
Package ‘NetFACS’
June 8, 2022

Title Network Applications to Facial Communication Data

Version 0.4.0

Date 2022-05-09

Description Functions to analyze and visualize communication data,
based on network theory and resampling methods.
Farine, D. R. (2017) <doi:10.1111/2041-210X.12772>;
Carsey, T., & Harden, J. (2014) <doi:10.4135/9781483319605>.
Primarily targeted at datasets of facial expressions coded with the Facial Action Coding System.
Ekman, P., Friesen, W. V., & Hager, J. C. (2002). ``Facial action coding system -
investigator's guide'' <https://www.paulekman.com/facial-action-coding-system/>.

License Apache License (>= 2.0)

Encoding UTF-8

LazyData true

Suggests testthat (>= 3.0.0), knitr, rmarkdown

Depends R (>= 3.5.0)

Imports arrangements, doParallel, dplyr, igraph, ggplot2, ggraph,
magrittr, patchwork, parallel, picante, rlang, Rfast, tibble,
tidygraph, tidyr, vctrs

RoxygenNote 7.1.2

NeedsCompilation yes

ByteCompile true

VignetteBuilder knitr

Config/testthat/edition 3

Author Alex Mielke [aut],
Bridget M. Waller [aut],
Claire Perez [aut],
Alan V. Rincon [aut, cre],
Julie Duboscq [aut],
Jerome Micheletta [aut]

Maintainer Alan V. Rincon <avrincon1@gmail.com>

Repository CRAN

Date/Publication 2022-06-08 14:40:11 UTC

1

https://doi.org/10.1111/2041-210X.12772
https://doi.org/10.4135/9781483319605
https://www.paulekman.com/facial-action-coding-system/

2 R topics documented:

R topics documented:

add_inactive_single_units . 3
calculate_combination_size . 3
define_contexts . 4
define_joint_prob . 4
distribution.plot . 5
element.plot . 5
element.specificity . 6
emotions_set . 7
entropy.overall . 8
equal_observations . 8
event.size.plot . 9
get_active_elements . 10
letternet . 10
multiple.netfacs . 11
multiple.netfacs.network . 12
multiple.network.plot . 13
mutual.information . 14
mutual.information.condition . 15
netfacs . 16
netfacs.extract . 18
netfacs.network . 19
netfacs.reciprocity . 20
netfacs_bootstrap . 21
netfacs_extract . 22
netfacs_multiple . 23
netfacs_randomize . 25
network.conditional . 25
network.plot . 26
network.summary . 28
network.summary.graph . 29
overlap.network . 30
prepare.netfacs . 31
print.netfacs . 33
print.netfacs_multiple . 34
probability_of_combination . 34
probability_of_event_size . 35
sample_contexts . 35
summarise_combination . 36
summarise_event_size . 36

Index 38

add_inactive_single_units 3

add_inactive_single_units

Add inactive (missing) single units

Description

Add inactive (missing) single units

Usage

add_inactive_single_units(d, single.units)

Arguments

d A dataframe, result of probability_of_combination

single.units A character vector of single AUs

calculate_combination_size

Calculate combination size

Description

Calculate combination size

Usage

calculate_combination_size(x)

Arguments

x A character vector of AU combinations, sep by _

Value

A vector

4 define_joint_prob

define_contexts Define truth for AUs active in different contexts

Description

Define truth for AUs active in different contexts

Usage

define_contexts(aus, n_active_aus, contexts = NULL, au_fidelity = 1)

Arguments

aus A character vector of AUs

n_active_aus A numeric vector, the same length as contexts, indicating the number of AUs
active per context.

contexts A character vector of contexts

au_fidelity A number between 1 and 0.5, indicating the probability that an AU is active in a
context.

Value

A matrix of probabilities with contexts in rows and AUs in columns

define_joint_prob Joint probability distribution of AUs

Description

Joint probability distribution of AUs

Usage

define_joint_prob(aus, n_jp = 2, min_jp = 0.5)

Arguments

aus A character vector of AUs

n_jp Number of joint probabilities >0

min_jp Minimum joint probability. Must be between 0 and 1

distribution.plot 5

distribution.plot Plots the observed probability for an element against the distribution
of the null model

Description

The function takes all single elements in a netfacs object, and plots the distribution of probabilities
under the null hypothesis, marking where the observed probability falls

Usage

distribution.plot(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a ggplot showing for each element the distribution of expected probabilities (blue)
and the observed probability (black line)

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

show distribution of AU4
distribution.plot(netfacs.data = angry.face)$"4"

element.plot Plots the observed and expected probabilities for the basic elements
based on the condition

Description

The function takes all single elements in a netfacs object, and plots the observed value and the
expected value based on all randomisations

6 element.specificity

Usage

element.plot(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a ggplot showing for each element the observed probability and expected proba-
bility

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)
plot all
element.plot(netfacs.data = angry.face)

element.specificity Tests how much each element increases the specificity of all combina-
tions it is in

Description

The function takes all elements and dyadic combinations of elements in a netfacs object, goes
through all combinations these elements are in, and compares the specificity (strength with which
the combination identifies the test condition) of all combinations with the element and the same
combinations without the element, to test how much specificity the element adds when added to a
signal. Only works for netfacs objects based on comparison between conditions.

Usage

element.specificity(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

emotions_set 7

Value

Function returns a list with two data frames that include all elements and first-order combinations
that occur at all, the number of combinations that each element/combination is part of, and how
much adding this element to a combination adds on average to its specificity, and how often it
occurs

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
null.condition = NULL,
ran.trials = 100,
combination.size = 4

)

element.specificity(angry.face)$element

emotions_set Letter Data

Description

Data from the Extended Cohn-Kanade database, FACS data and emotions for posed images

Usage

data(emotions_set)

Format

An object of class.

References

Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended Cohn-Kanade
dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW
2010. pp 94-101

8 equal_observations

entropy.overall Compares the observed and expected information content of the
dataset

Description

Establishes how ’ordered’ the data is: values close to 0 indicate that combinations are highly repet-
itive and predictable, while values close to 1 indicate that combinations are equiprobable and pre-
diction of future combinations is difficult

Usage

entropy.overall(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns the ratio of observed entropy/expected entropy. Expected entropy is based on
randomization (shuffling the observed elements while maintaining the number of elements per row)
and represents the maximum entropy a dataset with the same properties as this one can reach. Ratios
closer to 0 are more ordered; ratios closer to 1 are more random.

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

entropy.overall(angry.face)

equal_observations Check that ALL objects have the same number of observations

Description

lenght(vector), nrow(matrix), nrow(dataframe)

event.size.plot 9

Usage

equal_observations(x, ...)

Arguments

x Object to compare number of observations

... Additional objects to compare number of observations

Value

Logical

event.size.plot Plots the probability that a combination of a certain size appears

Description

The function takes all combination size in a netfacs object, and plots the distribution of ratios
between the observed value and all randomisations

Usage

event.size.plot(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a ggplot showing for each combination size the observed and expected probabilities
of occurrance

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

event.size.plot(angry.face)

10 letternet

get_active_elements Extract active elements from matrix

Description

Extract active elements from matrix

Usage

get_active_elements(m)

Arguments

m A binary matrix where 1 indicates an element was active. colnames(m) must
contain the element names

Value

A list of vectors

letternet Letter Data

Description

Data from the German, English, and French Versions of The Communist Manifesto, to have large
datasets to test different functions in this package for now

Usage

data(letternet)

Format

An object of class.

References

Marx & Engels, ’The Communist Manifesto’

multiple.netfacs 11

multiple.netfacs (Deprecated) Applies the netfacs function across multiple levels of
the condition and puts them in a list

Description

This function is deprecated. Please see netfacs_multiple instead

Usage

multiple.netfacs(
data,
condition = NULL,
duration = NULL,
ran.trials = 1000,
control = NULL,
random.level = NULL,
combination.size = NULL,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

Arguments

data matrix with one column per element, and one row per event, consisting of 1
(element was active during that event) and 0 (element was not active)

condition character vector of same length as ’data’ that contains information on the condi-
tion each event belongs to, so probabilities can be compared across conditions

duration numeric vector that contains information on the duration of each event; if NULL,
all events are assumed to have equal duration

ran.trials Number of randomisations that will be performed to find the null distribution

control list of vectors that are used as control variables. During bootstraps, the ratio of
events in each level will be adapted. So, for example, if in the test distribution,
there are three angry participants for each happy participant, the null distribution
will maintain that ratio

random.level character vector of the level on which the randomization should take place. If
NULL, the randomization takes place on the event level (i.e., every row can
either be selected or not); if a vector is provided, the randomization takes place
on the levels of that vector rather than individual events

combination.size

if not all combinations of elements are of interest (e.g., if the question only
concerns single elements or dyads of elements), this variable allows to reduce
the results to those combinations, increasing speed

12 multiple.netfacs.network

tail either ’upper.tail’ (proportion of null probabilities that are larger than observed
probabilities), or ’lower.tail’ (proportion of null probabilities that are smaller
than observed probabilities); default is ’upper.tail’

use_parallel logical, should the bootstrap be parallelized (default is TRUE)

n_cores numeric, the number cores to be used for parallelization. Default is the number
of available cores minus 1.

Value

Function returns for each level of the condition a list equivalent to the results of the netfacs function;
can be used to create multiple networks and graphs at the same time

multiple.netfacs.network

Creates network objects out of the netfacs data

Description

Takes the results of the nefacs object for combinations of 2 elements and turns them into a network
object (class igraph and tbl_graph) that can be used for further plotting and analyses

Usage

multiple.netfacs.network(
netfacs.list,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
ignore.element = NULL

)

Arguments

netfacs.list list of multiple objects resulting from netfacs function or the netfacs_multiple
function

link determines how nodes/elements are connected. ’unweighted’ gives a 1 to sig-
nificant connections and 0 to all others; ’weighted’ gives the difference between
observed and expected probability of co-occurrence; ’raw’ just uses the observed
probability of co-occurrence; ’SRI’ uses the simple ratio index/affinity (proba-
bility of co-occurrence/ (probabilities of each element and the combination))

significance numeric value, determining the p-value below which combinations are consid-
ered to be dissimilar enough from the null distribution

min.count numeric value, suggesting how many times a combination should at least occur
to be displayed

multiple.network.plot 13

min.prob numeric value, suggesting the probability at which a combination should at least
occur to be displayed

ignore.element vector of elements that will not be considered for the network, e.g. because they
are too common or too rare or their interpretation is not relevant here

Value

Function returns a network object where the nodes are the elements, edges represent their co-
occurrence, and the vertex and edge attributes contain all additional information from the netfacs
object

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
ran.trials = 10, # only for example
combination.size = 2

)

emo.nets <- multiple.netfacs.network(emo.faces)

multiple.network.plot Plots networks for multiple conditions

Description

The function takes multiple network objects and plots them next to each other while keeping the
element positions etc constant. Uses ggraph function

Usage

multiple.network.plot(netfacs.graphs, sig.level = 0.01, sig.nodes.only = FALSE)

Arguments

netfacs.graphs List of network objects resulting from netfacs_multiple function or multiple.netfacs.network
function

sig.level Numeric between 0 and 1. P value used to determine whether nodes are signifi-
cant. Default = 0.01.

sig.nodes.only Logical. Should only nodes that were significant in _at least_ one of the net-
works be included in the plots? Default = FALSE.

Value

Function returns a ggraph plot showing connections between nodes in the different networks. El-
ements that are significantly more likely to occur than expected are large, non-significant elements
are small, and absent elements are absent.

14 mutual.information

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
duration = NULL,
ran.trials = 10, # only for example
control = NULL,
random.level = NULL,
combination.size = 2

)

emo.nets <- multiple.netfacs.network(emo.faces, min.count = 5)
multiple.network.plot(emo.nets)

mutual.information Calculates the pointwise mutual information of units with each other

Description

Calculates the pointwise mutual information of units with each other

Usage

mutual.information(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a dataframe that includes all combinations, their occurrence counts and probabil-
ities, and the pointwise mutual information (standardised between -1 and 1). 1 means seeing one
necessitates seeing the other, -1 means one precludes the other

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = NULL,
test.condition = NULL,
ran.trials = 100,
combination.size = 4

)

mutual.information.condition 15

mutual.information(angry.face
)

mutual.information.condition

Tests how much each element increases the specificity of all combina-
tions it is in

Description

The function takes all elements and dyadic combinations of elements in a netfacs object, goes
through all combinations these elements are in, and compares the specificity (strength with which
the combination identifies the test condition) of all combinations with the element and the same
combinations without the element, to test how much specificity the element adds when added to a
signal. Only works for netfacs objects based on comparison between conditions.

Usage

mutual.information.condition(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a list with two data frames that include all elements and first-order combinations
that occur at all, the number of combinations that each element/combination is part of, and how
much adding this element to a combination adds on average to its specificity, and how often it
occurs

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(
data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
null.condition = NULL,
ran.trials = 100,
combination.size = 4

)

head(mutual.information.condition(angry.face), 20)

16 netfacs

netfacs Create probability distribution of combinations of elements in the data

Description

The netfacs function underlies most other functions in this package.
It takes the data set and reports the observed and expected probabilities that elements and combina-
tions of elements occur in this data set, and whether this differs from a null condition.

Usage

netfacs(
data,
condition = NULL,
test.condition = NULL,
null.condition = NULL,
duration = NULL,
ran.trials = 1000,
control = NULL,
random.level = NULL,
combination.size = 2,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

Arguments

data matrix with one column per element, and one row per event, consisting of 1
(element was active during that event) and 0 (element was not active)

condition character vector of same length as ’data’ that contains information on the condi-
tion each event belongs to, so probabilities can be compared across conditions;
if NULL, all events will be tested against a random null condition based on
permutations

test.condition level of ’condition’ that is supposed to be tested

null.condition level of ’condition’ that is used to create the null distribution of values; if NULL,
all levels that are not the test condition will be used

duration numeric vector that contains information on the duration of each event; if NULL,
all events are assumed to have equal duration

ran.trials Number of randomisations that will be performed to find the null distribution

control list of vectors that are used as control variables. During bootstraps, the ratio of
events in each level will be adapted. So, for example, if in the test distribution,
there are three angry participants for each happy participant, the null distribution
will maintain that ratio

netfacs 17

random.level character vector of the level on which the randomization should take place. If
NULL, the randomization takes place on the event level (i.e., every row can
either be selected or not); if a vector is provided, the randomization takes place
on the levels of that vector rather than individual events

combination.size

if not all combinations of elements are of interest (e.g., if the question only
concerns single elements or dyads of elements), this variable allows to reduce
the results to those combinations, increasing speed

tail either ’upper.tail’ (proportion of null probabilities that are larger than observed
probabilities), or ’lower.tail’ (proportion of null probabilities that are smaller
than observed probabilities); default is ’upper.tail’

use_parallel logical, should the bootstrap be parallelized (default is TRUE)

n_cores numeric, the number cores to be used for parallelization. Default is the number
of available cores minus 1.

Details

Expected values are based on bootstraps of null distribution, so the values represent distribution of
element co-occurrence under null condition; or permutations of the observed distribution to test it
against ’random’.

The resulting object is the basis for most other functions in this package.

Value

Function returns a Result data frame that includes the combination name, how many elements it
consisted of, how often it was observed, the probability it was observed under this condition, the
expected probability under null condition (based on the permutation or bootstrap), effect size (dif-
ference between observed probability and expected probability), p-value (how many randomisations
were more extreme), and for direct comparisons of contexts the specificity (probability that the con-
dition is in fact the test condition if that combination is known) and probability increase (the factor
by which the probability of the element is higher in the test than null condition)

’event.size.information’ contains information about the observed and expected size of combination
or elements per event based on the randomisations

Author(s)

Alex Mielke, Alan V. Rincon

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
null.condition = NULL,
duration = NULL,

18 netfacs.extract

ran.trials = 100,
control = NULL,
random.level = NULL,
combination.size = 5,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

head(angry.face$result, 20)
angry.face$event.size.information

netfacs.extract (Deprecated) Extract results from a netfacs object.

Description

This function is deprecated. Please see netfacs_extract instead

Usage

netfacs.extract(
netfacs.data,
combination.size = NULL,
significance = 1,
min.count = 0,
min.prob = 0,
min.specificity = 0,
level

)

Arguments

netfacs.data object resulting from netfacs function.
combination.size

numeric, denoting the combination size(s) that should be extracted. If NULL
(default), all combination sizes are returned.

significance numeric value between 0 and 1, determining the p-value below which combina-
tions are considered to be dissimilar enough from the null distribution.

min.count numeric value, suggesting how many times a combination should at least occur
to be displayed.

min.prob numeric value between 0 and 1, suggesting the probability at which a combina-
tion should at least occur to be displayed.

min.specificity

numeric value between 0 and 1, suggesting the specificity a combination should
at least have for the test condition to be displayed.

level deprecated. Please use combination.size instead.

netfacs.network 19

Value

Function returns a dataframe that contains the results of the netfacs object. By default, returns all
results for all observed combinations

netfacs.network Creates a network object out of the netfacs data

Description

Takes the results of the nefacs object for combinations of 2 elements and turns them into a network
object (igraph or sna/network) that can be used for further plotting and analyses

Usage

netfacs.network(
netfacs.data,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
min.specificity = 0,
ignore.element = NULL

)

Arguments

netfacs.data object resulting from netfacs function

link determines how nodes/elements are connected. ’unweighted’ gives a 1 to sig-
nificant connections and 0 to all others; ’weighted’ gives the difference between
observed and expected probability of co-occurrence; ’raw’ just uses the observed
probability of co-occurrence

significance numeric value, determining the p-value below which combinations are consid-
ered to be dissimilar enough from the null distribution

min.count numeric value, suggesting how many times a combination should at least occur
to be displayed

min.prob numeric value, suggesting the probability at which a combination should at least
occur to be displayed

min.specificity

numeric value, suggesting the specificity a combination should at least have for
the test condition to be displayed

ignore.element vector of elements that will not be considered for the network, e.g. because they
are too common or too rare or their interpretation is not relevant here

20 netfacs.reciprocity

Value

Function returns a network object where the nodes are the elements, edges represent their co-
occurrence, and the vertex and edge attributes contain all additional information from the netfacs
object

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

anger.net <- netfacs.network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
min.specificity = 0,
ignore.element = NULL

)

netfacs.reciprocity Calculate reciprocity of probabilities that two elements appear to-
gether

Description

For all dyadic combinations that ever appear, this function calculates how reciprocal the conditional
probabilities (i.e. probability of A given B, and B given A) of the two elements are. Combinations
that are highly reciprocal indicate that the two elements always occur together and might repre-
sent a fixed combination, while low reciprocity might indicate that one element is an extension of
the other. Values approaching -1 indicate that one element is strongly dependent on the other, but
this is not reciprocated; values around 0 indicate that neither is conditional on the other; and val-
ues approaching 1 indicate that both values are conditional on each other. If P[A|B] is the larger
conditional probability, the reciprocity is calculated as reciprocity = ((P[B|A]/P[A|B]) - (P[A|B] -
P[B|A])) * P[A|B].

Usage

netfacs.reciprocity(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

netfacs_bootstrap 21

Value

Function returns a data frame with each combination, the reciprocity of conditional occurrence from
-1 (one element entirely depends on the other, but not vice versa) to 1 (both elements always occur
together)

The directions and conditional probabilities of both elements are also returned

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

netfacs.reciprocity(angry.face)

netfacs_bootstrap Calculate expected probability from single bootstrap

Description

Calculate expected probability from single bootstrap

Usage

netfacs_bootstrap(
subject,
subject.weight,
null.subjects,
null.elements,
test.combinations,
max.combination.size,
max.event.size

)

Arguments

subject A character vector of unique subjects present in the data

subject.weight A numeric vector of weights to be used when sampling subjects

null.subjects A denoting the subject of null.elements

null.elements A list of active elements in the null condition
test.combinations

A vector denoting AU combinations that are present in the test data

22 netfacs_extract

max.combination.size

A positive integer indicating the maximum AU combination size considered in
the bootstrap

max.event.size A positive integer indicating the maximum event size to be considered

Value

A list of bootstrapped probabilities for combinations and event sizes

netfacs_extract Extract results from a netfacs object

Description

Extract results from a netfacs object.

Usage

netfacs_extract(
netfacs.data,
combination.size = NULL,
significance = 1,
min.count = 0,
min.prob = 0,
min.specificity = 0

)

Arguments

netfacs.data object resulting from netfacs function.
combination.size

numeric, denoting the combination size(s) that should be extracted. If NULL
(default), all combination sizes are returned.

significance numeric value between 0 and 1, determining the p-value below which combina-
tions are considered to be dissimilar enough from the null distribution.

min.count numeric value, suggesting how many times a combination should at least occur
to be displayed.

min.prob numeric value between 0 and 1, suggesting the probability at which a combina-
tion should at least occur to be displayed.

min.specificity

numeric value between 0 and 1, suggesting the specificity a combination should
at least have for the test condition to be displayed.

Value

Function returns a dataframe that contains the results of the netfacs object. By default, returns all
results for all observed combinations

netfacs_multiple 23

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

netfacs_extract(angry.face,
combination.size = 2,
significance = 0.01,
min.count = 5,
min.prob = 0.01,
min.specificity = 0.5

)

netfacs_multiple Applies the netfacs function across multiple levels of the condition
and puts them in a list

Description

Take dataset and report observed and expected likelihood that elements and combinations of ele-
ments occur in this dataset, and whether this differs from a null condition. Expected values are based
on bootstraps of null distribution, so the values represent distribution of element co-occurrence un-
der null condition. The resulting object is the basis for most other functions in this package.

Usage

netfacs_multiple(
data,
condition,
duration = NULL,
ran.trials = 1000,
control = NULL,
random.level = NULL,
combination.size = 2,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

24 netfacs_multiple

Arguments

data matrix with one column per element, and one row per event, consisting of 1
(element was active during that event) and 0 (element was not active)

condition character vector of same length as ’data’ that contains information on the condi-
tion each event belongs to, so probabilities can be compared across conditions

duration numeric vector that contains information on the duration of each event; if NULL,
all events are assumed to have equal duration

ran.trials Number of randomisations that will be performed to find the null distribution

control list of vectors that are used as control variables. During bootstraps, the ratio of
events in each level will be adapted. So, for example, if in the test distribution,
there are three angry participants for each happy participant, the null distribution
will maintain that ratio

random.level character vector of the level on which the randomization should take place. If
NULL, the randomization takes place on the event level (i.e., every row can
either be selected or not); if a vector is provided, the randomization takes place
on the levels of that vector rather than individual events

combination.size

if not all combinations of elements are of interest (e.g., if the question only
concerns single elements or dyads of elements), this variable allows to reduce
the results to those combinations, increasing speed

tail either ’upper.tail’ (proportion of null probabilities that are larger than observed
probabilities), or ’lower.tail’ (proportion of null probabilities that are smaller
than observed probabilities); default is ’upper.tail’

use_parallel logical, should the bootstrap be parallelized (default is TRUE)

n_cores numeric, the number cores to be used for parallelization. Default is the number
of available cores minus 1.

Value

Function returns for each level of the condition a list equivalent to the results of the netfacs function;
can be used to create multiple networks and graphs at the same time

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
ran.trials = 10, # only for example
combination.size = 2

)

head(emo.faces$anger$result, 5)
head(emo.faces$happy$result, 5)

netfacs_randomize 25

netfacs_randomize Calculate probabilities from single randomization

Description

Calculate probabilities from single randomization

Usage

netfacs_randomize(m, test.combinations, max.combination.size, max.event.size)

Arguments

m A numeric matrix
test.combinations

A vector of AU combinations observed in test data
max.combination.size

A positive integer

max.event.size A Positive integer

Value

A list of randomized probabilities for combinations and event sizes

network.conditional Produce conditional probabilities of dyads of elements, and graph ob-
ject based on conditional probabilities

Description

For all dyadic combinations that appear in the test dataset, this function returns the probability of
A occurring (P(A)), the probability of B occurring (P(B)), the probability of A and B occurring
simultaneously (P(A+B)), and the probability of A occurring if B is given (P(A|B)). It also creates
a graph object that can be plotted

Usage

network.conditional(
netfacs.data,
min.prob = 0,
min.count = 0,
ignore.element = NULL,
plot.bubbles = FALSE

)

26 network.plot

Arguments

netfacs.data object resulting from netfacs() function

min.prob minimum conditional probability that should be shown in the graph

min.count minimum number of times that a combination should occur before being in-
cluded in the graph

ignore.element string vector, can be used to exclude certain elements when creating the plots

plot.bubbles if TRUE, then the nodes in the network plots will be surrounded by bubbles; if
FALSE, the edges connect the names directly

Value

Function returns a dataframe that includes all dyadic combinations and their observed and condi-
tional probabilities

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

conditional.net <- network.conditional(
netfacs.data = angry.face,
min.prob = 0.01,
min.count = 3,
ignore.element = "25",
plot.bubbles = FALSE

)

conditional.net$conditional.probalities

network.plot Plots a network object

Description

Plots the network created using the netfacs.network function; for networks with clear clusterin
of elements, clusters can get different colours

network.plot 27

Usage

network.plot(
netfacs.graph,
title = "network",
clusters = TRUE,
plot.bubbles = FALSE,
hide.unconnected = TRUE

)

Arguments

netfacs.graph igraph network object resulting from netfacs.network

title string of the graph’s main title

clusters if TRUE, cluster_fast_greedy is used to establish possible clusters in the
dataset

plot.bubbles if TRUE, then the nodes in the network plots will be surrounded by bubbles; if
FALSE, the edges connect the names directly

hide.unconnected

if TRUE, then the nodes that do not have any significant connections will be
hidden in the plot

Value

Function returns a ggraph plot of the network, where the size of nodes indicates how often they
occur on their own, and edges indicate significant co-occurrence between them

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

anger.net <- netfacs.network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
min.specificity = 0,
ignore.element = NULL

)

anger.plot <- network.plot(anger.net,
title = "Angry Faces",

28 network.summary

clusters = FALSE,
plot.bubbles = TRUE

)

network.summary Returns all kinds of network measures for the netfacs network

Description

Calculates node level centrality measures from the network object

Usage

network.summary(netfacs.graph)

Arguments

netfacs.graph igraph network object resulting from netfacs.network() function

Value

Function returns a data frame with the element, its ’strength’ (mean probability of co-occurrence),
’eigenvector’ centrality (connection to other highly connected elements), ’betweenness’ centrality
(number of connections running through the element), and a number of other network measures

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

anger.net <- netfacs.network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
min.specificity = 0,
ignore.element = NULL

)

network.summary(anger.net)

network.summary.graph 29

network.summary.graph Returns all kinds of graph-level network measures for the netfacs net-
work

Description

Calculates graph level summary measures from the network object

Usage

network.summary.graph(netfacs.net)

Arguments

netfacs.net igraph network object resulting from netfacs.network() function

Value

Function returns a dataframe with the number of elements in the graph, the number of connected
edges, mean strength of connections, transitivity (mean number of closed triads), diameter (furthest
path between two elements), degree centralization, and mean distance between elements

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

anger.net <- netfacs.network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
min.specificity = 0,
ignore.element = NULL

)

network.summary.graph(anger.net)

30 overlap.network

overlap.network Plots the overlap of multiple conditions as bipartite network

Description

The function takes multiple netfacs objects and plots how different elements connect the conditions,
based on the conditional probabilities that the element occurs in the condition and that the condition
is seen when the element is present

Usage

overlap.network(
netfacs.list,
min.prob = 0,
min.count = 5,
significance = 0.01,
specificity = 0.1,
ignore.element = NULL,
clusters = FALSE,
plot.bubbles = FALSE

)

Arguments

netfacs.list list of objects resulting from netfacs or netfacs_multiple

min.prob minimum conditional probability that should be shown in the graph

min.count minimum number of times that a combination should occur before being in-
cluded in the graph

significance sets the level of significance that combinations have to pass before added to the
network

specificity for the ’reduced’ graph, select only elements that surpass this context specificity
value

ignore.element string vector, can be used to exclude certain elements when creating the plots

clusters boolean; if TRUE, the cluster_fast_greedy algorithm is used to detect underlying
community structure, based on the occurrence probability network

plot.bubbles if TRUE, then the nodes in the network plots will be surrounded by bubbles; if
FALSE, the edges connect the names directly

Value

Function returns a ggraph plot where each condition is connected to those elements that occur
significantly in this condition, and each element is connected to each condition under which it
occurs significantly more than expected. Creates four graphs: context specificity, occurrence in that
context, a combined graph, and a ’reduced’ graph where edges are only included if they pass the
’specificity’ value set by the user

prepare.netfacs 31

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
ran.trials = 10,
combination.size = 2

)

overlap <- overlap.network(emo.faces,
min.prob = 0.01,
min.count = 3,
significance = 0.01,
specificity = 0.5,
ignore.element = "25",
clusters = TRUE,
plot.bubbles = TRUE

)

prepare.netfacs Take data that are not currently in format and turn them into the cor-
rect format for netfacs function

Description

The netfacs function requires data to be entered with the element data as a matrix of each element
by each event, with occurrence marked as 1 and non-occurrence marked as 0.
This is often not the case, so this function transforms data in other routine formats to have the right
look.
Specifically, users can define whether they want to enter ’photos’, which indicates that all elements
in an event are simply strung together in a vector; or they define ’video’, in which case it is assumed
that each element has a start and an end point in a specified video

Usage

prepare.netfacs(
elements,
type = c("video", "photo"),
video.id = NULL,
start.time = NULL,
duration = NULL,
separator = ",",
frame.duration = NULL

)

32 prepare.netfacs

Arguments

elements vector with either one element per index (for videos) or all elements that oc-
curred in the whole event (for photos)

type either ’video’ or ’photo’. If ’photo’, the function separates the string and returns
a matrix of the correct dimensions. If ’video’, the function creates a matrix
using the highest common factor of all ’durations’ and for each of those ’frames’
assigns whether each element was present or absent

video.id name of the video, so all cases are treated together. For photos, can be entered
so that photos can be matched to IDs after

start.time for videos, time when the element is first active

duration for videos, how long is the element active for

separator for photos, how are elements separated in the list

frame.duration for videos, how long is a ’frame’ supposed to last? If NULL, frame duration is
the shortest ’duration’ of any element specified

Details

The assumption for this function is that for photos, elements are stored like this:
’AU1/AU2/AU3/AU4’
’AU1/AU3/AU4’
’AU1/AU2’

For videos, the assumption is that they are stored in a data frame like this:
element = AU1, video.id = 1, start.time = 0.5, duration = 2sec

Value

Function returns a list with element.matrix (the matrix of elements and when they occurred) and
video.info (the supporting information, e.g. video names, durations, frames etc)

Examples

for a photo
au.photos <- c(

"AU1/AU5/AU9",
"AU1/AU2",
"AU1/AU2/AU10",
"AU1/AU2",
"AU5/AU17/AU18",
"AU6/AU12"

)
au.names <- c("photo1", "photo2", "photo3", "photo4", "photo5", "photo6")
au.prepared <- prepare.netfacs(

elements = au.photos,
type = "photo",
video.id = au.names,
separator = "/"

)

print.netfacs 33

au.prepared$element.matrix
au.prepared$video.info

for a video
aus <- c(

"AU1", "AU5", "AU9",
"AU1", "AU2",
"AU1", "AU2", "AU10",
"AU1", "AU2",
"AU5", "AU17", "AU18",
"AU6", "AU12"

)
video.names <- c(

rep("video1", 3),
rep("video2", 2),
rep("video3", 3),
rep("video4", 2),
rep("video5", 3),
rep("video6", 2)

)
start.times <- c(

0.1, 0.2, 0.3,
0.1, 0.3,
0.1, 0.4, 0.4,
0.1, 0.2,
0.1, 0.5, 0.6,
0.1, 0.2

)
durations <- rep(0.3, times = length(start.times))
frame.dur <- 0.05
au.prepared <- prepare.netfacs(

elements = aus,
type = "video",
video.id = video.names,
start.time = start.times,
duration = durations,
frame.duration = frame.dur

)
head(au.prepared$element.matrix)
head(au.prepared$video.info)

print.netfacs Print method for objects of class netfacs

Description

Print method for objects of class netfacs

34 probability_of_combination

Usage

S3 method for class 'netfacs'
print(x, ...)

Arguments

x An object of class netfacs
... Additional arguments that would be passed to or from other methods

print.netfacs_multiple

Print method for objects of class netfacs_multiple

Description

Print method for objects of class netfacs_multiple

Usage

S3 method for class 'netfacs_multiple'
print(x, ...)

Arguments

x An object of class netfacs_multiple
... Additional arguments that would be passed to or from other methods

probability_of_combination

Calculate probabilities of single elements and combinations occurring

Description

Calculate probabilities of single elements and combinations occurring

Usage

probability_of_combination(elements, maxlen)

Arguments

elements list with vectors for all elements observed together at each event
maxlen maximum size of combinations to be considered

Value

Function returns a dataframe with observed probabilities for each combination in the dataset

probability_of_event_size 35

probability_of_event_size

Count number of event sizes

Description

Count number of event sizes

Usage

probability_of_event_size(elements, max.event.size)

Arguments

elements A list of vectors containing active elements or a binary matrix with events in
rows

max.event.size A positive integer

Value

A named vector, including probabilities for event sizes that were not observed in the data

sample_contexts Sample observations of simulated FACS data

Description

Sample observations of simulated FACS data

Usage

sample_contexts(m, n_obs = 10, jp = NULL)

Arguments

m A matrix with context in rows, aus in cols, and probabilities as values => result
of define_contexts.

n_obs Number of observations per context

jp An optional list of matrices, the same length as nrow(m) with the joint probabil-
ities of AUs

36 summarise_event_size

summarise_combination Summarise combination results from bootstrap

Description

Summarise combination results from bootstrap

Usage

summarise_combination(
combination,
combination.size,
observed.prob,
boot.prob,
tail,
test.count,
null.count = NULL

)

Arguments

combination A vector of AU combinations
combination.size

A vector denoting the number of active AUs in combination

observed.prob A vector with probability of combination in test data

boot.prob A matrix with boot probabilities of a given combination in columns

tail upper.tail or lower.tail,

test.count Number of times a combination occurs in test dataset

null.count Number of times a combination occurs in null dataset

Value

A dataframe

summarise_event_size Summarise event size probabilities

Description

Summarise event size probabilities

Usage

summarise_event_size(observed.prob, boot.prob)

summarise_event_size 37

Arguments

observed.prob A named vector with probabilities of event sizes.

boot.prob A matrix with boot probabilities of a given event size. Combination size in rows,
trials in columns.

Value

A dataframe

Index

∗ datasets
emotions_set, 7
letternet, 10

add_inactive_single_units, 3

calculate_combination_size, 3
cluster_fast_greedy, 27

define_contexts, 4, 35
define_joint_prob, 4
distribution.plot, 5

element.plot, 5
element.specificity, 6
emotions_set, 7
entropy.overall, 8
equal_observations, 8
event.size.plot, 9

get_active_elements, 10
ggraph, 13, 27, 30

igraph, 12

letternet, 10

multiple.netfacs, 11
multiple.netfacs.network, 12, 13
multiple.network.plot, 13
mutual.information, 14
mutual.information.condition, 15

netfacs, 11, 12, 16, 16, 18, 19, 22, 23, 30, 31
netfacs.extract, 18
netfacs.network, 19, 26, 27
netfacs.reciprocity, 20
netfacs_bootstrap, 21
netfacs_extract, 18, 22
netfacs_multiple, 11–13, 23, 30
netfacs_randomize, 25

network.conditional, 25
network.plot, 26
network.summary, 28
network.summary.graph, 29

overlap.network, 30

prepare.netfacs, 31
print.netfacs, 33
print.netfacs_multiple, 34
probability_of_combination, 3, 34
probability_of_event_size, 35

sample_contexts, 35
summarise_combination, 36
summarise_event_size, 36

tbl_graph, 12

38

	add_inactive_single_units
	calculate_combination_size
	define_contexts
	define_joint_prob
	distribution.plot
	element.plot
	element.specificity
	emotions_set
	entropy.overall
	equal_observations
	event.size.plot
	get_active_elements
	letternet
	multiple.netfacs
	multiple.netfacs.network
	multiple.network.plot
	mutual.information
	mutual.information.condition
	netfacs
	netfacs.extract
	netfacs.network
	netfacs.reciprocity
	netfacs_bootstrap
	netfacs_extract
	netfacs_multiple
	netfacs_randomize
	network.conditional
	network.plot
	network.summary
	network.summary.graph
	overlap.network
	prepare.netfacs
	print.netfacs
	print.netfacs_multiple
	probability_of_combination
	probability_of_event_size
	sample_contexts
	summarise_combination
	summarise_event_size
	Index

