axis
\max	maximum value on the axis.
ntick	Approximated number of desired ticks

Details

Calculates axis ticks and labels using nice numbers. The resulting labels are known as loose labels.

Value

A list with the following fields

ticks	Ticks for the axis
labels	The corresponding labels

Author(s)

Jose Luis Vicente Villardon

References

Heckbert, P. S. (1990). Nice numbers for graph labels. In Graphics Gems (pp. 61-63). Academic Press Professional, Inc..

See Also

NiceNumber

Examples

```
PrettyTicks(-4, 4, 5)
```

PrincipalCoordinates Principal Coordinates Analysis

Description

Principal coordinates Analysis for a matrix of proximities obtained from binary, categorical, continuous or mixed data

Usage

PrincipalCoordinates(Proximities, w = NULL, dimension = 2, tolerance = 1e-04, Bootstrap = FALSE, BootstrapType = c("Distances", "Products"), nB = 200, ProcrustesRot = TRUE, BootstrapMethod = c("Sampling", "Permutation"))

Arguments

Proximities An object of class proximities.
w
dimension Dimension of the solution
tolerance Tolerance for the eigenvalues
Bootstrap Should Bootstrap be calculated?
BootstrapType Bootstrap on the residuals of the "distance" or "scalar products" matrix.
nB Number of Bootstrap replications
ProcrustesRot Should each replication be rotated to match the initial solution? BootstrapMethod

The replications are obtained "Sampling" or "Permutating" the residuals.

Details

Principal Coordinates Analysis for a proximity matrix previously calculated from a matrix of raw data or directly obsrved proximities.

Value

An object of class Principal.Coordinates. The function adds the information of the Principal Coordinates to the object of class proximities. Together with the information about the proximities the object has:

Analysis	The type of analysis performed, "Principal Coordinates" in this case
Eigenvalues	The eigenvalues of the PCoA
Inertia	The Inertia of the PCoA
RowCoordinates	Coordinates for the objects in the PCoA
RowQualities	Qualities of representation for the objects in the PCoA
RawStress	Raw Stress values
stress1	stress formula 1
stress2	stress formula 2
sstress1	sstress formula 1
sstress2	sstress formula 2
rsq	Squared correlation between disparities and distances
Spearman	Spearman correlation between disparities and distances
Kendall	Kendall correlation between disparities and distances
BootstrapInfo	The result of the bootstrap calculations

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley
Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325-338.
J.R. Demey, J.L. Vicente-Villardon, M.P. Galindo, A.Y. Zambrano, Identifying molecular markers associated with classifications of genotypes by external logistic biplot, Bioinformatics 24 (2008) 2832.

See Also

BinaryProximities, BootstrapDistance, BootstrapDistance, BinaryProximities

Examples

```
data(spiders)
```

Dis=BinaryProximities(spiders)
pco=PrincipalCoordinates(Dis)
Dis=BinaryProximities(spiders)
pco=PrincipalCoordinates(Dis, Bootstrap=TRUE)

Description

Prints the results of Model-Based Gaussian Clustering algorithms

Usage

\#\# S3 method for class 'MGC'
print(x, ...)

Arguments

x
An object of class "MGC"
... Any aditional parameters

Details

Prints the results of Model-Based Gaussian Clustering algorithms

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----
\#\#-- =-> Define data, use random,
\#\#--or do help(data=index) for the standard data sets.
print.RidgeBinaryLogistic
prints an object of class RidgeBinaryLogistic

Description

prints an object of class RidgeBinaryLogistic

Usage

```
## S3 method for class 'RidgeBinaryLogistic'
print(x, ...)
```


Arguments

x	An object of class
\ldots	Aditional Arguments

Details

Prints an object of class RidgeBinaryLogistic

Value

The main resuls of a binary logistic regression

Author(s)

Jose Luis Vicente Villardon

Examples

\# Not yet
Protein Protein consumption data.

Description

Protein consumption in twenty-five European countries for nine food groups.

Usage

data(Protein)

Format

A data frame with 25 observations on the following 11 variables.
Comunist a factor with levels No Yes
Region a factor with levels North Center South
Red_Meat a numeric vector
White_Meat a numeric vector
Eggs a numeric vector
Milk a numeric vector

Fish a numeric vector
Cereal a numeric vector
Starch a numeric vector
Nuts a numeric vector
Fruits_Vegetables a numeric vector

Details

These data measure protein consumption in twenty-five European countries for nine food groups. It is possible to use multivariate methods to determine whether there are groupings of countries and whether meat consumption is related to that of other foods.

Source

http://lib.stat.cmu.edu/DASL/Datafiles/Protein.html

References

Weber, A. (1973) Agrarpolitik im Spannungsfeld der internationalen Ernaehrungspolitik, Institut fuer Agrarpolitik und marktlehre, Kiel.
Gabriel, K.R. (1981) Biplot display of multivariate matrices for inspection of data and diagnosis. In Interpreting Multivariate Data (Ed. V. Barnett), New York: John Wiley \& Sons, 147-173.
Hand, D.J., et al. (1994) A Handbook of Small Data Sets, London: Chapman \& Hall, 297-298.

Examples

```
data(Protein)
## maybe str(Protein) ; plot(Protein) ...
```

RAPD Sugar Cane Data

Description

Molecular characteristics of 50 varieties of sugar cane.

Usage

data(RAPD)

Format

A data frame with 50 observations on 168 variables. 1-120: Random aplified polymorphic DNA and 121-168: Microsatellites

Details

Dta are codified as presence or absence of the dominant marker.

Examples

data(RAPD)
\#\# maybe $\operatorname{str}($ RAPD) ; plot(RAPD) ...

Description

Remove rows that contains NaNs to obtain a matrix wothout missind data

Usage

RemoveRowsWithNaNs(x, cols = NULL)

Arguments

x
cols

The matrix to be arranged
A set of columns to check as a vector of integers

Details

Remove rows that contains NaNs to obtain a matrix wothout missind data

Value

x
Matrix without missing data

Author(s)

Jose Luis Vicente-Villardon
riano Ecological data from Riano (Spain)

Description

Ecological data from Riano (Spain)

Usage

data("riano")

Format

A data frame with 70 observations on the following 25 variables.
Week a factor with levels A B CDEFGHI J
Depth a factor with levels 025101520 Bottom
Cianof a numeric vector
Crisof a numeric vector
Haptof a numeric vector
Crasp a numeric vector
Cripto a numeric vector
Dinof a numeric vector
Diatom a numeric vector
Euglen a numeric vector
Prasin a numeric vector
Clorof a numeric vector
Zigofi a numeric vector
Xantof a numeric vector
malgas a numeric vector
Ta a numeric vector
X02 a numeric vector
pH a numeric vector
COND a numeric vector
$\mathrm{SiO2}$ a numeric vector
P.P04 a numeric vector

Chla a numeric vector
Chlb a numeric vector
Chlc a numeric vector
IM a numeric vector

Details

Ecological data from Riano (Spain). Abundance of several algae taxonomic groups and several environmental variables

Source

Department of Ecology. University of Leon. Spain

Examples

```
data(riano)
## maybe str(riano) ; plot(riano) ...
```

RidgeBinaryLogistic Ridge Binary Logistic Regression for Binary data

Description

This function performs a logistic regression between a dependent binary variable y and some independent variables x, solving the separation problem in this type of regression using ridge penalization.

Usage

RidgeBinaryLogistic $(y, x=N U L L, ~ d a t a=N U L L, ~ f r e q ~=~ N U L L, ~$
tolerance $=1 \mathrm{e}-05$, maxiter $=100$, penalization $=0.2$,
cte = FALSE, ref = "first", bootstrap = FALSE, nmB = 100,
RidgePlot $=$ FALSE, MinLambda $=0$, MaxLambda $=2$, StepLambda = 0.1)

Arguments

y
X

data

freq
tolerance
maxiter Maximum number of iterations
penalization Ridige penalization: a non negative constant. Penalization used in the diagonal matrix to avoid singularities.
cte Should the model have a constant?
ref Category of reference
bootstrap Should bootstrap confidence intervals be calculated?
nmB Number of bootstrap samples.
RidgePlot Should the ridge plot be plotted?

MinLambda	Minimum value of lambda for the rigge plot
MaxLambda	Maximum value of lambda for the rigge plot
StepLambda	Step for increasing the values of lambda

Details

Logistic Regression is a widely used technique in applied work when a binary, nominal or ordinal response variable is available, due to the fact that classical regression methods are not applicable to this kind of variables. The method is available in most of the statistical packages, commercial or free. Maximum Likelihood together with a numerical method as Newton-Raphson, is used to estimate the parameters of the model. In logistic regression, when in the space generated by the independent variables there are hyperplanes that separate among the individuals belonging to the different groups defined by the response, maximum likelihood does not converge and the estimations tend to the infinity. That is known in the literature as the separation problem in logistic regression. Even when the separation is not complete, the numerical solution of the maximum likelihood has stability problems. From a practical point of view, that means the estimated model is not accurate precisely when there should be a perfect, or almost perfect, fit to the data.
The problem of the existence of the estimators in logistic regression can be seen in Albert (1984), a solution for the binary case, based on the Firth method, Firth (1993) is proposed by Heinze(2002). The extension to nominal logistic model was made by Bull (2002). All the procedures were initially developed to remove the bias but work well to avoid the problem of separation. Here we have chosen a simpler solution based on ridge estimators for logistic regression Cessie(1992).
Rather than maximizing $L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)$ we maximize

$$
L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)-\lambda\left(\left\|\mathbf{b}_{j 0}\right\|+\left\|\mathbf{B}_{j}\right\|\right)
$$

Changing the values of λ we obtain slightly different solutions not affected by the separation problem.

Value

An object of class RidgeBinaryLogistic with the following components

beta	Estimates of the coefficients
fitted	Fitted probabilities
residuals	Residuals of the model
Prediction	Predictions of presences and absences
Covariances	Covariances among the estimates
Deviance	Deviance of the current model
NullDeviance	Deviance of the null model
Dif	Difference between the deviances of the cirrent and null models
df	Degrees of freedom of the difference
p	p-value
CoxSnell	Cox-Snell pseudo R-squared

Nagelkerke	Nagelkerke pseudo R-squared
MacFaden	MacFaden pseudo R-squared
R2	Pseudo R-squared using the residuals
Classification	
PercentCorrect	Classification table
	Percentage of correct classification

Author(s)

Jose Luis Vicente Villardon

References

Agresti, A. (1990) An Introduction to Categorical Data Analysis. John Wiley and Sons, Inc.
Albert, A. and Anderson, J. A. (1984) On the existence of maximum likelihood estimates in logistic regression models. Biometrika, 71(1): 1-10.
Anderson, J. A. (1972), Separate sample logistic discrimination. Biometrika, 59(1): 19-35.
Anderson, J. A. \& Philips P. R. (1981) Regression, discrimination and measurement models for ordered categorical variables. Appl. Statist, 30: 22-31.
Bull, S. B., Mk, C. \& Greenwood, C. M. (2002) A modified score function for multinomial logistic regression. Computational Statistics and data Analysis, 39: 57-74.
Cortinhas Abrantes, J. \& Aerts, M. (2012) A solution to separation for clustered binary data. Statistical Modelling, 12 (1): 3-27.
Cox, D. R. (1970), Analysis of Binary Data. Methuen. London.
Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.
Firth D, (1993) Bias Reduction of Maximum Likelihood Estimates, Biometrika, Vol, 80, No, 1, (Mar,, 1993), pp, 27-38.
Fox, J. (1984) Linear Statistical Models and Related Methods. Wiley. New York.
Harrell, F. E. (2012). rms: Regression Modeling Strategies. R package version 3.5-0. http://CRAN.Rproject.org/package=rms
Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis (Springer Series in Statistics). Springer. New York.
Heinze G, and Schemper M, (2002) A solution to the problem of separation in logistic regresion. Statist. Med., 21:2409-2419

Heinze G. and Ploner M. (2004) Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 71 p, 181-187
Heinze, G. (2006) A comparative investigation of methods for logistic regression with separated or nearly separated data. Statist. Med., 25:4216-4226.

Heinze, G. and Puhr, R. (2010) Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets. Statist. Med. 29: 770-777.

Hoerl, A. E. and Kennard, R.W. (1971) Rige Regression: biased estimators for nonorthogonal problems. Technometrics, 21: 5567.

Sun, H. and Wang S. Penalized logistic regression for high-dimensional DNA methylation data with case-control studies. Bioinformatics. 28 (10): 1368-1375.

Hosmer, D. and Lemeshow, L. (1989) Applied Logistic Regression. John Wiley and Sons. Inc.
Le Cessie, S. and Van Houwelingen, J.C. (1992) Ridge Estimators in Logistic Regression. Appl. Statist. 41 (1): 191-201.

Malo, N., Libiger, O. and Schork, N. J. (2008) Accommodating Linkage Disequilibrium in GeneticAssociation Analyses via Ridge Regression. Am J Hum Genet. 82(2): 375-385.

Silvapulle, M. J. (1981) On the existence of maximum likelihood estimates for the binomial response models. J. R. Statist. Soc. B 43: 310-3.

Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M \& Blasius, J, Eds, Chapman and Hall, Boca Raton.

Walter, S. and Duncan, D. (1967) Estimation of the probability of an event as a function of several variables. Biometrika. 54:167-79.

Wedderburn, R. W. M. (1976) On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models. Biometrika 63, 27-32.

Zhu, J. and Hastie, T. (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics. 5(3):427-43.

Examples

\# not yet

RidgeBinaryLogisticFit
Fits a binary logistic regression with ridge penalization

Description

This function fits a logistic regression between a dependent variable y and some independent variables x , and solves the separation problem in this type of regression using ridge regression and penalization.

Usage

RidgeBinaryLogisticFit(y, xd, freq, tolerance $=1 \mathrm{e}-05$, maxiter $=100$, penalization $=0.2$)

Arguments

y	A vector with the values of the dependent variable
xd	A matrix with the independent variables
freq	Frequencies of each pattern
tolerance	Tolerance for the iterations.
maxiter	Maximum number of iterations for convergenc~
penalization	Penalization used in the diagonal matrix to avoid singularities.

Details

Fits a binary logistic regression with ridge penalization

Value

The parameters of the fit

Author(s)

Jose Luis Vicente Villardon

See Also

```
RidgeBinaryLogistic
```


Examples

\#\#---- Should be DIRECTLY executable !! ----

```
RidgeMultinomialLogisticFit
```

Multinomial logistic regression with ridge penalization

Description

This function does a logistic regression between a dependent variable y and some independent variables x, and solves the separation problem in this type of regression using ridge regression and penalization.

Usage

RidgeMultinomialLogisticFit(y, x, penalization = 0.2, tol $=1 \mathrm{e}-04$, maxiter $=200$, show $=$ FALSE)

Arguments

$y \quad$ Dependent variable.
$x \quad$ A matrix with the independent variables.
penalization Penalization used in the diagonal matrix to avoid singularities.
tol Tolerance for the iterations.
maxiter Maximum number of iterations.
show Should the iteration history be printed?.

Details

The problem of the existence of the estimators in logistic regression can be seen in Albert (1984), a solution for the binary case, based on the Firth's method, Firth (1993) is proposed by Heinze(2002). The extension to nominal logistic model was made by Bull (2002). All the procedures were initially developed to remove the bias but work well to avoid the problem of separation. Here we have chosen a simpler solution based on ridge estimators for logistic regression Cessie(1992).

Rather than maximizing $L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)$ we maximize

$$
L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)-\lambda\left(\left\|\mathbf{b}_{j 0}\right\|+\left\|\mathbf{B}_{j}\right\|\right)
$$

Changing the values of λ we obtain slightly different solutions not affected by the separation problem.

Value

An object of class "rmlr" with components
fitted Matrix with the fitted probabilities
cov Covariance matrix among the estimates
Y Indicator matrix for the dependent variable
beta Estimated coefficients for the multinomial logistic regression
stderr Standard error of the estimates
logLik Logarithm of the likelihood
Deviance Deviance of the model
AIC Akaike information criterion indicator
BIC Bayesian information criterion indicator

Author(s)

Jose Luis Vicente-Villardon

References

Albert,A. \& Anderson,J.A. (1984),On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71(1), 1-10.

Bull, S.B., Mak, C. \& Greenwood, C.M. (2002), A modified score function for multinomial logistic regression, Computational Statistics and dada Analysis 39, 57-74.
Firth, D.(1993), Bias reduction of maximum likelihood estimates, Biometrika 80(1), 27-38
Heinze, G. \& Schemper, M. (2002), A solution to the problem of separation in logistic regression, Statistics in Medicine 21, 2109-2419

Le Cessie, S. \& Van Houwelingen, J. (1992), Ridge estimators in logistic regression, Applied Statistics 41(1), 191-201.

Examples

\# No examples yet

RidgeMultinomialLogisticRegression

Ridge Multinomial Logistic Regression

Description

Function that calculates an object with the fitted multinomial logistic regression for a nominal variable. It compares with the null model, so that we will be able to compare which model fits better the variable.

Usage

RidgeMultinomialLogisticRegression(formula, data, penalization = 0.2, cte $=$ TRUE, tol $=1 \mathrm{e}-04$, maxiter $=200$, showIter $=$ FALSE)

Arguments

formula The usual formula notation (or the dependent variable)
data The dataframe used by the formula. (or a matrix with the independent variables).
penalization Penalization used in the diagonal matrix to avoid singularities.
cte Should the model have a constant?
tol Value to stop the process of iterations.
maxiter Maximum number of iterations.
showIter Should the iteration history be printed?.

Value
An object that has the following components:

fitted	Matrix with the fitted probabilities
cov	Covariance matrix among the estimates
Y	Indicator matrix for the dependent variable
beta	Estimated coefficients for the multinomial logistic regression
stderr	Standard error of the estimates
logLik	Logarithm of the likelihood
Deviance	Deviance of the model
AIC	Akaike information criterion indicator
BIC	Bayesian information criterion indicator
NullDeviance	Deviance of the null model
Difference	Difference between the two deviance values
df	Degrees of freedom
p	p-value asociated to the chi-squared estimate
CoxSnell	Cox and Snell pseudo R squared
Nagelkerke	Nagelkerke pseudo R squared
MacFaden	MacFaden pseudo R squared
Table	Cross classification of observed and predicted responses
PercentCorrect	Percentage of correct classifications

Author(s)

Jose Luis Vicente-Villardon

References

Albert,A. \& Anderson,J.A. (1984),On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71(1), 1-10.

Bull, S.B., Mak, C. \& Greenwood, C.M. (2002), A modified score function for multinomial logistic regression, Computational Statistics and dada Analysis 39, 57-74.
Firth, D.(1993), Bias reduction of maximum likelihood estimates, Biometrika 80(1), 27-38
Heinze, G. \& Schemper, M. (2002), A solution to the problem of separation in logistic regression, Statistics in Medicine 21, 2109-2419
Le Cessie, S. \& Van Houwelingen, J. (1992), Ridge estimators in logistic regression, Applied Statistics 41(1), 191-201.

See Also
RidgeMultinomialLogisticFit

Examples

```
data(Protein)
y=Protein[[2]]
X=Protein[,c(3,11)]
rmlr = RidgeMultinomialLogisticRegression(y,X,penalization=0.0)
summary(rmlr)
```

RidgeOrdinalLogistic Ordinal logistic regression with ridge penalization

Description

This function performs a logistic regression between a dependent ordinal variable y and some independent variables x , and solves the separation problem using ridge penalization.

Usage

RidgeOrdinalLogistic(y, x, penalization $=0.1$, tol $=1 \mathrm{e}-04$, maxiter $=200$, show $=$ FALSE $)$

Arguments

$y \quad$ Dependent variable.
$x \quad$ A matrix with the independent variables.
penalization Penalization used to avoid singularities.
tol Tolerance for the iterations.
maxiter Maximum number of iterations.
show Should the iteration history be printed?.

Details

The problem of the existence of the estimators in logistic regression can be seen in Albert (1984); a solution for the binary case, based on the Firth's method, Firth (1993) is proposed by Heinze(2002). All the procedures were initially developed to remove the bias but work well to avoid the problem of separation. Here we have chosen a simpler solution based on ridge estimators for logistic regression Cessie(1992).
Rather than maximizing $L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)$ we maximize

$$
L_{j}\left(\mathbf{G} \mid \mathbf{b}_{j 0}, \mathbf{B}_{j}\right)-\lambda\left(\left\|\mathbf{b}_{j 0}\right\|+\left\|\mathbf{B}_{j}\right\|\right)
$$

Changing the values of λ we obtain slightly different solutions not affected by the separation problem.

Value
An object of class "pordlogist". This has components:
nobs Number of observations
J Maximum value of the dependent variable
nvar Number of independent variables
fitted.values Matrix with the fitted probabilities
pred Predicted values for each item
Covariances Covariances matrix
clasif Matrix of classification of the items
PercentClasif Percent of good classifications
coefficients Estimated coefficients for the ordinal logistic regression
thresholds Thresholds of the estimated model
logLik Logarithm of the likelihood
penalization Penalization used to avoid singularities
Deviance Deviance of the model
DevianceNull Deviance of the null model
Dif Diference between the two deviances values calculated
df Degrees of freedom
pval p-value of the contrast
CoxSnell Cox-Snell pseudo R squared
Nagelkerke \quad Nagelkerke pseudo R squared
MacFaden Nagelkerke pseudo R squared
iter Number of iterations made

Author(s)

Jose Luis Vicente-Villardon

References

Albert,A. \& Anderson,J.A. (1984),On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71(1), 1-10.

Bull, S.B., Mak, C. \& Greenwood, C.M. (2002), A modified score function for multinomial logistic regression, Computational Statistics and dada Analysis 39, 57-74.
Firth, D.(1993), Bias reduction of maximum likelihood estimates, Biometrika 80(1), 27-38
Heinze, G. \& Schemper, M. (2002), A solution to the problem of separation in logistic regression, Statistics in Medicine 21, 2109-2419

Le Cessie, S. \& Van Houwelingen, J. (1992), Ridge estimators in logistic regression, Applied Statistics 41(1), 191-201.

Examples

```
    data(Doctors)
    olb = OrdLogBipEM(Doctors,dim = 2, nnodos = 10,
        tol = 0.001, maxiter = 100, penalization = 0.2)
    model = RidgeOrdinalLogistic(Doctors[, 1], olb$RowCoordinates, tol = 0.001,
        maxiter = 100, penalization = 0.2)
    model
```

scores.CCA.sol Extract the scores of a CCA solution object

Description

Extract the scores of a CCA solution object

Usage

scores.CCA.sol(CCA.sol)

Arguments

CCA.sol

Details

Extract the scores of a CCA solution object

Value

The species, sites and environmental variables scores of a CCA solution

Author(s)

Jose Luis Vicente Villardon

See Also

CCA

Examples

\#\#---- Should be DIRECTLY executable !! ----

SeparateVarTypes Separation of different types of variables into a list

Description

The procedure creates a list in which each field contains the variables of the same type.

Usage

SeparateVarTypes(X, TypeVar = NULL, TypeFit = NULL)

Arguments

X	A data frame
TypeVar	A vector of characters defining the type of each variable. If not provided the procedure tries to gess the type of each variable. See details for types
TypeFit	A vector of characters defining the type of fit for each variable. If not provided the procedure tries to gess the type of fit for each variable. See details for types

Details

The procedure creates a list in which each field contains the variables of the same type. The type of Variable can be specified in a vector TypeVar and the type of fit in a vector TypeFit. The TypeVar is a vector of characters with as many components as variables with types coded as:
"c" - Continuous (1)
"b" - Binary (2)
"n" - Nominal (3)
"o" - Ordinal (4)
"f" - Frequency (5)
"a" - Abundance (5)
Numbers rhather than characters can also be used. Unless specified in TypeVar, numerical variables are "Continuous", factors are "Nominal", ordered factors are "Ordinal". Factors with just two values are considered as "Binary". "Frequencies" and "abundances" should be specified by the user. If Typevar has length 1, all the variables are supposed to have the same type.
The typeFit is a vector of characters containing the type of fit used for each variab, coded as:
"a" - Average (1)
"wa" - Weighted Average (2)
" r " - Regression (Linear or logistic depending on the type of variable) (3)
"g" - Gaussian (Equal tolerances) (4)
"g1" - Gaussian (Different tolerances) (5)
Numbers rhather than characters can also be used. Unless specified numerical variables are fitted with linear regression, factors with logistic biplots, frequencies with weighted averages and abundances with gaussian regression.

Value

A list containing the following fields
Continuous
Binary
A list containing a data frame with the numeric variables and a character vector
with the type of fit for each variable
A list containing a data frame with the binary variables and a character vector
with the type of fit for each variable

Author(s)

Jose Luis Vicente Villardon

Examples

```
data(Protein)
SepData=SeparateVarTypes(Protein)
SepData
```

SimpleProcrustes Simple Procrustes Analysis

Description

Simple Procrustes Analysis for two matrices

Usage

```
SimpleProcrustes(X, Y, centre = FALSE)
```


Arguments

$X \quad$ Matrix of the first configuration.
Y Matrix of the second configuration.
centre \quad Should the matrices be centred before the calculations?

Details

Orthogonal Procrustes Analysis for two configurations X and Y . The first configuration X is used as a reference and the second, Y, is transformed to match the reference as much as possible. $\mathrm{X}=\mathrm{s}$ Y T $+1 \mathrm{t}+\mathrm{E}=\mathrm{Z}+\mathrm{E}$

Value

An object of class Procrustes.This has components:
$X \quad$ First Configuration
Y Second Configuration
Yrot Second Configuration after the transformation
T Rotation Matrix
t
Translation Vector
s Scale Factor
rsss \quad Residual Sum of Squares
fit Goodness of fit as percent of expained variance
correlations Correlations among the columns of X and Z

Author(s)

Jose Luis Vicente-Villardon

References

Ingwer Borg, I. \& Groenen, P. J.F. (2005). Modern Multidimensional Scaling. Theory and Applications. Second Edition. Springer

See Also

PrincipalCoordinates

Examples

```
data(spiders)
```

SMACOF SMACOF

Description

SMACOF algorithm for symmetric proximity matrices

Usage

$\operatorname{SMACOF}(P, X=N U L L, W=N U L L$,
Model = c("Identity", "Ratio", "Interval", "Ordinal"),
dimsol = 2, maxiter = 100, maxerror = 1e-06,
StandardizeDisparities = TRUE, ShowIter = FALSE)

Arguments

P	A matrix of proximities
X	Inial configuration
W	A matrix of weights \sim
Model	MDS model.
dimsol	Dimension of the solution
maxiter	Maximum number of iterations of the algorithm
maxerror	Tolerance for convergence of the algorithm
StandardizeDisparities	
	Should the disparities be standardized
ShowIter	Show the iteration proccess

Details

SMACOF performs multidimensional scaling of proximity data to find a least- squares representation of the objects in a low-dimensional space. A majorization algorithm guarantees monotone convergence for optionally transformed, metric and nonmetric data under a variety of models.

Value

An object of class Principal.Coordinates and MDS. The function adds the information of the MDS to the object of class proximities. Together with the information about the proximities the object has:

Analysis	The type of analysis performed, "MDS" in this case
X	Coordinates for the objects
D	Distances
Dh	Disparities
stress	Raw Stress

stress1	stress formula 1
stress2	stress formula 2
sstress1	sstress formula 1
sstress2	sstress formula 2
rsq	Squared correlation between disparities and distances
rho	Spearman correlation between disparities and distances
tau	Kendall correlation between disparities and distances

Author(s)

Jose Luis Vicente-Villardon

References

Commandeur, J. J. F. and Heiser, W. J. (1993). Mathematical derivations in the proximity scaling (PROXSCAL) of symmetric data matrices (Tech. Rep. No. RR-93-03). Leiden, The Netherlands: Department of Data Theory, Leiden University.
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 28-42.

De Leeuw, J. \& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/i03/

Borg, I., \& Groenen, P. J. F. (2005). Modern Multidimensional Scaling (2nd ed.). Springer.
Borg, I., Groenen, P. J. F., \& Mair, P. (2013). Applied Multidimensional Scaling. Springer.
Groenen, P. J. F., Heiser, W. J. and Meulman, J. J. (1999). Global optimization in least squares multidimensional scaling by distance smoothing. Journal of Classification, 16, 225-254.

Groenen, P. J. F., van Os, B. and Meulman, J. J. (2000). Optimal scaling by alternating lengthconstained nonnegative least squares, with application to distance-based analysis. Psychometrika, 65, 511-524.

See Also

```
MDS, PrincipalCoordinates
```


Examples

```
data(spiders)
Dis=BinaryProximities(spiders)
MDSSol=SMACOF(Dis$Proximities)
```


smoking Smoking habits

Description

Frequency table representing smoking habits of different employees in a company

Usage

data(smoking)

Format

A data frame with 5 observations on the following 4 variables.
None a numeric vector
Light a numeric vector
Medium a numeric vector
Heavy a numeric vector

Details

Frequency table representing smoking habits of different employees in a company

Source

http://orange.biolab.si/docs/latest/reference/rst/Orange.projection.correspondence/

References

Greenacre, Michael (1983). Theory and Applications of Correspondence Analysis. London: Academic Press.

Examples

```
data(smoking)
## maybe str(smoking) ; plot(smoking) ...
```

Sparse.NIPALSPCA Sparse version of the NIPALS algorithm for PCA.

Description

Sparse version of the NIPALS algorithm for PCA.

Usage

Sparse.NIPALSPCA(X, dimens = 2, tol = 1e-06, maxiter = 1000, lambda = 0.02)

Arguments

X	The data matrix.
dimens	The dimension of the solution
tol	Tolerance of the algorithm.
maxiter	Maximum number of iteratios.
lambda	Value used for sparsity

Details

Sparse version of the NIPALS algorithm for the singular value decomposition that allows for the construction of PCA and Biplot.

Value

The singular value decomposition
u
The coordinates of the rows (standardized)
d
The singuklar values
v
The coordinates of the columns (standardized)

Author(s)

Jose Luis Vicente Villardon

References

Have to be written

Examples

spiders Hunting Spiders Data

Description

Hunting spiders data transformed into Presence/Abscense.

Usage

data(spiders)

Format

A data frame with 28 observations of presence/absence of 12 hunting spider species
Alopacce Presence/Absence of the species Alopecosa accentuata
Alopcune Presence/Absence of the species Alopecosa cuneata
Alopfabr Presence/Absence of the species Alopecosa fabrilis
Arctlute Presence/Absence of the species Arctosa lutetiana
Arctperi Presence/Absence of the species Arctosa perita
Auloalbi Presence/Absence of the species Aulonia albimana
Pardlugu Presence/Absence of the species Pardosa lugubris
Pardmont Presence/Absence of the species Pardosa monticola
Pardnigr Presence/Absence of the species Pardosa nigriceps
Pardpull Presence/Absence of the species Pardosa pullata
Trocterr Presence/Absence of the species Trochosa terricola
Zoraspin Presence/Absence of the species Zora spinimana

Source

van der Aart, P. J. M., and Smeenk-Enserink, N. (1975) Correlations between distributions of hunting spiders (Lycos- idae, Ctenidae) and environmental characteristics in a dune area. Netherlands Journal of Zoology 25, 1-45.

Examples

data(spiders)

SpidersEnv Hunting spiders environmental data.

Description

Hunting spiders environmental data.

Usage

data("SpidersEnv")

Format

A data frame with 28 observations on the following 6 variables.
Watcont Water content
Barsand Bare sand
Covmoss Cover moss
Ligrefl Light reflection
Falltwi Fallen Twings
Coverher Cover Herbs

Details

Hunting spiders environmental data.

Source

van der Aart, P. J. M., and Smeenk-Enserink, N. (1975) Correlations between distributions of hunting spiders (Lycos- idae, Ctenidae) and environmental characteristics in a dune area. Netherlands Journal of Zoology 25, 1-45.

References

Ter Braak, C. J. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167-1179.

Examples

```
data(SpidersEnv)
## maybe str(SpidersEnv) ; plot(SpidersEnv) ...
```

SpidersSp Hunting Spiders Data

Description

Hunting spiders abundances data.

Usage

data("SpidersSp")

Format

A data frame with 28 observations of abundance of 12 hunting spider species
Alopacce Abundance of the species Alopecosa accentuata
Alopcune Abundance of the species Alopecosa cuneata
Alopfabr Abundance of the species Alopecosa fabrilis
Arctlute Abundance of the species Arctosa lutetiana
Arctperi Abundance of the species Arctosa perita
Auloalbi Abundance of the species Aulonia albimana
Pardlugu Abundance of the species Pardosa lugubris
Pardmont Abundance of the species Pardosa monticola
Pardnigr Abundance of the species Pardosa nigriceps
Pardpull Abundance of the species Pardosa pullata
Trocterr Abundance of the species Trochosa terricola
Zoraspin Abundance of the species Zora spinimana

Source

van der Aart, P. J. M., and Smeenk-Enserink, N. (1975) Correlations between distributions of hunting spiders (Lycos- idae, Ctenidae) and environmental characteristics in a dune area. Netherlands Journal of Zoology 25, 1-45.

References

Ter Braak, C. J. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167-1179.

Examples

```
data(SpidersSp)
## maybe str(SpidersSp) ; plot(SpidersSp) ...
```


SSI

Sustainability Society Index

Description

Sustainability Society Index

Usage

data("SSI")

Format

A data frame with 924 observations on the following 23 variables.
Year a factor with levels a2006 a2008 a2010 a2012 a2014 a2016
Country a factor with levels Albania Algeria Angola Argentina Armenia Australia Austria Azerbaijan Bangladesh Belarus Belgium Benin Bhutan Bolivia Bosnia-Herzegovina Botswana Brazil Bulgaria Burkina_Faso Burundi Cambodia Cameroon Canada Central_African_Republic Chad Chile China Colombia Congo Congo_Democratic_Rep. Costa_Rica Cote_dIvoire Croatia Cuba Cyprus Czech_Republic Denmark Dominican_Republic Ecuador Egypt El_Salvador Estonia Ethiopia Finland France Gabon Gambia Georgia Germany Ghana Greece Guatemala Guinea Guinea-Bissau Guyana Haiti Honduras Hungary Iceland India Indonesia Iran Iraq Ireland Israel Italy Jamaica Japan Jordan Kazakhstan Kenya Korea._North Korea._South Kuwait Kyrgyz_Republic Laos Latvia Lebanon Lesotho Liberia Libya Lithuania Luxembourg Macedonia Madagascar Malawi Malaysia Mali Malta Mauritania Mauritius Mexico Moldova Mongolia Montenegro Morocco Mozambique Myanmar Namibia Nepal Netherlands New_Zealand Nicaragua Niger Nigeria Norway Oman Pakistan Panama Papua_New_Guinea Paraguay Peru Philippines Poland Portugal Qatar Romania Russia Rwanda Saudi_Arabia Senegal Serbia Sierra_Leone Singapore Slovak_Republic Slovenia South_Africa Spain Sri_Lanka Sudan Sweden Switzerland Syria Taiwan Tajikistan Tanzania Thailand Togo Trinidad_and_Tobago Tunisia Turkey Turkmenistan Uganda Ukraine United_Arab_Emirates United_Kingdom United_States Uruguay Uzbekistan Venezuela Vietnam Yemen Zambia Zimbabwe

Sufficient_Food a numeric vector
Sufficient_to_Drink a numeric vector
Safe_Sanitation a numeric vector
Education_ a numeric vector
Healthy_Life a numeric vector
Gender_Equality a numeric vector
Income_Distribution a numeric vector
Population_Growth a numeric vector
Good_Governance a numeric vector
Biodiversity_ a numeric vector

Renewable_Water_Resources a numeric vector
Consumption a numeric vector
Energy_Use a numeric vector
Energy_Savings a numeric vector
Greenhouse_Gases a numeric vector
Renewable_Energy a numeric vector
Organic_Farming a numeric vector
Genuine_Savings a numeric vector
GDP a numeric vector
Employment a numeric vector
Public_Debt a numeric vector

Details

Sustainability Society Index

Source

https://ssi.wi.th-koeln.de

References

Gallego-Alvarez, I., Galindo-Villardon, M. P., \& Rodriguez-Rosa, M. (2015). Analysis of the Sustainable Society Index Worldwide: A Study from the Biplot Perspective. Social Indicators Research, 120(1), 29-65. https://doi.org/10.1007/s11205-014-0579-9

Examples

data(SSI)
\#\# maybe $\operatorname{str}(\mathrm{SSI})$; plot(SSI) ...

| SSI 3w \quad Sustainability Society Index (3w) |
| :--- | :--- |

Description

Sustainability Society Index, Three way table

Usage

```
data("SSI3w")
```


Format

The format is: List of 6 \$ a2006: num [1:154, 1:21] 109.36 .6108 .91010108 .310- $\operatorname{attr})^{*}$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" $\$$: chr [1:21] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2008: num [1:154, 1:21] 109.47 .1109 .31010108 .310- $\operatorname{attr}\left(^{*}\right.$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:21] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2010: num [1:154, 1:21] 109.47 .7109 .4 1010108.310- $\operatorname{attr}(*$, "dimnames")=List of 2 : chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:21] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2012: num [1:154, 1:21] 10108.1109 .31010108 .310- $\operatorname{attr})^{*}$, "dimnames")=List of 2 $:$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:21] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2014: num [1:154, 1:21] 10108.4109 .31010108 .310- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:21] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2016: num [1:154, 1:21] 10108.6109 .41010108 .410- $\operatorname{attr}(*$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" $\$$: chr [1:21] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ...

Details

Sustainability Society Index

Source

https://ssi.wi.th-koeln.de

References

Gallego-Alvarez, I., Galindo-Villardon, M. P., \& Rodriguez-Rosa, M. (2015). Analysis of the Sustainable Society Index Worldwide: A Study from the Biplot Perspective. Social Indicators Research, 120(1), 29-65. https://doi.org/10.1007/s11205-014-0579-9

Examples

```
data(SSI3w)
## maybe str(SSI3w) ; plot(SSI3w) ...
```

SSIEcon3w Sustainability Society Index

Description

Sustainability Society Index

Usage

data("SSIEcon3w")

Format

The format is: List of 6 \$ a2006: num [1:154, 1:5] 1.2114 .615 .49 .91 .911- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:5] "Organic_Farming" "Genuine_Savings" "GDP" "Employment" ... \$ a2008: num [1:154, 1:5] 11 14.215 .69 .91 .911- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:5] "Organic_Farming" "Genuine_Savings" "GDP" "Employment" ... \$ a2010: num [1:154, 1:5] 1.1115 .81 .15 .69 .9211- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:5] "Organic_Farming" "Genuine_Savings" "GDP" "Employment" ... \$ a2012: num [1:154, 1:5] 1.1115 .71 .15 .79 .921 1- $\operatorname{attr}(*$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" $\$$: chr [1:5] "Organic_Farming" "Genuine_Savings" "GDP" "Employment" ... \$ a2014: num $[1: 154,1: 5] 1.1115 .31 .15 .79 .92 .11 .21$... ..- $\operatorname{attr}(*$, "dimnames")=List of 2 $\$:$ chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:5] "Organic_Farming" "Genuine_Savings" "GDP" "Employment" ... \$ a2016: num [1:154, 1:5] 1.1114.81.16.89.921.21- $\operatorname{attr}(*$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:5] "Organic_Farming" "Genuine_Savings" "GDP" "Employment" ...

Details

Sustainability Society Index

Source

https://ssi.wi.th-koeln.de

References

Gallego-Alvarez, I., Galindo-Villardon, M. P., \& Rodriguez-Rosa, M. (2015). Analysis of the Sustainable Society Index Worldwide: A Study from the Biplot Perspective. Social Indicators Research, 120(1), 29-65. https://doi.org/10.1007/s11205-014-0579-9

Examples

```
data(SSIEcon3w)
## maybe str(SSIEcon3w) ; plot(SSIEcon3w) ...
```

SSIEnvir3w Sustainability Society Index

Description

Sustainability Society Index

Usage

data("SSIEnvir3w")

Format

The format is: List of $6 \$$ a2006: num [1:154, 1:7] 4.26 .544 .97 .75 .78 .14 .92 .86 .3$\operatorname{attr}(*$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:7] "Biodiversity_" "Renewable_Water_Resources" "Consumption" "Energy_Use" ... \$ a2008: num [1:154, 1:7] 4.86 .545 .17 .75 .785 .72 .86- $\operatorname{attr}(*$, "dimnames")=List of 2\$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:7] "Biodiversity_" "Renewable_Water_Resources" "Consumption" "Energy_Use" ... \$ a2010: num [1:154, 1:7] 5.4 6.645 .27 .75 .786 .42 .85 .8- attr (*, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:7] "Biodiversity_" "Renewable_Water_Resources" "Consumption" "Energy_Use" ... \$ a2012: num [1:154, 1:7] 5.3 6.645 .37 .76 .186 .82 .85 .8- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:7] "Biodiversity_" "Renewable_Water_Resources" "Consumption" "Energy_Use" ... \$ a2014: num [1:154, 1:7] 5.6 $6.645 .37 .777 .97 .32 .86 \ldots$... attr (*, "dimnames")=List of 2\$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:7] "Biodiversity_" "Renewable_Water_Resources" "Consumption" "Energy_Use" ... \$ a2016: num [1:154, 1:7] 5.5 6.64 .15 .47 .87 .37 .97 .32 .95 .9- $\operatorname{attr}(*$, "dimnames")=List of 2 : chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:7] "Biodiversity_" "Renewable_Water_Resources" "Consumption" "Energy_Use" ...

Details

Sustainability Society Index

Source

https://ssi.wi.th-koeln.de

References

Gallego-Alvarez, I., Galindo-Villardon, M. P., \& Rodriguez-Rosa, M. (2015). Analysis of the Sustainable Society Index Worldwide: A Study from the Biplot Perspective. Social Indicators Research, 120(1), 29-65. https://doi.org/10.1007/s11205-014-0579-9

Examples

```
data(SSIEnvir3w)
## maybe str(SSIEnvir3w) ; plot(SSIEnvir3w) ...
```


Description

Sustainability Society Index

Usage

data("SSIHuman3w")

Format

The format is: List of $6 \$$ a2006: num [1:154, 1:9] 109.36 .6108 .91010108 .310- $\operatorname{attr})^{*}$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:9] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2008: num [1:154, 1:9] 109.47 .1109 .31010108 .310- $\operatorname{attr}(*$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:9] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2010: num [1:154, 1:9] 109.47 .7109 .4 1010108.310- $\operatorname{attr}(*$, "dimnames")=List of 2\$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:9] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2012: num [1:154, 1:9] 10108.1109 .31010108 .310- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:9] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2014: num [1:154, 1:9] 10108.4109 .31010108 .310- $\operatorname{attr}(*$, "dimnames")=List of 2 \$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina"\$: chr [1:9] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ... \$ a2016: num [1:154, 1:9] 10108.6109 .41010108 .410- $\operatorname{attr}(*$, "dimnames")=List of 2 $\$$: chr [1:154] "Albania" "Algeria" "Angola" "Argentina" \$: chr [1:9] "Sufficient_Food" "Sufficient_to_Drink" "Safe_Sanitation" "Education_" ...

Details

Sustainability Society Index

Source

https://ssi.wi.th-koeln.de

References

Gallego-Alvarez, I., Galindo-Villardon, M. P., \& Rodriguez-Rosa, M. (2015). Analysis of the Sustainable Society Index Worldwide: A Study from the Biplot Perspective. Social Indicators Research, 120(1), 29-65. https://doi.org/10.1007/s11205-014-0579-9

Examples

data(SSIHuman3w)
\#\# maybe $\operatorname{str}($ SSIHuman $3 w)$; plot(SSIHuman3w) ...

StatisBiplot	STATIS-ACT for multiple tables with common rows and its associated Biplot

Description

The procedure performs STATIS-ACT methodology for multiple tables with common rows and its associated biplot

Usage

StatisBiplot(X, InitTransform = "Standardize columns", dimens = 2, SameVar = FALSE)

Arguments

X A list containing multiple tables with common rows.
InitTransform Initial transformation of the data matrices
dimens Dimension of the final solution
SameVar Are the variables the same for all occasions? If so, Biplot trajectories for each variable will be calculated.

Details

The procedure performs STATIS-ACT methodology for multiple tables with common rows and its associated biplot. When the variables are the same for all occasions trajectories for the variables can also be plotted. Basic plotting includes the consensus individuals and all the variables. Traditional trajectories for individuals and biplot trajectories for variables (when adequate) are optional. The original matrix will be provided as a list each cell of the list is the data matrix for one ocassion the number of rows for each occasion must be the same

Value

An object of class StatisBiplot

Author(s)

Jose Luis Vicente Villardon

References

Abdi, H., Williams, L.J., Valentin, D., \& Bennani-Dosse, M. (2012). STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat, 4, 124-167.
Efron, B.,Tibshirani, RJ. (1993). An introduction to the bootstrap. New York: Chapman and Hall. 436p.

Escoufier, Y. (1976). Operateur associe a un tableau de donnees. Annales de laInsee, 22-23, 165178.

Escoufier, Y. (1987). The duality diagram: a means for better practical applications. En P. Legendre \& L. Legendre (Eds.), Developments in Numerical Ecology, pp. 139-156, NATO Advanced Institute, Serie G. Berlin: Springer.
L'Hermier des Plantes, H. (1976). Structuration des Tableaux a Trois Indices de la Statistique. [These de Troisieme Cycle]. University of Montpellier, France.
Ringrose, T.J. (1992). Bootstrapping and Correspondence Analysis in Archaeology. Journal of Archaeological. Science.19:615-629.

Examples

```
data(Chemical)
# Extract continous data from the original data frame.
x= Chemical[,5:16]
# Obtaining the three way table as a list
X=Convert2ThreeWay(x,Chemical$WEEKS, columns=FALSE)
# Calculating the Biplot associated to STATIS-ACT
stbip=StatisBiplot(X, SameVar=TRUE)
# Basic plot of the results
plot(stbip)
# Colors By Table
plot(stbip, VarColorType="ByTable")
# Colors By Variable
plot(stbip, VarColorType="ByVar", mode="s", MinQualityVars = 0.5)
plot(stbip, PlotRowTraj = TRUE, PlotVars=FALSE, RowColors=1:36)
```

summary.Canonical.Biplot

Summary of the solution of a Canonical Biplot Analysis

Description

Summary of the solution of a Canonical Biplot Analysis

Usage

\#\# S3 method for class 'Canonical.Biplot' summary(object, ...)

Arguments

object
... Aditional arguments

Details

Summary of the results of a Canonical Biplot

Value

The summary

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

Description

Summary of the solution of a CCA

Usage

\#\# S3 method for class 'CCA.sol'
summary (object, ...)

Arguments

object An object of class CCA.sol
... Aditional arguments

Details

Summary of the solution of a CCA

Value

The main results of a CCA

Author(s)

Jose Luis Vicente Villardon

See Also

CCA

Examples

\#\#---- Should be DIRECTLY executable !! ----

```
summary.ContinuousBiplot
```

Summary of the solution of a Biplot for Continuous Data

Description

Summary of the solution of a Biplot for Continuous Data

Usage

\#\# S3 method for class 'ContinuousBiplot'
summary (object, latex = FALSE, ...)

Arguments

object	An object of class "ContinuousBiplot"
latex	Should the results be in latex tables
\ldots	Any aditional parameters

Details

Summary of the solution of a Biplot for Continuous Data

Value

The summary

Author(s)

Jose Luis Vicente Villardon

Examples

```
## Simple Biplot with arrows
data(Protein)
bip=PCA.Biplot(Protein[,3:11])
summary(bip)
```


Description

Summary of a Canonical Variate Analysis

Usage

\#\# S3 method for class 'CVA'
summary (object, ...)

Arguments

object An object of class CVA
... Any aditional arguments

Details

Summary of a Canonical Variate Analysis

Value

The summary

Author(s)

Jose Luis Vicente Villardon

Examples

\# Not yet

Description

Summarizes the results of Model-Based Gaussian Clustering algorithms

Usage

\#\# S3 method for class 'MGC'
summary (object, Centers = TRUE, Covariances = TRUE, ...)

Arguments

object	An object of class "MGC"
Centers	Should the Centers be shown
Covariances	Should the Covariances be shown
\ldots	Any aditional Parameters

Details

Summarizes the results of Model-Based Gaussian Clustering algorithms

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
```

summary.PCA.Analysis Summary of the results of a PCA.

Description

Sumarizes the results of a PCA Analysis.

Usage

\#\# S3 method for class 'PCA.Analysis'
summary (object, latex = FALSE, ...)

Arguments

object The object with the results of s PCA Analysis.
latex \quad Should return latex tables?
... Aditional arguments.

Details

Sumarizes the results of a PCA Analysis, including latex tables for presentation.

Value
A summary of the main results

Author(s)

Jose Luis Vicente Villardon

Examples

\# Not yet
summary.PCA.Bootstrap Summary of a PCA.Bootstrap object

Description

Summary of a PCA.Bootstrap object

Usage

```
## S3 method for class 'PCA.Bootstrap'
summary(object, ...)
```


Arguments

object An object of class PCA.Bootstrap
... Additional arguments

Details
Summary of a PCA.Bootstrap object

Value

The summary

Author(s)

Jose Luis Vicente Villardon

```
    summary.PLSR Summary of a PLSR object
```


Description

Summary of a PLSR object

Usage

```
    ## S3 method for class 'PLSR'
    summary(object, ...)
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { An object of class PLSR } \\
\ldots & \text { Additional arguments }
\end{array}
$$

Details

Summary of a PLSR object

Value

The summary of the object

Author(s)

Jose Luis Vicente Villardon
summary.PLSR1Bin Summary of PLSR with a Binary Response

Description

Summary of PLSR with a single binary Response

Usage

\#\# S3 method for class 'PLSR1Bin'
summary (object, ...)

Arguments

object	An object of class PLSR1Bin
\ldots	Aditional arguments

Details

Summary of PLSR with a single binary Response

Value

The summary

Author(s)

Jose Luis Viecente Villlardon

Examples

\#Not yet

```
summary.Principal.Coordinates
```

Summary of the results of a Principal Coordinates Analysis

Description

Summary of the results of a Principal Coordinates Analysis

Usage

\#\# S3 method for class 'Principal.Coordinates' summary (object, printdata=FALSE, printproximities=FALSE, printcoordinates=FALSE, printqualities=FALSE,...)

Arguments

object An object of Type Principal.Coordinates
printdata Should original data be printed. Default is FALSE
printproximities
Should proximities be printed. Default is FALSE
printcoordinates
Should proximities be printed. Default is FALSE
printqualities Should qualoties of representation be printed. Default is FALSE
... Additional parameters to summary.

Details

This function is a method for the generic function summary() for class "Principal.Coordinates". It can be invoked by calling summary(x) for an object x of the appropriate class.

Value

The summary

Author(s)

Jose Luis Vicente-Villardon

Examples

```
data(spiders)
dist=BinaryProximities(spiders)
pco=PrincipalCoordinates(dist)
summary(pco)
```

```
summary.RidgeBinaryLogistic
```

Summary of a Binary Logistic Regression with Ridge Penalization

Description

Summarizes the results of a Binary Logistic Regression with Ridge Penalization

Usage

\#\# S3 method for class 'RidgeBinaryLogistic'
summary(object, ...)

Arguments

object The object with te results of the logistic regression.
... Any other arguments

Details

Summarizes the results of a Binary Logistic Regression with Ridge Penalization.

Value

The summary

Author(s)

Jose Luis Vicente Villardon

Examples

\# Not Yet

Description

Plots labels of points in a scattergram. labels for points with positive x are placed on the right of the points, and labels for points with negative values on the left.

Usage

textsmart(A, Labels, CexPoints, ColorPoints, ...)

Arguments

A
Coordinates of the points for the scaterrgram
Labels Labels for the points
CexPoints Size of the labels
ColorPoints Colors of the labels
... Aditional graphical arguments

Details

The function is used to improve the readability of the labels in a scatergram.

Value

No value returned

Author(s)

Jose Luis Vicente-Villardon

See Also

plot.Principal.Coordinates

Examples

```
data(spiders)
dist=BinaryProximities(spiders)
pco=PrincipalCoordinates(dist)
plot(pco, SmartLabels =TRUE)
```


Description

Takes a multitable list of matrices X and converts it to a two way matrix with the structure required by the Statis programs using a _ to separate variable and occassion or study.

Usage

Three2TwoWay (X, whatlines $=2$)

Arguments

X
The multitable list.
whatlines \quad Concatenate the rows (1) or the columns (2)

Details

Takes a multitable list of matrices X and converts it to a two way matrix with the structure required by the Statis programs using a _ to separate variable and occassion or study. When whatlines is 1 the final matrix adds the rows of the three dimensional array, then the columns must be the same for all studies. When whatlines is 2 the columns are concatenated and then the number of rows must be the same for all studies.

Value

A two way matrix
x
A two way matrix

Author(s)

Jose Luis Vicente Villardon

Examples

```
    # No examples yet
```


Description

Initial transformation of data before the construction of a biplot. (or any other technique)

Usage

TransformIni(X, InitTransform = "None", transform = "Standardize columns")

Arguments

X
Original Raw Data Matrix
InitTransform Initial transform of the data (usually logarithm)
transform Transformation to use. See details.

Details

Possible Transformations are:
1.- "Raw Data": When no transformation is required.
2.- "Substract the global mean": Eliminate an eefect common to all the observations
3.- "Double centering" : Interaction residuals. When all the elements of the table are comparable. Useful for AMMI models.
4.- "Column centering": Remove the column means.
5.- "Standardize columns": Remove the column means and divide by its standard deviation.
6.- "Row centering": Remove the row means.
7.- "Standardize rows": Divide each row by its standard deviation.
8.- "Divide by the column means and center": The resulting dispersion is the coefficient of variation.
9.- "Normalized residuals from independence" for a contingency table.

The transformation can be provided to the function by using the string beetwen the quotes or just the associated number.

The supplementary rows and columns are not used to calculate the parameters (means, standard deviations, etc). Some of the transformations are not compatible with supplementary data.

Value
X Transformed data matrix

Author(s)

Jose Luis Vicente Villardon

References

M. J. Baxter (1995) Standardization and Transformation in Principal Component Analysis, with Applications to Archaeometry. Journal of the Royal Statistical Society. Series C (Applied Statistics). Vol. 44, No. 4 (1995), pp. 513-527
Kroonenberg, P. M. (1983). Three-mode principal component analysis: Theory and applications (Vol. 2). DSWO press. (Chapter 6)

Examples

```
data(iris)
x=as.matrix(iris[,1:4])
x=TransformIni(x, transform=4)
x
```

Truncated.NIPALSPCA Truncated version of the NIPALS algorithm for PCA.

Description

Truncated version of the NIPALS algorithm for PCA.

Usage

Truncated.NIPALSPCA(X, dimens $=2$, tol $=1 \mathrm{e}-06$, maxiter $=1000$, lambda $=0.02$)

Arguments

X
dimens
tol Tolerance of the algorithm.
maxiter Maximum number of iteratios.
lambda Value used for truncation

Details

Classical NIPALS algorithm for the singular value decomposition that allows for the construction of PCA and Biplot.

Value

The singular value decomposition
u
The coordinates of the rows (standardized)
d
The singuklar values
v
The coordinates of the columns (standardized)

Author(s)

Jose Luis Vicente Villardon

References

Have to be written

See Also

NIPALS.Biplot

Examples

\# Not yet

Unfolding
Multidimensional Unfolding

Description

Multidimensional Unfolding with some adaptations for vegetation analysis

Usage

Unfolding(A, ENV = NULL, TransAbund = "Gaussian Columns", offset = 0.5, weight = "All_1", Constrained = FALSE, TransEnv = "Standardize columns", InitConfig = "SVD", model = "Ratio", condition = "Columns", Algorithm = "SMACOF", OptimMethod = "CG", r = 2, maxiter = 100, tolerance $=1 \mathrm{e}-05$, lambda $=1$, omega $=0$, plot $=$ FALSE)

Arguments

A
ENV
TransAbund
offset
weight
Constrained
TransEnv

InitConfig

model

The original proximities matrix
The matrix of environmental variables
Initial transformation of the abundances : "None", "Gaussian", "Column Percent", "Gaussian Columns", "Inverse Square Root", "Divide by Column Maximum")
offset is the quantity added to the zeros of the table
A matrix of weights for each cell of the table
Should fit a constrained analysis
Transformation of the environmental variables
Init configuration for the algorithm
Type of model to be fitted: "Identity", "Ratio", "Interval" or "Ordinal".

condition	"Matrix", "Columns" to condition to the whole matrix or to each column
Algorithm	Algorithm to fit the model: "SMACOF", "GD", "Genefold"
OptimMethod	Optimization method for gradient descent
r	Dimension of the solution
maxiter	Maximum number of iterations in the algorithm
tolerance	Tolerace for the algorithm
lambda	
omega	
plot	

Details

ological data

Value

An object of class "Unfolding"

Author(s)

Jose Luis Vicente Villardon

References

Ver Articulos

Examples

```
unf=Unfolding(SpidersSp, ENV=SpidersEnv, model="Ratio", Constrained = FALSE, condition="Matrix")
plot(unf, PlotTol=TRUE, PlotEnv = FALSE)
plot(unf, PlotTol=TRUE, PlotEnv = TRUE)
cbind(unf$QualityVars, unf$Var_Fit)
unf2=Unfolding(SpidersSp, ENV=SpidersEnv, model="Ratio", Constrained = TRUE, condition="Matrix")
plot(unf2, PlotTol=FALSE, PlotEnv = TRUE, mode="s")
cbind(unf2$QualityVars, unf2$Var_Fit)
```

```
VarBiplot
```

Draws a variable on a biplot

Description

Draws a continuous variable on a biplot

Usage

Arguments

bi1
bi2
xmin Minimum value of the x axis
$x \max \quad$ Maximum value of the x axis
ymin \quad Minimum value of the y axis
$y m a x \quad$ Maximum value of the y axis
label Label of the variable

Color Color for the variable
tl Thick length
...
b0 Constant for the regression adjusted biplots
mode Mode of the biplot: "p", "a", "b", "h", "ah" and "s".
CexPoint Size for the symbols and labels of the variables
PchPoint Symbols for the variable (when represented as a point)
ticks Ticks when the variable is represented as a graded scale
ticklabels Labels for the ticks when the variable is represented as a graded scale
ts \quad Size of the mark in the gradedv scale
Position If the Position is "Angle" the label of the variable is placed using the angle of the vector

AddArrow Add an arrow to the representation of other modes of the biplot.
First component of the direction vector
Second component of the direction vector

Any other graphical parameters

Details

See plot.PCA.Biplot

Value

No value returned

Author(s)

Jose Luis Vicente Villardon

See Also

```
    plot.ContinuousBiplot
```


Examples

```
    data(Protein)
    bip=PCA.Biplot(Protein[,3:11])
    plot(bip)
```


Description

Extracts the weighted averages of a CCA solution

Usage

wa(CCA.sol, transformed $=$ FALSE)

Arguments

CCA.sol The solution of a CCA
transformed Average of the transformed or the original data?

Details

Extracts the weighted averages of a CCA solution

Value

A matrix with the averages

Author(s)

icente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----
wcor Weighted correlations

Description

Weighted correlations

Usage

```
wcor(d1, d2, w = rep(1, nrow(d1))/nrow(d1))
```


Arguments

$d 1$	First Vector
d2	Second vector to correlate
w	weights for ecah element of the vectors

Details

Weighted correlations

Value

Weighted correlation

Author(s)

Jose Luis Vicente Villardon
weighted.quantile Weighted quantiles

Description

Weighted quantiles

Usage

weighted.quantile($x, w, q=0.5$)

Arguments

x
w
q

The numerical variable.
Weights
Quantile

Value

The quantile

Author(s)

Jose Luis Vicente Villardon

Examples

\#\#---- Should be DIRECTLY executable !! ----

```
WeightedPCoA Weighted Principal Coordinates Analysis
```


Description

Weighted Principal Coordinates Analysis

Usage

```
WeightedPCoA(Proximities,
weigths = matrix(1,dim(Proximities$Proximities)[1],1),
dimension = 2, tolerance=0.0001)
```


Arguments

Proximities	A matrix containing the proximities among a set of objetcs
weigths	Weigths
dimension	Dimension of the solution
tolerance	Tolerance for the eigenvalues

Details

Weighted Principal Coordinates Analysis

Value

data(spiders) dist=BinaryProximities(spiders) pco=WeightedPCoA(dist) An object of class Principal.Coordinates

Author(s)

Jose Luis Vicente-Villardon

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley
Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325-338.
J.R. Demey, J.L. Vicente-Villardon, M.P. Galindo, A.Y. Zambrano, Identifying molecular markers associated with classifications of genotypes by external logistic biplot, Bioinformatics 24 (2008) 2832.

Cuadras, C. M., Fortiana, J. Metric scaling graphical representation of Categorical Data. Proceedings of Statistics Day, The Center for Multivariate Analysis, Pennsylvania State University, Part 2, pp.1-27, 1995.

See Also

BinaryProximities

Examples

```
data(spiders)
dist=BinaryProximities(spiders)
pco=WeightedPCoA(dist)
```

wine Wine data

Description

Comparison of young wines of Ribera de Duero and Toro

Usage

data("wine")

Format

A data frame with 45 observations on the following 21 variables.
Year A factor with levels 19861987
Origin A factor with levels Ribera Toro
Group A factor with levels R86 R87 T86 T87
A Alcoholic content (percentage)
VA volatil acidity - g acetic acid/l
TA Total tritable acidity - g tartaric acid/l
FA Fixed acidity - g tartaric acid/l
pH ph
TPR Total phenolics - g gallic acid /l - Folin
TPS Total phenolics - Somers
\checkmark Substances reactive to vanilin - mg catechin/l
PC Procyanidins - mg cyanidin/l
ACR Total Anthocyanins - mg/l-method 1
ACS Total Anthocyanins - mg/l-methods 2
ACC Malvidin - malvidin-3-glucoside mg/l
CI Color density -
CI2 Color density 2
H Wine Hue Color
I Degree of Ionization - Percent
CA Chemical Age
VPC ratio V/PC

Details

Comparison of young wines of Ribera de Duero and Toro

Source

Rivas-Gonzalo, J. C., Gutierrez, Y., Polanco, A. M., Hebrero, E., Vicente-Villardon, J. L., Galindo, P., \& Santos-Buelga, C. (1993). Biplot analysis applied to enological parameters in the geographical classification of young red wines. American journal of enology and viticulture, 44(3), 302-308.

References

Rivas-Gonzalo, J. C., Gutierrez, Y., Polanco, A. M., Hebrero, E., Vicente-Villardon, J. L., Galindo, P., \& Santos-Buelga, C. (1993). Biplot analysis applied to enological parameters in the geographical classification of young red wines. American journal of enology and viticulture, 44(3), 302-308.

Examples

```
data(wine)
## maybe str(wine) ; plot(wine) ...
```


Description

Matrix of zeros

Usage

zeros(n)

Arguments

n Dimension of the matrix

Value

A matrix of zeros

Author(s)

Jose Luis Vicente Villardon

Examples

zeros(6)

Index

* 3D Biplot
plot3d.ContinuousBiplot, 167
* Alternated Least Squares

CrissCross, 60

* Biplot

AddCluster2Biplot, 8

* Canonical Variate Analysis
plot.Canonical.Biplot, 136
* Cluster Analysis

AddCluster2Biplot, 8

* Discriminant Analysis
plot.Canonical.Biplot, 136
* Distance

NominalDistances, 113

* EM

OrdLogBipEM, 119

* MANOVA
plot.Canonical.Biplot, 136
* Multivariate

NominalDistances, 113

* Nominal

NominalDistances, 113

* \sim Biplot

CrissCross, 60

* algorithm

OrdLogBipEM, 119

* datasets

Chemical, 47
Doctors, 69
moth, 106
PoliticalFigures, 178
Protein, 183
RAPD, 184
riano, 186
smoking, 203
spiders, 205
SpidersEnv, 206
SpidersSp, 207
SSI, 208

SSI3w, 209
SSIEcon3w, 210
SSIEnvir3w, 211
SSIHuman3w, 212
wine, 234

* logistic

OrdinalLogisticFit, 117
RidgeMultinomialLogisticFit, 191
RidgeMultinomialLogisticRegression, 193
RidgeOrdinalLogistic, 195

* models

OrdinalLogisticFit, 117
RidgeMultinomialLogisticFit, 191
RidgeMultinomialLogisticRegression, 193
RidgeOrdinalLogistic, 195

* package

MultBiplotR-package, 6

* ridge

RidgeMultinomialLogisticFit, 191

* summary
summary.Principal.Coordinates, 222
AddBinVars2Biplot, 7
AddCluster2Biplot, 8, 79, 173
AddContVars2Biplot, 10, 12
AddOrdVars2Biplot, 11
AddSupVars2Biplot, 11, 12
anova.RidgeBinaryLogistic, 13
Bartlett.Tests, 14
BasicDescription, 15
BinaryDistances, 16, 25, 114
BinaryLogBiplotEM, 17, 23
BinaryLogBiplotGD, 18, 23
BinaryLogBiplotJoint, 20, 23
BinaryLogBiplotMirt, 21, 23
BinaryLogisticBiplot, 22
BinaryProximities, 23, 163, 164, 181, 234

Biplot.PLSR, 26, 175
Biplot.PLSR1BIN, 27
BootstrapDistance, 28, 181
BootstrapScalar, 29, 30, 31, 34
BootstrapSmacof, 32, 103
BoxPlotPanel, 34
CA, 35
Canonical.Variate.Analysis, 36
CanonicalBiplot, 37
CanonicalDistanceAnalysis, 39
CanonicalStatisBiplot, 41
CategoricalDistances, 42
CategoricalProximities, 43
CCA, 44, 197, 216
CheckBinaryMatrix, 46
CheckBinaryVector, 46
Chemical, 47
Circle, 48
Coinertia, 49
ColContributionPlot, 50
ConcEllipse, 51, 79, 149
ConfidenceInterval, 52
ConstrainedLogisticBiplot, 53
ConstrainedOrdinalLogisticBiplot, 54
ContinuousDistances, 55, 114
ContinuousProximities, 56
Convert2ThreeWay, 58
ConvertFactors2Integers, 59
CorrelationCircle, 59
CrissCross, 60, 98
CumSum, 62
Dataframe2BinaryMatrix, 25, 63
DataFrame2Matrix4Regression, 64
DensityBiplot, 64
Dhats, 65
diagonal, 66
DimensionLabels, 67
dlines, 68
Doctors, 69
ErrorBarPlotPanel, 69
EuclideanDistance, 71
ExpandTable, 71
ExternalBinaryLogisticBiplot, 72, 152
ExtractTable, 74
FA.Biplot, 75

Fact2Bin, 78
Factor2Binary (Fact2Bin), 78
Fraction, 78, 154
Games_Howell, 79
GD.Biplot, 80
GeneralizedProcrustes, 82
GetBiplotScales, 83
GetCCAScales, 84
ginv, 85, 101
GowerProximities, 86
GowerSimilarities, 87
Hermquad, 88
HistogramPanel, 89
HJ.Biplot, 90
InBox, 92
InitialTransform, 77, 91, 93, 126, 129
Integer2Binary, 94
Kruskal.Wallis.Tests, 95
Levene.Tests, 96
LogFrequencyBiplot, 62, 96
logit, 99
Matrix2Proximities, 99
matrixsqrt, 100
matrixsqrtinv, 101
MDS, 102, 202
MGC, 104
MonotoneRegression, 105
moth, 106
MultBiplot (MultBiplotR-package), 6
MultBiplotR-package, 6
Multiquad, 107
MultiTableStatistics, 108
MultiTableTransform, 109
NiceNumber, 109, 180
NIPALS.Biplot, 110, 228
NIPALSPCA, 112
NominalDistances, 113
NormalityTests, 115
Numeric2Binary, 116
ones, 117
OrdinalLogisticFit, 117
OrdLogBipEM, 119

OrdVarBiplot, 121
OrdVarCoordinates, 122
OrthogonalizeScores, 124
PCA.Analysis, 124
PCA.Biplot, 127, 131
PCA.Bootstrap, 130, 159
plot.Binary.Logistic.Biplot, 132
plot.CA.sol, 135
plot.Canonical.Biplot, 136, 141, 171
plot.CanonicalDistanceAnalysis, 139
plot.CCA.sol, 142
plot.ContinuousBiplot, 135, 144, 144, 157, 165, 169, 231
plot.CVA, 148
plot.ellipse, 148
plot.External.Binary.Logistic.Biplot, 150
plot.fraction, 153
plot.MGC, 154
plot.Ordinal.Logistic.Biplot, 155
plot.PCA.Analysis, 157
plot.PCA.Bootstrap, 158
plot.PCoABootstrap, 159
plot.Principal.Coordinates, 161, 224
plot.Procrustes, 163
plot.StatisBiplot, 164
plot.Unfolding, 165
plot3d.ContinuousBiplot, 167
plot3dCanonicalBiplot, 170
PlotBiplotClusters, 172
PlotOrdinalResponses, 173
PLSR, 26, 174
PLSR1Bin, 27, 176
PLSRfit, 177
PoliticalFigures, 178
PrettyTicks, 110, 179
PrincipalCoordinates, 17, 56, 83, 180, 200, 202
print.MGC, 182
print.RidgeBinaryLogistic, 182
Protein, 183

RAPD, 184
RemoveRowsWithNaNs, 185
riano, 186
RidgeBinaryLogistic, 187, 191
RidgeBinaryLogisticFit, 190
RidgeMultinomialLogisticFit, 191, 194

RidgeMultinomialLogisticRegression, 193
RidgeOrdinalLogistic, 195
scores.CCA.sol, 197
SeparateVarTypes, 198
SimpleProcrustes, 199
SMACOF, 201
smoking, 203
Sparse.NIPALSPCA, 204
spiders, 205
SpidersEnv, 206
SpidersSp, 207
SSI, 208
SSI3w, 209
SSIEcon3w, 210
SSIEnvir3w, 211
SSIHuman3w, 212
StatisBiplot, 213
summary.Canonical.Biplot, 215
summary.CCA.sol, 216
summary.ContinuousBiplot, 217
summary.CVA, 218
summary.MGC, 218
summary.PCA.Analysis, 219
summary.PCA.Bootstrap, 220
summary.PLSR, 221
summary.PLSR1Bin, 221
summary.Principal.Coordinates, 222
summary.RidgeBinaryLogistic, 223
textsmart, 224
Three2TwoWay, 225
TransformIni, 226
Truncated.NIPALSPCA, 227
Unfolding, 228
VarBiplot, 229
wa, 231
wcor, 232
weighted. quantile, 232
WeightedPCoA, 233
wine, 234
zeros, 236

