
Package ‘OPI’
March 2, 2022

Type Package

Title Open Perimetry Interface

Version 2.10.1

Date 2022-03-01

Author Andrew Turpin [cre, aut, cph],
David Lawson [ctb, cph],
Matthias Muller [ctb],
Jonathan Dennis [ctb, cph],
Astrid Zeman [ctb],
Ivan Marin-Franch [ctb]

Maintainer Andrew Turpin <aturpin@unimelb.edu.au>

Description Implementation of the Open Perimetry Interface (OPI) for simulating and controlling vi-
sual field machines using R. The OPI is a standard for interfacing with visual field testing ma-
chines (perimeters) first started as an open source project with support of Haag-
Streit in 2010. It specifies basic functions that allow many visual field tests to be con-
structed. As of February 2022 it is fully implemented on the Haag-Streit Octopus 900 with par-
tial implementations on the Centervue Compass, Kowa AP 7000, An-
droid phones and the CrewT IMO. It also has a cousin: the R package 'visual-
Fields', which has tools for analysing and manipulating visual field data.

License GPL-3

URL https://people.eng.unimelb.edu.au/aturpin/opi/index.html

Depends methods

LazyData true

Encoding UTF-8

RoxygenNote 7.1.2

Collate OPI-package.r opi.r compassClient.r displayClient.r
daydreamClient.r dbTocd.r fourTwo.r full_threshold.r
imoClient.r kowaAP7000Client.r mocs.r octopus600.r
octopus900Client.r pix2deg.r phoneVR.r simDisplay.r simG.r
simH.r simH_RT.r simNo.r simYes.r zest.r data-RtDbUnits.r
data-RtSigmaUnits.r opiKineticStimulus.r opiStaticStimulus.r
opiTemporalStimulus.r

1

https://people.eng.unimelb.edu.au/aturpin/opi/index.html

2 OPI-package

NeedsCompilation no

Repository CRAN

Date/Publication 2022-03-02 00:30:05 UTC

R topics documented:
OPI-package . 2
chooseOpi . 3
dbTocd . 5
fourTwo.start . 6
FT . 8
MOCS . 12
opi.implementations . 16
opiClose . 17
opiGetParams . 18
opiInitialize . 19
opiKineticStimulus . 26
opiPresent . 27
opiQueryDevice . 34
opiSetBackground . 36
opiStaticStimulus . 43
opiTemporalStimulus . 44
pixTodeg . 46
RtDbUnits . 46
RtSigmaUnits . 47
ZEST . 48

Index 53

OPI-package Open Perimetry Interface

Description

Implementation of the Open Perimetry Interface (OPI) for simulating and controlling visual field
machines using R. The OPI is a standard for interfacing with visual field testing machines (perime-
ters). It specifies basic functions that allow many visual field tests to be constructed. As of October
2017 it is fully implemented on the Octopus 900 and partially on the Heidelberg Edge Perimeter,
the Kowa AP 7000, the CrewT imo and the Centervue Compass. It also has a cousin: the R package
’visualFields’, which has tools for analysing and manipulating visual field data. License: GPL-3

chooseOpi 3

Details

Package: OPI
Type: Package
Version: 2.9
Date: 2012-10-26
License: GPL-3

Author(s)

Author and mantainer: Andrew Turpin <<aturpin@unimelb.edu.au>>

References

A. Turpin, P.H. Artes and A.M. McKendrick. "The Open Perimetry Interface: An enabling tool for
clinical visual psychophysics", Journal of Vision 12(11) 2012.

See Also

• Andrew’s website: https://people.eng.unimelb.edu.au/aturpin/opi/index.html

• Github OPI repository: https://github.com/turpinandrew/OPI

• OPI Discourse Forum: https://openperimetry.org/

chooseOpi Choose an implementation of the OPI

Description

Chooses an implementation of the OPI to use

Usage

chooseOpi(opiImplementation)

chooseOPI(opiImplementation)

Arguments

opiImplementation

A character string that is one of the following.

• "SimNo" for a simulator that always doesn’t see.
• "SimYes" for a simulator that always does see.

https://people.eng.unimelb.edu.au/aturpin/opi/index.html
https://github.com/turpinandrew/OPI
https://openperimetry.org/

4 chooseOpi

• "SimHenson" for a simulator that uses a cummulative gaussian psychomet-
ric function with standard deviation according to Henson et al (2000) where
variability increases as true threshold (Humphrey dB) value decreases.

• "SimHensonRT" as for SimHenson, but response times in ms are sampled
from a supplied response time data set for each true positive response.

• "SimGaussian" for a simulator that uses a cummulative gaussian psycho-
metric function with standard deviation supplied in opiInitialize().

• "Octopus900" for interfacing with the Octopus 900.

• "Octopus900F310" for interfacing with the Octopus 900 using Logitech
F310 controller.

• "Octopus600" for interfacing with the Octopus 600.

• "HEP" not working so well in HEPs.

• "KowaAP7000" for interfacing with Kowa AP-7000.

• "Imo" for interfacing with CrewT’s Imo head mounted perimeter.

• "DayDream" for interfacing with an Android phone in a Google Daydream

• "Display" for interfacing with a shiny plot area on the current machine.

• "PhoneVR" for interfacing with phones using VR. At the moment, only An-
droid compatible phones are working. The VR headset must be compatible
with Cardboard

• NULL print a list of available OPI implementations.

Value

Returns TRUE if successful, FALSE otherwise.

References

David B. Henson, Shaila Chaudry, Paul H. Artes, E. Brian Faragher, and Alec Ansons. Response
Variability in the Visual Field: Comparison of Optic Neuritis, Glaucoma, Ocular Hypertension, and
Normal Eyes. Investigative Ophthalmology & Visual Science, February 2000, Vol. 41(2).

A.M. McKendrick, J. Denniss and A. Turpin. "Response times across the visual field: empirical
observations and application to threshold determination". Vision Research, 101, 2014.

A. Turpin, P.H. Artes and A.M. McKendrick. "The Open Perimetry Interface: An enabling tool for
clinical visual psychophysics", Journal of Vision 12(11) 2012.

Examples

if(!chooseOpi("SimHenson"))
warnings()

dbTocd 5

dbTocd Convert dB to cd/mˆ2

Description

Given a value in dB, return the cd/m2 equivalent. Default is to use HFA units, so maximum stimulus
is 10000 apostilbs

Usage

dbTocd(db, maxStim = 10000/pi)

cdTodb(cd, maxStim = 10000/pi)

Arguments

db Value to convert to cd

maxStim Stimulus value for 0dB in cd/m2

cd Value to convert to dB in cd/m2

Value

dbTocd returns cd/m2 value

cdTodb returns a dB value.

Examples

decibels to candela
cd <- dbTocd(0) # 10000/pi
cd <- dbTocd(10) # 1000/pi
cd <- dbTocd(20) # 100/pi
cd <- dbTocd(30) # 10/pi
cd <- dbTocd(40) # 1/pi
candela to decibels
dB <- cdTodb(10000/pi) # 0 dB
dB <- cdTodb(1000/pi) # 10 dB
dB <- cdTodb(100/pi) # 20 dB
dB <- cdTodb(10/pi) # 30 dB
dB <- cdTodb(1/pi) # 40 dB
dB <- cdTodb(0.1/pi) # 50 dB

6 fourTwo.start

fourTwo.start 4-2 Staircase

Description

fourTwo is a 4-2 dB staircase beginning at level est terminating after two reversals. The final
estimate is the average of the last two presentations. It also terminates if the minStimulus is not
seen twice, or the maxStimulus is seen twice.

Usage

fourTwo.start(est = 25, instRange = c(0, 40), verbose = FALSE, makeStim, ...)

fourTwo.step(state, nextStim = NULL)

fourTwo.stop(state)

fourTwo.final(state)

Arguments

est Starting estimate in dB

instRange Dynamic range of the instrument c(min,max) in dB

verbose True if you want each presentation printed

makeStim A function that takes a dB value and numPresentations and returns an OPI
datatype ready for passing to opiPresent

... Extra parameters to pass to the opiPresent function

state Current state of the fourTwo returned by fourTwo.start and fourTwo.step

nextStim A valid object for opiPresent to use as its nextStim.

Details

This is an implementation of a 4-2 1-up 1-down staircase. The initial staircase starts at est and
proceeds in steps of 4 dB until the first reversal, and 2dB until the next reversal. The mean of
the last two presentations is taken as the threshold value. Note this function will repeatedly call
opiPresent for a stimulus until opiPresent returns NULL (ie no error occured). If more than one
fourTwo is to be interleaved (for example, testing multiple locations), then the fourTwo.start,
fourTwo.step, fourTwo.stop and fourTwo.final calls can maintain the state of the fourTwo
after each presentation, and should be used. See examples below.

Value

Multilple locations: fourTwo.start returns a list that can be passed to fourTwo.step, fourTwo.stop,
and fourTwo.final. It represents the state of a fourTwo at a single location at a point in time and
contains the following.

fourTwo.start 7

• name: fourTwo

• A copy of all of the parameters supplied to fourTwo.start: startingEstimate=est, minStimulus=instRange[1],
maxStimulus=instRange[2], makeStim, and opiParams=list(...)

• currentLevel: The next stimulus to present.
• lastSeen: The last seen stimulus.
• lastResponse: The last response given.
• stairResult: The final result if finished (initially NA).
• finished: "Not" if staircae has not finished, or one of "Rev" (finished due to 2 reversas),
"Max" (finished due to 2 maxStimulus seen), "Min" (finished due to 2 minStimulus not
seen)

• numberOfReversals: Number of reversals so far.
• currSeenLimit: Number of times maxStimulus has been seen.
• currNotSeenLimit: Number of times minStimulus not seen.
• numPresentations: Number of presentations so far.
• stimuli: Vector of stimuli shown at each call to fourTwo.step.
• responses: Vector of responses received (1 seen, 0 not) receieved at each call to fourTwo.step.
• responseTimes: Vector of response times receieved at each call to fourTwo.step.

fourTwo.step returns a list containing

• state: The new state after presenting a stimuli and getting a response.
• resp: The return from the opiPresent call that was made.

fourTwo.stop returns TRUE if the staircase is finished (2 reversals, or maxStimulus is seen twice
or minStimulus is not seen twice).
fourTwo.final returns the final estimate of threshold (mena of last two reversals). This issues a
warning if called before the staircase has finished, but still returns a value.

See Also

dbTocd, opiPresent, FT

Examples

Stimulus is Size III white-on-white as in the HFA
makeStim <- function(db, n) {
s <- list(x=9, y=9, level=dbTocd(db), size=0.43, color="white",

duration=200, responseWindow=1500)
class(s) <- "opiStaticStimulus"
return(s)

}
chooseOpi("SimHenson")
if (!is.null(opiInitialize(type="C", cap=6)))

stop("opiInitialize failed")

##
This section is for multiple fourTwos
##
makeStimHelper <- function(db,n, x, y) { # returns a function of (db,n)

ff <- function(db, n) db+n

8 FT

body(ff) <- substitute({
s <- list(x=x, y=y, level=dbTocd(db), size=0.43, color="white",

duration=200, responseWindow=1500)
class(s) <- "opiStaticStimulus"
return(s)}, list(x=x,y=y))

return(ff)
}
List of (x, y, true threshold) triples
locations <- list(c(9,9,30), c(-9,-9,32), c(9,-9,31), c(-9,9,33))

Setup starting states for each location
states <- lapply(locations, function(loc) {

fourTwo.start(makeStim=makeStimHelper(db,n,loc[1],loc[2]),
tt=loc[3], fpr=0.03, fnr=0.01)})

Loop through until all states are "stop"
while(!all(st <- unlist(lapply(states, fourTwo.stop)))) {

i <- which(!st) # choose a random,
i <- i[runif(1, min=1, max=length(i))] # unstopped state
r <- fourTwo.step(states[[i]]) # step it
states[[i]] <- r$state # update the states

}

finals <- lapply(states, fourTwo.final) # get final estimates of threshold
for(i in 1:length(locations)) {

cat(sprintf("Location (%+2d,%+2d) ",locations[[i]][1], locations[[i]][2]))
cat(sprintf("has threshold %4.2f\n", finals[[i]]))

}

if (!is.null(opiClose()))
warning("opiClose() failed")

FT Full Threshold

Description

FT begins with a 4-2dB staircase beginning at level est. If the final estimate (last seen) is more
than 4dB away from est, a second 4-2 staircase is completed beginning at the estimate returned
from the first

Usage

FT(est = 25, instRange = c(0, 40), verbose = FALSE, makeStim, ...)

FT.start(est = 25, instRange = c(0, 40), makeStim, ...)

FT.step(state, nextStim = NULL)

FT.stop(state)

FT 9

FT.final(state)

Arguments

est Starting estimate in dB

instRange Dynamic range of the instrument c(min,max) in dB

verbose True if you want each presentation printed

makeStim A function that takes a dB value and numPresentations and returns an OPI
datatype ready for passing to opiPresent

... Extra parameters to pass to the opiPresent function

state Current state of the FT returned by FT.start and FT.step

nextStim A valid object for opiPresent to use as its nextStim

Details

This is an implementation of a 4-2 1-up 1-down staircase as implemented in the first Humphrey
Field Analyzer. The initial staircase starts at est and proceeds in steps of 4 dB until the first
reversal, and 2dB until the next reversal. The last seen stimulus is taken as the threshold value. If,
after the first staircase, the threshold is more than 4 dB away from the starting point, then a second
staircase is initiated with a starting point equal to the threshold found with the first staircase.

Note this function will repeatedly call opiPresent for a stimulus until opiPresent returns NULL
(ie no error occured)

If more than one FT is to be interleaved (for example, testing multiple locations), then the FT.start,
FT.step, FT.stop and FT.final calls can maintain the state of the FT after each presentation, and
should be used. If only a single FT is required, then the simpler FT can be used. See examples
below

Value

Single location: Returns a list containing

• npres Total number of presentations
• respSeq Response sequence stored as a list of (seen,dB) pairs
• first First staircase estimate in dB
• final Final threshold estimate in dB

Multilple locations: FT.start returns a list that can be passed to FT.step, FT.stop, and
FT.final. It represents the state of a FT at a single location at a point in time and contains the
following.

• name: FT
• A copy of all of the parameters supplied to FT.start: startingEstimate=est, minStimulus=instRange[1],
maxStimulus=instRange[2], makeStim, and opiParams=list(...).

• currentLevel: The next stimulus to present.
• lastSeen: The last seen stimulus.
• lastResponse: The last response given.

10 FT

• firstStairResult: The result of the first staircase (initially NA).

• secondStairResult: The result of the first staircase (initially NA, and could remain NA).

• finished: TRUE if staircae has finished (2 reversals, or max/min seen/not-seen twice).

• numberOfReversals: Number of reversals so far.

• currSeenLimit: Number of times maxStimulus has been seen.

• currNotSeenLimit: Number of times minStimulus not seen.

• numPresentations: Number of presentations so far.

• stimuli: Vector of stimuli shown at each call to FT.step.

• responses: Vector of responses received (1 seen, 0 not) receieved at each call to FT.step.

• responseTimes: Vector of response times receieved at each call to FT.step.

FT.step returns a list containing

• state: The new state after presenting a stimuli and getting a response.

• resp: The return from the opiPresent call that was made.

FT.stop returns TRUE if the first staircase has had 2 reversals, or maxStimulus is seen twice or
minStimulus is not seen twice and the final estimate is within 4 dB of the starting stimulus. Returns
TRUE if the second staircase has had 2 reversals, or maxStimulus is seen twice or minStimulus is
not seen twice

FT.final returns the final estimate of threshold based on state, which is the last seen in the second
staircase, if it ran, or the first staircase otherwise

FT.final.details returns a list containing

• final: The final threshold.

• first: The threshold determined by the first staircase (might be different from final).

• stopReason: Either Reversals, Max, or Min which are the three ways in which FT can termi-
nate.

• np: Number of presentation for the whole procedure (indcluding both staircases if run).

References

A. Turpin, P.H. Artes and A.M. McKendrick. "The Open Perimetry Interface: An enabling tool for
clinical visual psychophysics", Journal of Vision 12(11) 2012.

H. Bebie, F. Fankhauser and J. Spahr. "Static perimetry: strategies", Acta Ophthalmology 54 1976.

C.A. Johnson, B.C. Chauhan, and L.R. Shapiro. "Properties of staircase procedures for estimating
thresholds in automated perimetry", Investagative Ophthalmology and Vision Science 33 1993.

See Also

dbTocd, opiPresent, fourTwo.start

FT 11

Examples

Stimulus is Size III white-on-white as in the HFA
makeStim <- function(db, n) {

s <- list(x=9, y=9, level=dbTocd(db), size=0.43, color="white",
duration=200, responseWindow=1500)

class(s) <- "opiStaticStimulus"
return(s)

}
chooseOpi("SimHenson")
if (!is.null(opiInitialize(type="C", cap=6)))

stop("opiInitialize failed")

result <- FT(makeStim=makeStim, tt=30, fpr=0.15, fnr=0.01)
if (!is.null(opiClose()))

warning("opiClose() failed")

##
This section is for multiple FTs
##
makeStimHelper <- function(db,n, x, y) { # returns a function of (db,n)

ff <- function(db, n) db+n
body(ff) <- substitute({

s <- list(x=x, y=y, level=dbTocd(db), size=0.43, color="white",
duration=200, responseWindow=1500)

class(s) <- "opiStaticStimulus"
return(s)

}, list(x=x,y=y))
return(ff)

}

List of (x, y, true threshold) triples
locations <- list(c(9,9,30), c(-9,-9,32), c(9,-9,31), c(-9,9,33))
Setup starting states for each location
states <- lapply(locations, function(loc) {

FT.start(makeStim=makeStimHelper(db,n,loc[1],loc[2]),
tt=loc[3], fpr=0.03, fnr=0.01)})

Loop through until all states are "stop"
while(!all(st <- unlist(lapply(states, FT.stop)))) {

i <- which(!st) # choose a random,
i <- i[runif(1, min=1, max=length(i))] # unstopped state
r <- FT.step(states[[i]]) # step it
states[[i]] <- r$state # update the states

}

finals <- lapply(states, FT.final) # get final estimates of threshold
for(i in 1:length(locations)) {

cat(sprintf("Location (%+2d,%+2d) ",locations[[i]][1], locations[[i]][2]))
cat(sprintf("has threshold %4.2f\n", finals[[i]]))

}

if(!is.null(opiClose()))

12 MOCS

warning("opiClose() failed")

MOCS Method of Constant Stimuli (MOCS)

Description

MOCS performs either a yes/no or n-interval-forced-choice Method of Constant Stimuli test

Usage

MOCS(
params = NA,
order = "random",
responseWindowMeth = "constant",
responseFloor = 1500,
responseHistory = 5,
keyHandler = function(correct, ret) return(list(TRUE, 0, NULL)),
interStimMin = 200,
interStimMax = 500,
beep_function,
makeStim,
stim_print,
...

)

Arguments

params A matrix where each row is x y i n correct_n ll1 ll2 ... llm where

• x is X coordinate of location
• y is Y coordinate of location
• i is a location number (assigned by caller)’
• n is Number of times this location/luminance(s) should be repeated
• correct_n is the index i of the luminance level (lli) that should be treated

as a “correct” response (the correct interval). For a standard MOCS, this
will be 1; for a 2AFC, this will be 1 or 2. This number will be in the range
[1,m].

• lli is the i’th luminance level to be used at this location for interval i of the
presentation in cd/m2. For a standard MOCS, i=1, and the params matrix
will have 5 columns. For a 2AFC, there will be two lli’s, and params will
have 6 columns.

order Control the order in which the stimuli are presented.

• "random" Randomise the order of trials/locations.
• "fixed" Present each row of params in order of 1:nrow(params), ignoring

the n (3rd) column in params.

MOCS 13

responseWindowMeth

Control time perimeter waits for response.

• "speed" After an average of the last speedHistory response times, with a
minimum of responseFloor. Initially responseFloor.

• "constant" Always use responseFloor.
• "forceKey" Wait for a keyboard input.

responseFloor Minimum response window (for any responseWindowMeth except "forceKey").
responseHistory

Number of past yeses to average to get response window (only used if responseWindowMeth
is "speed").

keyHandler Function to get a keyboard input and returns as for opiPresent: list(seen=TRUE|FALSE,
response time (in ms), error code). The parameters passed to the function are
the correct interval number (column 4 of params), and the result of opiPresent.
See Examples.

interStimMin Regardless of response, wait runif(interStimMin,interStimMax) ms.

interStimMax Regardless of response, wait runif(interStimMin,interStimMax) ms.

beep_function A function that takes the string 'correct', the string 'incorrect', or a stimu-
lus number and plays an appropriate sound. See examples.

makeStim A helper function to take a row of params and a response window length in ms,
and create a list of OPI stimuli types for passing to opiPresent. This may include
a checkFixationOK function. See Example.

stim_print A function that takes an opiStaticStimulus and return list from opiPresent
and returns a string to print for each presentation. It is called immediately after
each opiPresent, and the string is prepended with the (x,y) coordinates of the
presentation and ends with a newline.

... Extra parameters to pass to the opiPresent function.

Details

Whether the test is yes/no or forced-choice is determined by the number of columns in params. The
code simply presents all columns from 5 onwards and collects a response at the end. So if there is
only 5 columns, it is a yes/no task. If there are 6 columns it is a 2-interval-forced-choice. Generally,
an nIFC experiment has 4+n columns in params.

Note that when the order is "random", the number of trials in the test will be the sum of the 3rd
column of params. When the order is "fixed", there is only one presentation per row, regardless
of the value in the 3rd column of params.

If a response is received before the final trial in a nIFC experiment, it is ignored.

If the checkFixationOK funciton is present in a stimulus, then it is called after each presentation,
and the result is “anded” with each stimulus in a trial to get a TRUE/FALSE for fixating on all
stimuli in a trial.

Value

Returns a data.frame with one row per stimulus copied from params with extra columns that are
location number in the first column, and the return values from opiPresent() and a record of

14 MOCS

fixation (if checkFixationOK present in stim objects returned from makeStim: see example). These
last values will differ depending on which machine/simulation you are running (as chosen with
chooseOpi().

• column 1: x

• column 2: y

• column 3: location number

• column 4: correct stimulus index

• column 5: TRUE/FALSE was fixating for all presentations in this trial according to checkFixationOK

• column 6...: columns from params

• ...: columns from opiPresent return

References

A. Turpin, P.H. Artes and A.M. McKendrick. "The Open Perimetry Interface: An enabling tool for
clinical visual psychophysics", Journal of Vision 12(11) 2012.

See Also

dbTocd, opiPresent

Examples

For the Octopus 900
Check if pupil centre is within 10 pixels of (160,140)
checkFixationOK <- function(ret) return(sqrt((ret$pupilX - 160)^2 + (ret$pupilY - 140)^2) < 10)

Return a list of opi stim objects (list of class opiStaticStimulus) for each level (dB) in
p[5:length(p)]. Each stim has responseWindow BETWEEN_FLASH_TIME, except the last which has
rwin. This one assumes p is on old Octopus 900 dB scale (0dB == 4000 cd/m^2).
makeStim <- function(p, rwin) {

BETWEEN_FLASH_TIME <- 750 # ms
res <- NULL
for(i in 5:length(p)) {
s <- list(x=p[1], y=p[2], level=dbTocd(p[i],4000/pi), size=0.43, duration=200,

responseWindow=ifelse(i < length(p), BETWEEN_FLASH_TIME, rwin),
checkFixationOK=NULL)

class(s) <- "opiStaticStimulus"
res <- c(res, list(s))

}
return(res)

}

##
Read in a key press 'z' is correct==1, 'm' otherwise
correct is either 1 or 2, whichever is the correct interval
#
Return list(seen={TRUE|FALSE}, time=time, err=NULL))
seen is TRUE if correct key pressed
##

MOCS 15

Not run:
if (length(dir(".", "getKeyPress.py")) < 1)
stop('Python script getKeyPress.py missing?')

End(Not run)

keyHandler <- function(correct, ret) {
return(list(seen=TRUE, time=0, err=NULL))
ONE <- "b'z'"
TWO <- "b'm'"
time <- Sys.time()
key <- 'q'
while (key != ONE && key != TWO) {
a <- system('python getKeyPress.py', intern=TRUE)
key <- a # substr(a, nchar(a), nchar(a))
print(paste('Key pressed: ',key,'from',a))
if (key == "b'8'")

stop('Key 8 pressed')
}
time <- Sys.time() - time
if ((key == ONE && correct == 1) || (key == TWO && correct == 2))
return(list(seen=TRUE, time=time, err=NULL))

else
return(list(seen=FALSE, time=time, err=NULL))

}

##
Read in return value from opipresent with F310 controller.
First param is correct, next is 1 for left button, 2 for right button
Left button (LB) is correct for interval 1, RB for interval 2
correct is either 1 or 2, whichever is the correct interval
#
Return list(seen={TRUE|FALSE}, time=time, err=NULL))
seen is TRUE if correct key pressed
##
F310Handler <- function(correct, opiResult) {

z <- opiResult$seen == correct
opiResult$seen <- z
return(opiResult)

}

##
2 example beep_function
##
Not run:

require(beepr)
myBeep <- function(type='None') {

if (type == 'correct') {
beepr::beep(2) # coin noise
Sys.sleep(0.5)

}
if (type == 'incorrect') {

beepr::beep(1) # system("rundll32 user32.dll,MessageBeep -1") # system beep

16 opi.implementations

#Sys.sleep(0.0)
}

}
require(audio)
myBeep <- function(type="None") {

if (type == 'correct') {
wait(audio::play(sin(1:10000/10)))

}
if (type == 'incorrect') {

wait(audio::play(sin(1:10000/20)))
}

}

End(Not run)

##
An example stim_print function
##
Not run:

stim_print <- function(s, ret) {
sprintf("%4.1f %2.0f",cdTodb(s$level,10000/pi), ret$seen)

}

End(Not run)

opi.implementations FOR INTERNAL USE ONLY

Description

The method opiDistributor searches for the specific method of a general OPI operation, which
depends on the OPI implementation selected with chooseOpi. It returns an error if no OPI imple-
mentation has been selected yet. A catalog of all specific methods are listed in opi.implementations.

Usage

opi.implementations

opiDistributor(operation, ...)

Arguments

operation A general OPI operation of the following methods to: opiInitialize, opiPresent
opiClose, opiSetBackground, opiQueryDevice

... other parameters to pass to the methods

Format

opi.implementations is a list containing a catalog of all specific methods that are dependent on
the OPI implementation selected with chooseOpi

opiClose 17

opiClose Close using OPI

Description

Generic function for closing the chosen OPI implementation that is set with chooseOpi()

Usage

opiClose(...)

compass.opiClose()

display.opiClose()

daydream.opiClose()

imo.opiClose()

kowaAP7000.opiClose()

octo600.opiClose()

octo900.opiClose()

phoneVR.opiClose()

simG.opiClose()

Arguments

... Implementation specific parameters. See details.

Value

Returns NULL if close succeeded, otherwise an implementation-dependent error.

Compass: Returns a list of err, which is an error code, and fixations, which is a matrix with
three columns: time (same as time_hw in opiPresent), x (degrees relative to the centre of the
image returned by opiInitialise - not the PRL), y (as for x), and one row per fixation.

Display: Shuts the display.

Daydream: DETAILS

imo: DETAILS

KowaAP7000: DETAILS

18 opiGetParams

Octopus600: DETAILS

Octopus900: Returns NULL.

PhoneVR: Closes the socket connection with the PhoneVR

SimGaussian: DETAILS

See Also

chooseOpi

Examples

chooseOpi("SimGaussian")
if (!is.null(opiInitialize(sd=2)))

stop("opiInitialize failed")
if (!is.null(opiClose()))

stop("opiClose failed, which is very surprising!")

opiGetParams Get OPI method parameters

Description

Get parameters of OPI functions which depends on the implementation set with chooseOPI()

Usage

opiGetParams(method, ...)

Arguments

method Method for which to get parameters and defaults.

... Implementation specific parameters. See details.

Value

Returns a list of parameters and their default vlues of the method method depending on the OPI
implementation selected with chooseOPI().

Examples

chooseOpi("SimHenson")
opiGetParams("opiInitialize")
opiGetParams("opiPresent")

opiInitialize 19

opiInitialize Initialize OPI

Description

Generic function for initialization of the chosen OPI implementation that is set with chooseOpi()

Usage

opiInitialize(...)

opiInitialise(...)

compass.opiInitialize(ip = "192.168.1.2", port = 44965)

display.opiInitialize(
width,
height,
ppi,
viewdist,
lut = seq(0, 400, length.out = 256)

)

daydream.opiInitialize(
ip = "127.0.0.1",
port = 50008,
lut = seq(0, 400, length.out = 256),
fovy = 90

)

imo.opiInitialize(
ip = "localhost",
port = 1234,
ppd = 16,
tracking = FALSE,
tracktol = 2

)

kowaAP7000.opiInitialize(ip = "192.168.1.2", port = 44965)

octo600.opiInitialize(
ipAddress = "",
eye = "",
pupilTracking = FALSE,
pulsar = FALSE,
eyeControl = 0

)

20 opiInitialize

octo900.opiInitialize(
serverPort = 50001,
eyeSuiteSettingsLocation = "C:/ProgramData/Haag-Streit/EyeSuite/",
eye = "",
gazeFeed = "",
bigWheel = FALSE,
pres_buzzer = 0,
resp_buzzer = 0,
zero_dB_is_10000_asb = TRUE

)

phoneVR.opiInitialize(ip, port = 50008, lut = seq(0, 400, length.out = 256))

simG.opiInitialize(sd = 2, display = NA, maxStim = 10000/pi)

simH.opiInitialize(
type = "C",
A = -0.081,
B = 3.27,
cap = 6,
display = NA,
maxStim = 10000/pi

)

simH_RT.opiInitialize(
type = "C",
cap = 6,
A = -0.081,
B = 3.27,
display = NA,
maxStim = 10000/pi,
rtData = NULL,
rtFP = 1:1600

)

Arguments

... Implementation specific parameters. See details.

ip IP address on which server is listening for PhoneVR

port Port number on which server is listening for PhoneVR. Default is 50008

width Width of the screen in pixels

height Height of the screen in pixels

ppi Pixels per inch of the display

viewdist Viewing distance in cm

lut Look up table mapping pixel values to cd/m2

opiInitialize 21

fovy Field of view in degrees in the y-axis. It is different depending on the device. For
Daydream view, it is 90 degrees, for, Daydream view 2 is 100 degrees. Default
is 90.

ppd pixels size as in pixels per degree

tracking tracking on or off

tracktol tolerance during tracking in degrees of visual angle

ipAddress IP address of Octopus 600 machine

eye eye; "right" or "left" for "Octopus900", "Octopus600"

pupilTracking pupil tracking

pulsar DETAILS

eyeControl DETAILS

serverPort port number on which server is listening for "Octopus900"
eyeSuiteSettingsLocation

dir name containing EyeSuite settings for "Octopus900"

gazeFeed NA or a folder name for "Octopus900"

bigWheel FALSE (standard machine), TRUE for modified apeture wheel for "Octopus900"

pres_buzzer 0 (no buzzer),1, 2, 3 (max volume) for "Octopus900"

resp_buzzer 0 (no buzzer),1, 2, 3 (max volume) for "Octopus900"
zero_dB_is_10000_asb

Is 0 dB 10000 apostibl (TRUE) or or 4000 (FALSE) for "Octopus900"

sd standard deviation for the Gaussian

display Dimensions of plot area (-x,+x,-y,+y) to display stim. No display if NULL. For
"SimHenson", "SimHensonRT", "SimGaussian", "SimNo", "SimYes"

maxStim Maximum stimulus value in cd/m^2 used for db <-> cd/m^2 conversions for
"SimHenson", "SimHensonRT", "SimGaussian"

type N|G|C for the three Henson params for "SimHenson", "SimHensonRT". Type
’X’ to specify your own A and B values (eg different dB scale)

A parameter A for "SimHenson", "SimHensonRT"

B parameter B for "SimHenson", "SimHensonRT"

cap dB value for capping stdev form Henson formula for "SimHenson", "SimHen-
sonRT"

rtData data.frame with colnames == "Rt", "Dist", "Person" for "SimHensonRT"

rtFP response time for false positives ??? for "SimHensonRT"

Details

Compass: opiInitialize(ip,port)

If the chosen OPI implementation is Compass, then you must specify the IP address and port of
the Compass server.

• ip is the IP address of the Compass server as a string.
• port is the TCP/IP port of the Compass server as a number.

22 opiInitialize

Warning: this returns a list, not a single error code.

Display: opiInitialize((width,height,ppi,viewdist,lut = .OpiEnv$Display$LUT))

If the chosen OPI implementation is Display, then you can specify the limits of the plot area and
the background color of the plot area. Note that this assumes link{X11()} is available on the
platform.
We need to know the physical dimensions of the screen and the window generated in order to
calculate stimulus position and size in degrees of visual angle. The physical dimensions in inches
are calculated from width, height, and ppi. The pixel size pix per degree is then obtained using
viewdist. A gamma function for the screen should be obtained and its lut passed to convert from
luminance in cd/m2 to 8-bit pixel value (256 levels).

Daydream: opiInitialize(ip="127.0.0.1",port=50008,lut= seq(0,400,length.out =
256),fovy = 90)

If the chosen OPI implementation is Daydream, then you must specify the IP address of the An-
droid phone that is in the Daydream, and the port on which the server running on the phone is
listening.

• ip is the IP address of the Daydream server as a string
• port is the TCP/IP port of the Daydream server as a number
• lut is a vector of 256 luminance values, with lut[i] being the cd/m2 value for grey level i.

Default is seq(0,4000,length.out = 256)

• fovy Field of view in degrees in the y-axis. It is different depending on the device. For
Daydream view, it is 90 degrees, for, Daydream view 2 is 100 degrees. Default is 90.

imo: opiInitialize(ip,port,ppd = 16,tracking = FALSE,tracktol = 2)

If the chosen OPI implementation is imo, then you must specify the IP address and port of the imo
server.

• ip is the IP address of the imo server as a string.
• port is the TCP/IP port of the imo server as a number.
• ppd Pixel size in pixels per degree. Default is 16 ppd.
• tracking Whether to use tracking during stimulus presentation. Default is FALSE.
• tracktol Tolerance during tracking in degrees of visual angle. The system does not show

any stimulus if eye is not within tracktol degrees of visual angle from fixation point. De-
fault is 2 degrees

KowaAP7000: opiInitialize(ip,port)

If the chosen OPI implementation is KowaAP7000, then you must specify the IP address and port
of the AP-7000 server.

• ipAddress is the IP address of the AP-7000 server as a string.
• port is the TCP/IP port of the AP-7000 server as a number.

Octopus600: opiInitialize(ipAddress,eye,pupilTracking=FALSE,pulsar=FALSE,eyeControl=0)

If the chosen OPI implementation is Octopus600, then you must specify the IP address of the
Octopus 600 and the eye to test.
ipAddress is the IP address of the Octopus 600 as a string.
eye must be either "left" or "right".

opiInitialize 23

pupilTracking is TRUE to turn on IR illumination and set pupil black level (which happens at
the first stimulus presentation).
pulsar is TRUE for pulsar stimulus, FALSE for size III white-on-white.
eyeControl

• 0 is off
• 1 is eye blink
• 2 is eye blink, forehead rest, fixation control
• 3 is eye blink, forehead rest, fixation control, fast eye movements

Octopus900: opiInitialize(serverPort=50001,eyeSuiteSettingsLocation,eye,gazeFeed=NA,bigWheel=FALSE,pres_buzzer=0,resp_buzzer=0,zero_dB_is_10000_asb=TRUE)

If the chosen OPI implementation is Octopus900, then you must specify a directory and the eye
to be tested.
serverPort is the TCP/IP port on which the server is listening (on localhost).
eyeSuiteSettingsLocation is the folder name containing the EyeSuite setting files, and should
include the trailing slash.
eye must be either "left" or "right".
gazeFeed is the name of an existing folder into which the video frames of eye tracker are recorded.
Set to NA for no recording.
bigWheel is FALSE for a standard Octopus 900 machine. Some research machines are fitted with
an alternate aperture wheel that has 24 sizes, which are accessed with bigWheel is TRUE. The
mapping from size to ’hole on wheel’ is hard coded; see code for details.
If pres_buzzer is greater than zero, a buzzer will sound with each stimuli presented.
If resp_buzzer is greater than zero, a buzzer will sound with each button press (resposne). The
volume can be one of 0 (no buzzer), 1, 2, or 3 (max volume). If both buzzers are more than zero,
the maximum of the two will be used as the volume.
If zero_dB_is_10000_asb is TRUE then 0 dB is taken as 10000 apostilbs, otherwise 0 dB is taken
as 4000 apostilbs.

PhoneVR: opiInitialize(serverPort,port = 50008,lut = seq(0,400,length.out = 256))
If the chosen OPI implementation is PhoneVR, then you must specify the IP address of the An-
droid phoneVR that is in the PhoneVR, and the port on which the server running on the phoneVR
is listening.

• ip is the IP address of the PhoneVR server as a string
• port is the TCP/IP port of the PhoneVR server as a number
• lut is a vector of 256 luminance values, with lut[i] being the cd/m2 value for grey level i.

Default is seq(0,4000,length.out = 256)

SimGaussian: opiInitialize(sd,display=NA,maxStim=10000/pi)

If the chosen OPI implementation is SimGaussian, then sd is the standard deviation value that
the simulator will use for the slope/spread of the psychometric function.
display and maxStim is as for SimHenson.

SimHenson: opiInitialize(type="C",A=NA,B=NA,cap=6,maxStim=10000/pi)

If the chosen OPI implementation is SimHenson, then type can be one of: "N", for normal pa-
tients; "G", for POAG patients; and "C", for a combination. See Table 1 in Henson et al (2000).

24 opiInitialize

If type is "X" then A and B should be specified and are used in place of one of the three A/B
combinations as in Henson et al (2000). cap is the maximum standard deviation value that the
simulator will use for the slope/spread of the psychometric function.
If display is a vector of four numbers c(xlow,xhi,ylow,yhi), then a plot area is created of
dimension xlim=range(xlow,xhi) and ylim=range(ylow,yhi) and each call to opiPresent
will display a point on the area. The color of the plot area can be set with opiSetBackground,
and the color of the displayed point is determined by the stimulus passed to opiPresent.
maxStim is the maximum stimuls value in cd/m2. This is used in converting cd/m2 to dB values,
and vice versa.

SimHensonRT: opiInitialize(type="C",A=NA,B=NA,cap=6,display=NA,maxStim=10000/pi,rtData,rtFP=1:1600)

If the chosen OPI implementation is SimHensonRT, then the first six parameters are as in SimHenson,
and rtData is a data frame with at least 2 columns: "Rt", reponse time; and "Dist", signifying
that distance between assumed threshold and stimulus value in your units.
This package contains RtSigmaUnits or RtDbUnits that can be loaded with the commands
data(RtSigmaUnits) or data(RtDbUnits), and are suitable to pass as values for rtData.
rtFp gives the vector of values in milliseconds from which a response time for a false positive
response is randomly sampled.

Value

Returns NULL if initialization succeeded, otherwise an implementation-dependent error.

Compass: Returns a list with elements:

• err NULL if successful, not otherwise.
• prl a pair giving the (x,y) in degrees of the Preferred Retinal Locus detected in the initial

alignment.
• onh a pair giving the (x,y) in degrees of the ONH as selected by the user.
• image raw bytes being the JPEG compressed infra-red image acquired during alignment.

Display: Always returns NULL.

Daydream: Always returns NULL.

imo: Always returns NULL. Will stop if there is an error.

Kowa AP-7000: Always returns NULL.

Octopus600: Returns NULL if successful, or an Octopus 600 error code. The default back-
ground and stimulus setup is to white-on-white perimetry.

Octopus900: Returns NULL if successful, 1 if Octopus900 is already initialised by a previous
call to opiInitialize, and 2 if some error occured that prevented ininitialisation. The default
background and stimulus setup is to white-on-white perimetry. Use opiSetBackground to change
the background and stimulus colors.

PhoneVR: Returns NULL if connection is made, otherwise, it returns a text with the error

opiInitialize 25

References

David B. Henson, Shaila Chaudry, Paul H. Artes, E. Brian Faragher, and Alec Ansons. Response
Variability in the Visual Field: Comparison of Optic Neuritis, Glaucoma, Ocular Hypertension, and
Normal Eyes. Investigative Ophthalmology & Visual Science, February 2000, Vol. 41(2).

See Also

chooseOpi, opiSetBackground, opiClose, opiPresent

Examples

Not run:
Set up the Compass
chooseOpi("Compass")
result <- opiInitialize(ip="192.168.1.7", port=44965)
if (is.null(result$err))
print(result$prl)

End(Not run)
Not run:

Set up a Display and wait for a key press in it.
chooseOpi("Display")
if (!is.null(opiInitialize(width = 1680, height = 1050, ppi = 128, viewdist = 25)))
stop("opiInitialize failed")

opiSetBackground(lum = 100, color = "white", fixation = "Circle")

opiClose()

End(Not run)
Not run:

Set up the imo
chooseOpi("imo")
opiInitialize(ip = "192.168.1.7", port = 1234)

End(Not run)
Not run:

Set up the Kowa AP-7000
chooseOpi("KowaAP7000")
opiInitialize(ip="192.168.1.7", port=44965)

End(Not run)
Not run:

Set up the Octopus 900
chooseOpi("Octopus900")
if (!is.null(opiInitialize(

eyeSuiteSettingsLocation="C:/ProgramData/Haag-Streit/EyeSuite/",
eye="left")))

stop("opiInitialize failed")

End(Not run)
Set up a simulation using a psychometric function that is

26 opiKineticStimulus

a cumulative gaussian of standard deviation 2
chooseOpi("SimGaussian")
if (!is.null(opiInitialize(sd=2)))

stop("opiInitialize failed")
Set up a simple simulation for white-on-white perimetry
chooseOpi("SimHenson")
if (!is.null(opiInitialize(type="C", cap=6)))

stop("opiInitialize failed")

Set up a simple simulation for white-on-white perimetry
and display the stimuli in a plot region
chooseOpi("SimHenson")
if (!is.null(opiInitialize(type="C", cap=6)))

stop("opiInitialize failed")
Set up a simple simulation for white-on-white perimetry
and display the stimuli in a plot region and simulate response times
chooseOpi("SimHensonRT")
data(RtSigmaUnits)
oi <- opiInitialize(type="C", cap=6, display=NA, rtData=RtSigmaUnits, rtFP=1:100)
if (!is.null(oi))

stop("opiInitialize failed")

opiKineticStimulus Stimulus parameter list

Description

List containing stimulus parameters with an S3 class attribute of opiKineticStimulus

Usage

"See details"

Details

The list should be of class opiKineticStimulus and contain the following elements.

• path list of (x,y) coordinates in degrees that is usable by xy.coords()

• image image[i] is the image to display (in a machine specific format) in the section of the
path specified by path[i]..path[i+1].

• levels if is.na(image) then levels[i] is the stimulus level in cd/m2 in the section of the
path specified by path[i]..path[i+1]

• sizes sizes[i] is the size of stimulus (diameter in degrees) to use for the section of path
specified by path[i]..path[i+1], or a scaling factor for images[i].

• colors colors[i] is the color to use for the stimulus in the section of path specified by
path[i]..path[i+1]. Ignored if !is.na(image).

• speedsspeeds[i] is the speed (degrees per second) for the stimulus to traverse the path spec-
ified by path[i]..path[i+1].

opiPresent 27

• ... machine specific parameters

Octopus 900: x and y are in degrees, with precision to three decimal places recognised.
image is not possible on an Octopus 900.
levels are in cd/m2, and are rounded to the nearest one tenth of a dB for display.
colors are ignored. Use opiSetBackground() to alter stimulus color.
sizes are in degrees, but are rounded to the nearest Goldmann Size I..V for display.

Kowa AP 7000: Only a simple path with a start and an end point is supported by the AP-7000.
x and y are in degrees and should only be length 2. (precision?)
image is not possible on an Kowa AP 7000.
levels are in cd/m2 in the range 0.03 to 3183, and are rounded to the nearest one tenth of a dB
for display. (precision?)
colors one of .OpiEnv$KowaAP7000$COLOR_WHITE, .OpiEnv$KowaAP7000$COLOR_GREEN, .OpiEnv$KowaAP7000$COLOR_BLUE,
and .OpiEnv$KowaAP7000$COLOR_RED.
sizes are in degrees, but are rounded to the nearest Goldmann Size I..V for display.
speeds are in degrees per second in the range 3 to 5.

Compass: Not implemented.

See Also

opiSetBackground, opiStaticStimulus, opiTemporalStimulus

Examples

A Size III white kinetic stimuli on a bilinear path {(27,27), (15,20), (0,0)}
stim <- list(path=list(x=c(27,15,0), y=c(27,20,0)),

izes=rep(0.43,2),
colors=rep("white",2),
levels=rep(318,2),
speeds=c(4,3))

class(stim) <- "opiKineticStimulus"

opiPresent Use OPI to present stimulus

Description

Generic function for presentation of stimulus stim. Depending on your choice of OPI implementa-
tion set using chooseOpi(), different parameters are available for opiPresent

28 opiPresent

Usage

opiPresent(stim, nextStim = NULL, ...)

compass.opiPresent(stim, nextStim = NULL)

display.opiPresent(stim, nextStim = NULL)

daydream.opiPresent(stim, nextStim = NULL)

imo.opiPresent(stim, nextStim = NULL)

kowaAP7000.opiPresent(stim, nextStim = NULL)

octo600.opiPresent(stim, nextStim = NULL)

octo900.opiPresentF310(stim, nextStim = NULL)

phoneVR.opiPresent(stim, nextStim = NULL)

simG.opiPresent(stim, nextStim = NULL, fpr = 0.03, fnr = 0.01, tt = 30)

simH.opiPresent(
stim,
nextStim = NULL,
fpr = 0.03,
fnr = 0.01,
tt = 30,
criteria = 0.97,
rt_shape = 5.3,
rt_rate = 1.4,
rt_scale = 0.1

)

simH_RT.opiPresent(
stim,
nextStim = NULL,
fpr = 0.03,
fnr = 0.01,
tt = 30,
notSeenToSeen = TRUE

)

simNo.opiPresent(stim, nextStim = NULL)

simYes.opiPresent(stim, nextStim = NULL)

opiPresent 29

Arguments

stim a list of class opiStaticStimulus, opiKineticStimulus, or opiTemporalStimulus
to be presented.

nextStim unused - included for compliance with OPI standard.

... Parameters specific to your chosen opi implementation

fpr false positive rate for OPI implementation "SimHenson"

fnr false negative rate for OPI implementation "SimHenson"

tt SOMETHING for OPI implementation "SimHenson"

criteria CRITERIA for OPI implementation "SimHenson"

rt_shape response time shape parameter for OPI implementation "SimHenson"

rt_rate response time rate parameter for OPI implementation "SimHenson"

rt_scale response time scale parameter for OPI implementation "SimHenson"

notSeenToSeen SOMETHING for OPI implementation "SimHensonRT"

Details

opiPresent is blocking in that it will not return until either a response is obtained, or at least the
responseWindow milliseconds has expired. (Note that more time might have expired.) Specifying
nextStim allows the implementing machine to use the time waiting for a response to stim to make
preparations for the next stimuli. (For example retargeting the projector or moving aperture and/or
filter wheels.) There is no guarantee that the next call to opiPresent will have nextStim as the
first argument; this could be checked by the machine specific implementations (but currently is not,
I think).

Also note that to allow for different parameters depending on the implementation chosen with
chooseOpi, every parameter MUST be named in a call to opiPresent.

Compass: opiPresent(stim,nextStim=NULL)

If the chosen OPI implementation is Compass, then nextStim is ignored. Note that the dB level
is rounded to the nearest integer.
If tracking is on, then this will block until the tracking is obtained, and the stimulus presented.

Display: Present a circle of radius stim$size and color stim$color at (stim$x,stim$y) for
stim$duration ms and wait for a keyboard or mouse response for stim$responseWindow ms.
stim$size, sitm$x and stim$y are in the same units as xlim and ylim as specified in opiInitialise.
If the chosen OPI implementation is Display, then nextStim is ignored.
Duration and response window are rounded to the nearest 5 ms.
Currently only implemented for opiStaticStimulus.

Daydream: If the chosen OPI implementation is Daydream, then nextStim is ignored.
Note that the dB level is rounded to the nearest cd/m2 that is in the lut specified in opiInitialise.
Currently uses the most simple algorithm for drawing a ’circle’ (ie not Bresenham’s).
Currently only implemented for opiStaticStimulus.

imo: DETAILS HERE

30 opiPresent

KowaAP7000: opiPresent(stim,nextStim=NULL)

If the chosen OPI implementation is KowaAP7000, then nextStim is ignored.

Octopus600: opiPresent(stim,nextStim=NULL)

If the chosen OPI implementation is Octopus600, then nextStim is ignored. If eyeControl is
non-zero, as set in opiInitialize, answer codes describing patient state may arise (see answer
field in the Value section).

Octopus900F310: opiPresent(stim,nextStim=NULL)

This functions as for the Octopus900, but responses are taken from the F310 Controller.
If the L button is pressed, seen is set to 1.
If the R button is pressed, seen is set to 2.
If no button is pressed within responseWindow, then seen is set to 0.

PhoneVR: If the chosen OPI implementation is PhoneVR, then nextStim is ignored. PhonVR

SimGaussian: opiPresent(stim,nextStim=NULL,fpr=0.03,fnr=0.01,tt=30)

If the chosen OPI implementation is SimGaussian, then the response to a stimuli is determined
by sampling from a Frequency-of-Seeing (FoS) curve (also known as the psychometric function)
with formula fpr+(1-fpr-fnr)*(1-pnorm(x,tt,simG.global.sd)), where x is the stimulus
value in Humphrey dB, and simG.global.sd is set with opiInitialize.

SimHenson: opiPresent(stim,nextStim=NULL,fpr=0.03,fnr=0.01,tt=30)

If the chosen OPI implementation is SimHenson, then the response to a stimuli is determined
by sampling from a Frequency-of-Seeing (FoS) curve (also known as the psychometric function)
with formula

fpr + (1− fpr − fnr)(1− pnorm(x, tt

, where x is the stimulus value in Humphrey dB, and pxVar is

min
(

simH.global.cap, eA×tt+B
)
.

The ceiling simH.global.cap is set with the call to opiInitialize, and A and B are from Table
1 in Henson et al (2000). Which values are used is determined by simH.type which is also set in
the call to opiInitialize.
Note that if the stimulus value is less than zero, then the Henson formula is not used. The proba-
bility of seeing is fpr.
opiPresent(stim,nextStim=NULL,fpr=0.03,fnr=0.01,tt=NULL,criteria=0.95,rt_shape=5.3,rt_rate=1.4,rt_scale=0.1)

For determinng seen/not-seen for kinetic, the first location (to a fidelity of 0.01 degrees) on the
path (it only works for single paths now) where the probability of seeing is equal to criteria is
found. If no such location exists, then the stimuli is not seen. The probability of seeing at each
location is determined using a frequency-of-seeing curve defined as a cumulative Gaussian with
parameters controlled by tt and opiInitialize. At each location along the path, the mean of the
FoS is taken from the tt function, which takes a distance-along-path (in degrees) as an argument,
and returns a dB value which is the static threshold at that distance along the path.
Function tt can return NA for not thresholds that are always not seen. At each location along
the path, the standard deviation of the FoS is sampled from a Gaussion with mean taken from the
formula of Henson et al (2000), as parametrised by opiInitialize, and standard deviation 0.25.

opiPresent 31

The location of a false positive response (for the total kinetic path) is sampled uniformly from the
start of the path to the ’seeing’ location, or the entire path if the stimuli is not seen.
Note that the false positive rate fpr and the false negative rate fnr are specified for the whole
path, and not for the individual static responses along the way.
The actual location returned for a seen response is the location where the probability of see-
ing equals criteria, plus a response time sampled from a Gamma distribution parameterised by
rt_shape and rt_rate and multiplied by rt_scale.That is: rgamma(1,shape=rt_shape,rate=rt_rate)
/ rt_scale.

SimHensonRT: opiPresent(stim,nextStim=NULL,fpr=0.03,fnr=0.01,tt=30,dist=stim$level
-tt)

For static stimuli, this function is the same as for SimHenson, but reaction times are determined
by sampling from rtData as passed to opiInitialize. The dist parameter is the distance of
the stimulus level from the true threshold, and should be in the same units as the Dist column
of rtData. The default is just the straight difference between the stimulus level and the true
threshold, but you might want it scaled somehow to match rtData.

SimNo:
opiPresent(stim,nextStim=NULL)

If the chosen OPI implementation is SimNo, then the response to a stimuli is always no, hence
opiPresent always returns err=NULL, seen=FALSE, and time=0.

SimYes: opiPresent(stim,nextStim=NULL)

If the chosen OPI implementation is SimYes, then the response to a stimuli is always yes, hence
opiPresent always returns err=NULL, seen=TRUE, and time=0.

Value

A list containing

err NULL if no error occurred, otherwise a machine-specific error message.
This should include errors when the specified size cannot be achieved by the
device (for example, in a projection system with an aperture wheel of predefined
sizes.) If stim is NULL, then err contains the status of the machine.

seen TRUE if a response was detected in the allowed responseWindow, FALSE other-
wise. (Note, see Octopus900F310 above).

time The time in milliseconds from the onset (or offset, machine-specific) of the pre-
sentation until the response from the subject if seen is TRUE.
If seen is FALSE, this value is undefined.
For kinetic perimetry on the O900, this value is unknown...

answer Only returned for Octopus600. Can be the following values:

• 0 = stimulus not seen;
• 1 = stimulus seen;
• 132 = Response button was pressed before stimulus presentation (Patient

needs a break - hold on examination);
• 36 = Eye is closed before stimulus presentation;

32 opiPresent

• 68 = Fixation lost before stimulus presentation (pupil center is out of green
window in video image);

• 260 = Forehead rest lost before stimulus presentation;
• 516 = Fast Eye movements before stimulus presentation;
• 258 = Forehead rest lost during stimulus presentation;
• 66 = Fixation lost during stimulus presentation (pupil center is out of green

window in video image);
• 34 = Eye was closed during stimulus presentation;
• 18 = Patient answer was too early (<=100ms after stimulus presentation) -

lucky punch;
• 514 = Fast Eye movements during stimulus presentation

pupilX Only returned for KowaAP7000 (in pixels) and an opiStaticStimulus or O900
(in degrees) and staic/kinetic if gazeFeed==1. x-coordinate of centre of pupil
during presentation.

pupilY Only returned for KowaAP7000 (in pixels) and an opiStaticStimulus or O900
(in degrees) and static/kinetic if gazeFeed==1. y-coordinate of centre of pupil
during presentation.

purkinjeX Only returned for KowaAP7000 and an opiStaticStimulus. x-coordinate of cen-
tre of Purkinje Image in pixels during presentation.

purkinjeY Only returned for KowaAP7000 and an opiStaticStimulus. y-coordinate of cen-
tre of Purkinje Image in pixels during presentation.

x Only returned for KowaAP7000 or Octopus900 and an opiKineticStimulus. x
coordinate of stimuli when button is pressed.

y Only returned for KowaAP7000 or Octopus900 and an opiKineticStimulus. y
coordinate of stimuli when button is pressed.

time_rec Only returned for Compass. Time since epoch that the opiPresent command was
received by the Compass in ms.

time_hw Only returned for Compass. Hardware time of button press or response window
expired (integer ms).
To get the hardware time that a presentation began, subtract responseWindow
from th (for aligning with fixation data returned by opiClose().

time_resp Only returned for Compass. Time since epoch that the response was received or
response window expired (in ms).

num_track_events

Only returned for Compass. The number of tracking events associated with this
presentation.

num_motor_fails

Only returned for Compass. The number of time the motor could not keep pace
with eye movements.

pupil_diam Only returned for Compass. The diameter of the pupil on milimetres on presen-
tation.

loc_x Only returned for Compass. The x location in pixels of the presentation on the
retinal image returned by opiInitialize.

opiPresent 33

loc_y Only returned for Compass. The y location in pixels of the presentation on the
retinal image returned by opiInitialize.

Compass: A list containing

• err0 all clear, >= 1 some error codes (eg cannot track, etc) (integer)
• seenFALSE for not seen, TRUE for seen (button pressed in response window)
• timeresponse time in ms (integer) since stimulus onset, -1 for not seen
• time_rectime since epoch when command was received at Compass (integer ms)
• time_prestime since epoch that stimulus was presented (integer ms)
• num_track_eventsnumber of tracking events that occurred during presentation (integer)
• num_motor_failsnumber of times motor could not follow fixation movement during presen-

tation (integer)
• pupil_diampupil diameter in mm (float)
• loc_xpixels integer, location in image of presentation (integer)
• loc_ypixels integer, location in image of presentation (integer)

References

David B. Henson, Shaila Chaudry, Paul H. Artes, E. Brian Faragher, and Alec Ansons. Response
Variability in the Visual Field: Comparison of Optic Neuritis, Glaucoma, Ocular Hypertension, and
Normal Eyes. Investigative Ophthalmology & Visual Science, February 2000, Vol. 41(2).

See Also

opiStaticStimulus, opiKineticStimulus, opiTemporalStimulus, chooseOpi, opiInitialize

Examples

Not run:
Display a spot
chooseOpi("Display")
if(!is.null(opiInitialize(width = 1680, height = 1050, ppi = 128, viewdist = 25)))
stop("opiInitialize failed")

opiSetBackground(lum = 50, color = "white", fixation = "Cross")

makeStim <- function(db) {
s <- list(x = 9, y = 9, level = dbTocd(db, 400), size = 1.72, color = "white",

duration = 1000, responseWindow = 1000)
class(s) <- "opiStaticStimulus"
return(s)

}
result <- opiPresent(makeStim(0))

opiClose()

End(Not run)
Stimulus is Size III white-on-white as in the HFA
makeStim <- function(db, n) {

s <- list(x=9, y=9, level=dbTocd(db, 10000/pi), size=0.43, color="white",
duration=200, responseWindow=1500)

34 opiQueryDevice

class(s) <- "opiStaticStimulus"
return(s)

}

chooseOpi("SimHenson")
if (!is.null(opiInitialize(type="C", cap=6)))

stop("opiInitialize failed")

result <- opiPresent(stim=makeStim(10,0), tt=30, fpr=0.15, fnr=0.01)

Will not work as 'stim' is not named
#result <- opiPresent(makeStim(10,0), tt=30, fpr=0.15, fnr=0.01)

if (!is.null(opiClose()))
warning("opiClose() failed")

Same but with simulated reaction times
chooseOpi("SimHensonRT")
data(RtSigmaUnits)
if (!is.null(opiInitialize(type="C", cap=6, rtData=RtSigmaUnits)))

stop("opiInitialize failed")

dist <- (10 - 30)/min(exp(-0.098 * 30 + 3.62), 6)
result <- opiPresent(stim=makeStim(10,0), tt=30, fpr=0.15, fnr=0.01, dist=dist)

if (!is.null(opiClose()))
warning("opiClose() failed")

opiQueryDevice Query device using OPI

Description

Generic function for getting details of the chosen OPI implementation that is set with chooseOpi()

Usage

opiQueryDevice(...)

compass.opiQueryDevice()

display.opiQueryDevice()

daydream.opiQueryDevice()

imo.opiQueryDevice()

kowaAP7000.opiQueryDevice()

octo600.opiQueryDevice()

opiQueryDevice 35

octo900.opiQueryDevice()

phoneVR.opiQueryDevice()

simG.opiQueryDevice()

Arguments

... Implementation specific parameters. See details.

Details

Compass: Return a list of all the constants used in the OPI Compass module.

Display: Returns all constants in .OpiEnv$Display as a list.

Display: Returns values in use by Display.

Daydream: Returns all constants in .OpiEnv$DayDream as a list.

Daydream: DETAILS

KowaAP7000: If the chosen OPI is KowaAP7000, then this function returns the current location
of the pupil. See the Value section for details.

KowaAP7000: Returns a list of 4 items:

• pupilX, the x-coordinate of the pupil position in pixels.
• pupilY, the y-coordinate of the pupil position in pixels.
• purkinjeX, the x-coordinate of the purkinje position in pixels.
• purkinjeY, the y-coordinate of the purkinje position in pixels.

It also prints a list of constants that OPI knows about for the AP-7000.

Octopus600: If the chosen OPI is Octopus600, then this function returns information about the
patient. See the Value section for details.

Octopus900: Prints defined constants in OPI package pertaining to Octopus 900.

PhoneVR: Returns all constants in .OpiEnv$PhoneVR as a list.

PhoneVR: Returns all constants in .OpiEnv$PhoneVR as a list.

Value

Returns a list that contains isSim and implementation-dependent data.

isSim is TRUE if the device is a simulation, or FALSE if the device is a physical machine.

Compass: A list containing constants and their valuse used in the OPI Compass module.

Octopus600: Returns a list of 10 items:

36 opiSetBackground

1. answerButton [0 = not pressed, 1 = pressed]
2. headSensor [0 = no forehead detected, 1 = forehead detected]
3. eyeLidClosureLeft [0 = eye is open, 1 = eye is closed]
4. eyeLidClosureRight [0 = eye is open, 1 = eye is closed]
5. fixationLostLeft [1 = eye pos lost, 0 = eye pos ok)
6. fixationLostRight [1 = eye pos lost, 0 = eye pos ok)
7. pupilPositionXLeft [in px]
8. pupilPositionYLeft [in px]
9. pupilPositionXRight [in px]

10. pupilPositionYRight [in px]

Octopus900: list containing isSim=FALSE.

See Also

chooseOpi

Examples

chooseOpi("SimGaussian")
if (!is.null(opiInitialize(sd=2)))

stop("opiInitialize failed")
print(opiQueryDevice())

opiSetBackground Set background using OPI

Description

Generic function for setting background of the chosen OPI implementation that is set with chooseOpi()

Usage

opiSetBackground(...)

compass.opiSetBackground(lum = NA, color = NA, fixation = NA, tracking_on = NA)

display.opiSetBackground(
lum = .OpiEnv$Display$background_lum,
color = .OpiEnv$Display$background_color,
fixation = .OpiEnv$Display$fixation,
fix_cx = .OpiEnv$Display$fix_cx,
fix_cy = .OpiEnv$Display$fix_cy,
fix_sx = .OpiEnv$Display$fix_sx,
fix_sy = .OpiEnv$Display$fix_sy,
fix_color = .OpiEnv$Display$fix_color

opiSetBackground 37

)

daydream.opiSetBackground(
eye,
lum = 10,
color = "white",
fixation = "None",
fix_cx = 0,
fix_cy = 0,
fix_sx = 2,
fix_sy = 2,
fix_color = "green"

)

imo.opiSetBackground(
bgl = 30,
tgl = 1,
tgldb = 25,
tglx = 0,
tgly = 0,
bgr = 30,
tgr = 1,
tgrdb = 25,
tgrx = 0,
tgry = 0

)

kowaAP7000.opiSetBackground(lum = NA, color = NA, fixation = NA)

octo600.opiSetBackground(
bgColor = NA,
fixType = NA,
fixColor = NA,
fixIntensity = 255

)

octo900.opiSetBackground(
lum = NA,
color = NA,
fixation = NA,
fixIntensity = NA

)

phoneVR.opiSetBackground(
bgeye,
bglum = 10,
bgcol = "white",
fixeye,

38 opiSetBackground

fixtype = "none",
fixcx = 0,
fixcy = 0,
fixsx = 2,
fixsy = 2,
fixtheta = 0,
fixlum = 100,
fixcol = "green"

)

simG.opiSetBackground(col, gridCol)

simH.opiSetBackground(col, gridCol)

simH_RT.opiSetBackground(col, gridCol)

simNo.opiSetBackground(col, gridCol)

simYes.opiSetBackground(col, gridCol)

Arguments

... Implementation specific parameters. See details.

lum Luminance level in cd/m^2

color Stimulus color

fixation fixation target

tracking_on TRUE for tracking on, FALSE for off

fix_cx fixation x position in degrees of visual angle. Default is 0

fix_cy fixation y position in degrees of visual angle. Default is 0

fix_sx fixation horizontal size in degrees of visual angle. Default is 1

fix_sy fixation vertical size in degrees of visual angle. Default is 1

fix_color fixation color

eye eye

bgl left eye background luminance in dB Default is 25

tgl left eye fixation target. Default is 1

tgldb left eye fixation target luminance in dB. Default is 20

tglx left eye fixation target x-position in degrees. Default is 0.

tgly left eye fixation target y-position in degrees. Default is 0.

bgr right eye background luminance in dB. Default is 25

tgr right eye target type. Default is 1

tgrdb right eye target luminance in dB. Default is 20

tgrx right eye fixation target x-position in degrees. Default is 0.

tgry right eye fixation target y-position in degrees. Default is 0.

opiSetBackground 39

bgColor Background color

fixType fixation type

fixColor fixation color

fixIntensity fixation point intensity

bgeye eye where to display the background, can be left, right, or both

bglum background luminance

bgcol background color. Either a color name that R can understand or a vector with R,
G, B, and alpha channels

fixeye eye for the fixation target, can be left, right, or both

fixtype the target of the fixation

fixcx fixation x position in degrees of visual angle. Default is 0

fixcy fixation y position in degrees of visual angle. Default is 0

fixsx fixation horizontal size in degrees of visual angle. Default is 1

fixsy fixation vertical size in degrees of visual angle. Default is 1

fixtheta angle of rotation of the fixation targert in degrees. Default is 0

fixlum fixation luminance

fixcol fixation color. Same specifications as background color

col DESCRIPTION for OPI implementations based on simulations

gridCol DESCRIPTION for OPI implementation based on simulations

Details

Compass: opiSetBackground(fixation=NA,tracking_on=NA)

• fixation=c(x,y,t) where
– x is one of -20, -6, -3, 0, 3, 6, 20 degrees.
– y is 0 degrees.
– t is 0 for a spot fixation marker at c(x,y), or 1 for a square centred on one of (-3,0),
(0,0), (+3,0).

• tracking_on is either 0 (tracking off) or 1 (tracking on).

Note: tracking will be relative to the PRL established with the fixation marker used at setup (call
to OPI-OPEN), so when tracking is on you should use the same fixation location as in the setup.

Display: opiSetBackground(TODO)

Daydream: opiSetBackground(eye,lum=10,color="white",fixation="Cross",fix_cx=0,fix_cy=0,fix_sx=2,fix_sy=2,fix_lum=10,fix_color="green")

• lum background luminance in cd/m2 is set to nearest grey value in lut from opiInitialize.
Default is 10 cd/m2

• color color of the background. It can be 'white' (default) or 'green'.
• fixation can only be 'Cross' at the moment.
• fix_cx, fix_cy fixation (x, y) position in degrees of visual angle
• fix_sx, fix_sy dimensions of fixation target in degrees of visual angle

40 opiSetBackground

• fix_lum luminance of the fixation target in cd/m2 is set to nearest grey value in lut from
opiInitialize. Default is 15 cd/m2

• fix_color color of the fixation target. It can be 'white' or 'green' (default).

imo: DETAILS

KowaAP7000:
opiSetBackground(lum,color,fixation)

lum and color are dependant for the Kowa AP-7000. A white background must be 10 cd/m2, and
a yellow background must be 100 cd/m2.
If lum is 10 and color is not set, then .OpiEnv$KowaAP7000$BACKGROUND_WHITE is assumed.
If lum is 100 and color is not set, then .OpiEnv$KowaAP7000$BACKGROUND_YELLOW is assumed.
If both lum and color is set, then lum is ignored (a warning will be generated
if lum is incompatible with color).
fixation is one of

• .OpiEnv$KowaAP7000$FIX_CENTER, fixation marker in the centre.
• .OpiEnv$KowaAP7000$FIX_CENTRE, fixation marker in the centre.
• .OpiEnv$KowaAP7000$FIX_AUX, fixation marker is ???.
• .OpiEnv$KowaAP7000$FIX_MACULA, fixation marker is a circle(?).
• .OpiEnv$KowaAP7000$FIX_AUX_LEFT, fixation marker is as for AUX but only lower left.

Octopus600:
This function has no effect.

Octopus900: opiSetBackground(lum=NA,color=NA,fixation=NA,fixIntensity=NA)

Allowable lum and color are defined in the .OpiEnv environment.

• lum is intensity of the background and can be one of
– .OpiEnv$O900$BG_OFF, which turns background off.
– .OpiEnv$O900$BG_1, background of 1.27 cd/m2.
– .OpiEnv$O900$BG_10, background of 10 cd/m2.
– .OpiEnv$O900$BG_100, background of 100 cd/m2.

• color can be one of the following choices.
– .OpiEnv$O900$MET_COL_WW for white-on-white
– .OpiEnv$O900$MET_COL_RW for red-on-white
– .OpiEnv$O900$MET_COL_BW for blue-on-white
– .OpiEnv$O900$MET_COL_WY for white-on-yellow
– .OpiEnv$O900$MET_COL_RY for red-on-yellow
– .OpiEnv$O900$MET_COL_BY for blue-on-yellow

• fixation is one of
– .OpiEnv$O900$FIX_CENTRE or .OpiEnv$O900$FIX_CENTER
– .OpiEnv$O900$FIX_CROSS

– .OpiEnv$O900$FIX_RING

• fixIntensity is a percentage between 0 and 100. 0 is off, 100 the brightest.

Note if you specify fixation you also have to specify fixIntensity.

opiSetBackground 41

PhoneVR: opiSetBackground(bgeye,bglum = 10,bgcol = "white",fixeye = eye,fixtype
= "Cross",fixlum = 100,fixcol = "green",fixcx = 0,fixcy = 0,fixsx = 2,fix_sy = 2)

• bgeye eye for the background. Can be "R", "L", or "B" for right, left, or both
• bglum background luminance in cd/m2 is set to nearest grey value in lut from opiInitialize.

Default is 10 cd/m2

• bgcol color of the background. Default is white
• fixeye eye for the background. Takes the same values as eye (default)
• fixtype fixation target
• fixcx, fixcy fixation (x, y) position in degrees of visual angle
• fixsx, fixsy dimensions of fixation target in degrees of visual angle
• fixtheta angle of rotation of the fixation target
• fixlum luminance of the fixation target. Default is 100 cd/m2

• fixcol color of the fixation target. Default is green

SimGaussian: opiSetBackground(col,gridCol)

col is the background color of the plot area used for displaying stimuli, and gridCol the color of
the gridlines. Note the plot area will only be displayed if opiInitialize is called with a valid
display argument.

SimHenson:
opiSetBackground(col,gridCol)

col is the background color of the plot area used for displaying stimuli, and gridCol the color of
the gridlines. Note the plot area will only be displayed if opiInitialize is called with a valid
display argument.

SimHensonRT: opiSetBackground(col,gridCol)

col is the background color of the plot area used for displaying stimuli, and gridCol the color of
the gridlines. Note the plot area will only be displayed if opiInitialize is called with a valid
display argument.

SimNo: DETAILS

SimYes: DETAILS

Value

Returns NULL if succeeded, otherwise an implementation-dependent error as follows.

Compass:
A list contining error which is NULL for success, or some string description for fail.

Display:
Changes the background and the fixation marker.

Daydream:
DETAILS

42 opiSetBackground

imo:
DETAILS

KowaAP7000:
DETAILS

Octopus600:
DETAILS

Octopus900:
-1 indicates opiInitialize has not been called.
-2 indicates could not set the background color.
-3 indicates could not set the fixation marker.
-4 indicates that all input parameters were NA.

PhoneVR:
Sets background for left, right, or both eyes in phoneVR

See Also

chooseOpi

Examples

Not run:
Set up a Display and wait for a key press in it.
chooseOpi("Display")
if (!is.null(opiInitialize(width = 1680, height = 1050, ppi = 128, viewdist = 25)))
stop("opiInitialize failed")

opiSetBackground()
opiSetBackground(lum = 100, color = "white", fixation = "Circle")
opiSetBackground(lum = 100, color = "white", fixation = "Cross", fix_color = "red",

fix_cx = 2, fix_cy = 5, fix_sx = 1, fix_sy = 2)
opiClose()

End(Not run)
Not run:

chooseOpi("Octopus900")
oi <- opiInitialize(eyeSuiteJarLocation="c:/EyeSuite/",

eyeSuiteSettingsLocation="c:/Documents and Settings/All Users/Haag-Streit/",
eye="left")

if(!is.null(oi))
stop("opiInitialize failed")

if(!is.null(opiSetBackground(fixation=.OpiEnv$O900$FIX_CENTRE)))
stop("opiSetBackground failed")

if(!is.null(opiSetBackground(fixation=.OpiEnv$O900$FIX_RING, fixIntensity=0)))
stop("opiSetBackground failed")

if(!is.null(opiSetBackground(color=.OpiEnv$O900$MET_COL_BY)))
stop("opiSetBackground failed")

if(!is.null(opiSetBackground(lum=.OpiEnv$O900$BG_100, color=.OpiEnv$O900$MET_COL_RW)))

opiStaticStimulus 43

stop("opiSetBackground failed")
opiClose()

End(Not run)
chooseOpi("SimGaussian")
if (!is.null(opiInitialize(sd=2)))

stop("opiInitialize failed")
if (!is.null(opiSetBackground(col="white",gridCol="grey")))

stop("opiSetBackground failed, which is very surprising!")

opiStaticStimulus Stimulus parameter list

Description

List containing stimulus parameters with an S3 class attribute of opiStaticStimulus

Usage

"See details"

Details

The list should be of class opiStaticStimulus and contain the following elements.

• x coordinate of the center of stimulus in degrees relative to fixation

• y coordinate of the center of stimulus in degrees relative to fixation

• image an image to display in a machine specific format

• level stimulus level in cd/m2 (ignored if !is.na(image))

• size diameter of target in degrees, or scaling factor for image if specified

• color machine specific stimulus color settings (ignored if !is.na(image))

• duration total stimulus duration in milliseconds maximum responseWindow time (>= 0) in
milliseconds to wait for a response from the onset of the stimulus presentation

• ... machine-specific parameters

SimHenson and SimGaussian: Only level is used.
Duration and location are ignored, color is assumed "white" and size is assumed to be 26/60
(Goldmann III).

Octopus 900: x and y are in degrees, with precision to one decimal place recognised.
image is not possible on an Octopus 900.
level is in cd/m2, and is rounded to the nearest one tenth of a dB for display.
color is ignored. Use opiSetBackground() to alter stimulus color
checkFixationOK is a function that takes the return value from opiPresent and returns either
TRUE, indicating that fixation was good for the presentation; or FALSE, indicating that fixation was
not good for the presentation.

44 opiTemporalStimulus

Octopus 900 F310 Controller: As for the Octopus 900, but a responseWindow of -1 means that
the Octopus 900 server will wait until either the L and R button is pressed in the controller until
returning.

Kowa AP 7000: x and y are in degrees. (precision?)
image is not possible on an Kowa AP 7000.
level are in cd/m2 in the range 0.03 to 3183, nearest one tenth of a dB for display.
size is in degrees, but is rounded to the nearest Goldmann Size I..V for display.
color one of .OpiEnv$KowaAP7000$COLOR_WHITE, .OpiEnv$KowaAP7000$COLOR_GREEN, .OpiEnv$KowaAP7000$COLOR_BLUE,
and .OpiEnv$KowaAP7000$COLOR_RED.

imo: x, y, level, size, and color are not used.
image is a list of two matrices: the first for the right eye, the second for the left. Each image is a
1080x1080 matrix with each element in the range 0 to 80, which maps onto 0dB to 40dB in steps
of 0.5dB. Thus 0 is 0dB, 3283.048 cd/m2; 1 is 0.5dB; and 80 is 40dB, 10 cd / m2

tracking is TRUE if auto image placement to keeppupil centred is used, or FALSE to turn off imo
auto-image placement to keep centred on pupil.

Compass: x and y are in degrees (floating point) (range [-30,30]).
level is in cd/m2, and is rounded to the nearest whole dB for display (range 0 to 50). 0dB is
10000aps.
responseWindow is in millliseconds (range 0 to 2680). Parameter duration is assumed to be
200ms, size is assumed to be Goldmann III (0.43), and color is assumed to be white.

See Also

opiSetBackground, opiKineticStimulus, opiTemporalStimulus

Examples

stim <- list(x=9, y=9, image=NA, 314, size=0.43, color="white",
duration=200, responseWindow=1500)

class(stim) <- "opiStaticStimulus"

opiTemporalStimulus Stimulus parameter list

Description

List containing stimulus parameters with an S3 class attribute of opiTemporalStimulus

Usage

"See details"

opiTemporalStimulus 45

Details

The list should be of class opiTemporalStimulus and contain the following elements.

• x coordinate of the center of stimulus in degrees relative to fixation

• y coordinate of the center of stimulus in degrees relative to fixation

• image an image to display in a machine specific format

• lut if is.na(image) then this is a lookup table (vector) for stimulus level at each step of rate
Hz in cd/m2. If image is specified, then this is a list of images, in the same format as image,
that is stepped through at rate Hz.

• size diameter of target in degrees, or scaling factor for image if specified

• color machine specific stimulus color settings (ignored if !is.na(image))

• rate frequency with which lut is processed in Hz

• durationtotal length of stimulus flash in milliseconds. There is no guarantee that duration
%% length(lut)/rate == 0. That is, the onus is on the user to ensure the duration is a multiple
of the period of the stimuli.

• responseWindow maximum time (>= 0) in milliseconds to wait for a response from the onset
of the stimulus presentation

• ... machine specific parameters

Octopus 900: x and y are in degrees, with precision to one decimal place recognised.
image is not possible on an Octopus 900.
lut is not possible on an Octopus 900. Stimulus is at 0 dB.
rate is in Hz, with precision to one decimal place recognised.
color is ignored. Use opiSetBackground() to alter stimulus color.

Kowa AP-7000: Not supported.

Compass: Not implemented.

See Also

opiSetBackground, opiStaticStimulus, opiKineticStimulus

Examples

A Size III flickering with a 10Hz square wave at location (7,7) with luminance
10 dB (HFA)
stim <- list(x=7, y=7, size=0.43, color="white",

rate=20, # one lut step per 50 ms
lut=c(0,318), # so one full lut per 100 ms == 10Hz
duration=400, # and 4 cycles per stimulus
responseWindow=1500)

class(stim) <- "opiTemporalStimulus"

46 RtDbUnits

pixTodeg Convert pixels to degrees for machine ’machine’

Description

Convert pixels to degrees for machine ’machine’

Usage

pixTodeg(xy, machine = "compass")

degTopix(xy, machine = "compass")

Arguments

xy a 2 element vector c(x,y) where x and y are in pixels

machine "compass" or ...?

Value

xy converted to degrees of visual field with the usual conventions or NA if machine is unknown

xy converted to pixels (top-left is (0,0)) for the machine or NA if machine is unknown

Examples

pixTodeg(c(1000, 200), machine="compass") # c(1.290323, 24.516129) degrees
pixTodeg(c(1920/2, 1920/2)) # c(0,0) degrees
degTopix(c(0, 0), machine="compass") # c(960, 960) pixels
degTopix(c(-15, 2)) # c(495, 898) pixels

RtDbUnits Response times to white-on-white Goldmann Size III targets for 12
subjects in dB units

Description

Response times to white-on-white Goldmann Size III targets for 12 subjects. The second column is
the distance of the stimuli from measured threshold in HFA dB units. The threshold was determined
by post-hoc fit of FoS curves to the data.

Usage

RtDbUnits

RtSigmaUnits 47

Format

An object of class data.frame with 30620 rows and 3 columns.

Details

A data frame with 30620 observations on the following 3 variables.

Rt Reaction time in ms.

Dist Distance of stimuli from threshold in dB.

Person Identifier of each subject.

References

A.M. McKendrick, J. Denniss and A. Turpin. "Response times across the visual field: empirical
observations and application to threshold determination". Vision Research 101 2014.

See Also

RtSigmaUnits

RtSigmaUnits Response times to white-on-white Goldmann Size III targets for 12
subjects in sigma units

Description

Response times to white-on-white Goldmann Size III targets for 12 subjects. The second column is
the distance of the stimuli from measured threshold in ’sigma’ units. The threshold was determined
by post-hoc fit of a cummulative gaussian FoS curve to the data for each location and subject. Sigma
is the standard deviation of the fitted FoS.

Usage

RtSigmaUnits

Format

An object of class data.frame with 30620 rows and 3 columns.

Details

A data frame with 30620 observations on the following 3 variables.

Rt Reaction time in ms.

Dist Distance of stimuli from threshold in sigma units.

Person Identifier of each subject.

48 ZEST

References

A.M. McKendrick, J. Denniss and A. Turpin. "Response times across the visual field: empirical
observations and application to threshold determination". Vision Research 101 2014.

See Also

RtDbUnits

ZEST ZEST

Description

An implementation of the Bayesian test procedures of King-Smith et al. and Watson and Pelli.
Note that we use the term pdf throughout as in the original paper, even though they are discrete
probability functions in this implementation.

Usage

ZEST(
domain = 0:40,
prior = rep(1/length(domain), length(domain)),
likelihood = sapply(domain, function(tt) 0.03 + (1 - 0.03 - 0.03) * (1 -
pnorm(domain, tt, 1))),

stopType = "S",
stopValue = 1.5,
minStimulus = head(domain, 1),
maxStimulus = tail(domain, 1),
maxSeenLimit = 2,
minNotSeenLimit = 2,
maxPresentations = 100,
minInterStimInterval = NA,
maxInterStimInterval = NA,
verbose = 0,
makeStim,
stimChoice = "mean",
...

)

ZEST.start(
domain = 0:40,
prior = rep(1/length(domain), length(domain)),
likelihood = sapply(domain, function(tt) 0.03 + (1 - 0.03 - 0.03) * (1 -
pnorm(domain, tt, 1))),

stopType = "S",
stopValue = 1.5,
minStimulus = head(domain, 1),

ZEST 49

maxStimulus = tail(domain, 1),
maxSeenLimit = 2,
minNotSeenLimit = 2,
maxPresentations = 100,
makeStim,
stimChoice = "mean",
...

)

ZEST.step(state, nextStim = NULL)

ZEST.stop(state)

ZEST.final(state)

Arguments

domain Vector of values over which pdf is kept.

prior Starting probability distribution over domain. Same length as domain.

likelihood Matrix where likelihood[s,t] is likelihood of seeing s given t is the true
threshold. That is, Pr(s|t) where s and t are indexes into domain.

stopType N, for number of presentations; S, for standard deviation of the pdf; and H, for
the entropy of the pdf.

stopValue Value for number of presentations (stopType=N), standard deviation (stopType=S)
or Entropy (stopType=H).

minStimulus The smallest stimuli that will be presented. Could be different from domain[1].

maxStimulus The largest stimuli that will be presented. Could be different from tail(domain,1).

maxSeenLimit Will terminate if maxStimulus value is seen this many times.
minNotSeenLimit

Will terminate if minStimulus value is not seen this many times.
maxPresentations

Maximum number of presentations regarless of stopType.
minInterStimInterval

If both minInterStimInterval and maxInterStimInterval are not NA, then
between each stimuli there is a random wait period drawn uniformly between
minInterStimInterval and maxInterStimInterval.

maxInterStimInterval

minInterStimInterval.

verbose verbose=0 does nothing, verbose=1 stores pdfs for returning, and verbose=2
stores pdfs and also prints each presentaion.

makeStim A function that takes a dB value and numPresentations and returns an OPI
datatype ready for passing to opiPresent. See examples.

stimChoice A true ZEST procedure uses the "mean" of the current pdf as the stimulus, but
"median" and "mode" (as used in a QUEST procedure) are provided for your
enjoyment.

50 ZEST

... Extra parameters to pass to the opiPresent function

state Current state of the ZEST returned by ZEST.start and ZEST.step.

nextStim A valid object for opiPresent to use as its nextStim.

Details

This is an implementation of King-Smith et al.’s ZEST procedure and Watson and Pelli’s QUEST
procedure. All presentaions are rounded to an element of the supplied domain.

Note this function will repeatedly call opiPresent for a stimulus until opiPresent returns NULL
(ie no error occured).

The checkFixationOK function is called (if present in stim made from makeStim) after each pre-
sentation, and if it returns FALSE, the pdf for that location is not changed (ie the presentation is
ignored), but the stim, number of presentations etc is recorded in the state.

If more than one ZEST is to be interleaved (for example, testing multiple locations), then the
ZEST.start, ZEST.step, ZEST.stop and ZEST.final calls can maintain the state of the ZEST
after each presentation, and should be used. If only a single ZEST is required, then the simpler
ZEST can be used, which is a wrapper for the four functions that maintain state. See examples
below.

Value

Single location: ZEST returns a list containing

• npres: Total number of presentations used.
• respSeq:Response sequence stored as a matrix: row 1 is dB values of stimuli, row 2 is 1/0 for

seen/not-seen, row 3 is fixated 1/0 (always 1 if checkFixationOK not present in stim objects
returned from makeStim).

• pdfs: If verbose is bigger than 0, then this is a list of the pdfs used for each presentation,
otherwise NULL.

• final The mean/median/mode of the final pdf, depending on stimChoice, which is the deter-
mined threshold.

• opiRespA list of responses received from each successful call to opiPresent within ZEST.

Multilple locations: ZEST.start returns a list that can be passed to ZEST.step, ZEST.stop, and
ZEST.final. It represents the state of a ZEST at a single location at a point in time and contains
the following.

• name: ZEST
• A copy of all of the parameters supplied to ZEST.start: domain, likelihood, stopType,
stopValue, minStimulus, maxStimulus, maxSeenLimit, minNotSeenLimit, maxPresentations,
makeStim, stimChoice, currSeenLimit, currNotSeenLimit, and opiParams.

• pdf: Current pdf: vector of probabilities the same length as domain.
• numPresentations: The number of times ZEST.step has been called on this state.
• stimuli: A vector containing the stimuli used at each call of ZEST.step.
• responses: A vector containing the responses received at each call of ZEST.step.
• responseTimes: A vector containing the response times received at each call of ZEST.step.
• fixated: A vector containing TRUE/FALSE if fixation was OK according to checkFixationOK

for each call of ZEST.step (defaults to TRUE if checkFixationOK not present).

ZEST 51

• opiRespA list of responses received from each call to opiPresent within ZEST.step.

ZEST.step returns a list containing

• state: The new state after presenting a stimuli and getting a response.
• resp: The return from the opiPresent call that was made.

ZEST.stop returns TRUE if the ZEST has reached its stopping criteria, and FALSE otherwise.
ZEST.final returns an estimate of threshold based on state. If state$stimChoice is mean then
the mean is returned. If state$stimChoice is mode then the mode is returned. If state$stimChoice
is median then the median is returned.

References

P.E. King-Smith, S.S. Grigsny, A.J. Vingrys, S.C. Benes, and A. Supowit. "Efficient and Unbiased
Modifications of the QUEST Threshold Method: Theory, Simulations, Experimental Evaluation
and Practical Implementation", Vision Research 34(7) 1994. Pages 885-912.

A.B. Watson and D.G. Pelli. "QUEST: A Bayesian adaptive psychophysical method", Perception
and Psychophysics 33 1983. Pages 113-l20.

A. Turpin, P.H. Artes and A.M. McKendrick "The Open Perimetry Interface: An enabling tool for
clinical visual psychophysics", Journal of Vision 12(11) 2012.

See Also

dbTocd, opiPresent

Examples

chooseOpi("SimHenson")
if(!is.null(opiInitialize(type="C", cap=6)))

stop("opiInitialize failed")

##
This section is for single location ZESTs
##
Stimulus is Size III white-on-white as in the HFA
makeStim <- function(db, n) {

s <- list(x=9, y=9, level=dbTocd(db), size=0.43, color="white",
duration=200, responseWindow=1500, checkFixationOK=NULL)

class(s) <- "opiStaticStimulus"
return(s)

}

repp <- function(...) sapply(1:50, function(i) ZEST(makeStim=makeStim, ...))
a <- repp(stopType="H", stopValue= 3, verbose=0, tt=30, fpr=0.03)
b <- repp(stopType="S", stopValue=1.5, verbose=0, tt=30, fpr=0.03)
c <- repp(stopType="S", stopValue=2.0, verbose=0, tt=30, fpr=0.03)
d <- repp(stopType="N", stopValue= 50, verbose=0, tt=30, fpr=0.03)
e <- repp(prior=dnorm(0:40,m=0,s=5), tt=30, fpr=0.03)
f <- repp(prior=dnorm(0:40,m=10,s=5), tt=30, fpr=0.03)
g <- repp(prior=dnorm(0:40,m=20,s=5), tt=30, fpr=0.03)
h <- repp(prior=dnorm(0:40,m=30,s=5), tt=30, fpr=0.03)

52 ZEST

layout(matrix(1:2,1,2))
boxplot(lapply(list(a,b,c,d,e,f,g,h), function(x) unlist(x["final",])))
boxplot(lapply(list(a,b,c,d,e,f,g,h), function(x) unlist(x["npres",])))

##
This section is for multiple ZESTs
##
makeStimHelper <- function(db,n, x, y) { # returns a function of (db,n)

ff <- function(db, n) db+n
body(ff) <- substitute({
s <- list(x=x, y=y, level=dbTocd(db), size=0.43, color="white",

duration=200, responseWindow=1500, checkFixationOK=NULL)
class(s) <- "opiStaticStimulus"
return(s)

}, list(x=x,y=y))
return(ff)

}

List of (x, y, true threshold) triples
locations <- list(c(9,9,30), c(-9,-9,32), c(9,-9,31), c(-9,9,33))

Setup starting states for each location
states <- lapply(locations, function(loc) {

ZEST.start(
domain=-5:45,
minStimulus=0,
maxStimulus=40,
makeStim=makeStimHelper(db,n,loc[1],loc[2]),
stopType="S", stopValue= 1.5, tt=loc[3], fpr=0.03, fnr=0.01)})

Loop through until all states are "stop"
while(!all(st <- unlist(lapply(states, ZEST.stop)))) {

i <- which(!st) # choose a random,
i <- i[runif(1, min=1, max=length(i))] # unstopped state
r <- ZEST.step(states[[i]]) # step it
states[[i]] <- r$state # update the states

}

finals <- lapply(states, ZEST.final) # get final estimates of threshold
for(i in 1:length(locations)) {

#cat(sprintf("Location (%+2d,%+2d) ",locations[[i]][1], locations[[i]][2]))
#cat(sprintf("has threshold %4.2f\n", finals[[i]]))

}

if (!is.null(opiClose()))
warning("opiClose() failed")

Index

∗ datasets
opi.implementations, 16

∗ dataset
RtDbUnits, 46
RtSigmaUnits, 47

cdTodb (dbTocd), 5
chooseOPI (chooseOpi), 3
chooseOpi, 3, 16, 18, 25, 33, 36, 42
compass.opiClose (opiClose), 17
compass.opiInitialize (opiInitialize),

19
compass.opiPresent (opiPresent), 27
compass.opiQueryDevice

(opiQueryDevice), 34
compass.opiSetBackground

(opiSetBackground), 36

daydream.opiClose (opiClose), 17
daydream.opiInitialize (opiInitialize),

19
daydream.opiPresent (opiPresent), 27
daydream.opiQueryDevice

(opiQueryDevice), 34
daydream.opiSetBackground

(opiSetBackground), 36
dbTocd, 5, 7, 10, 14, 51
degTopix (pixTodeg), 46
display.opiClose (opiClose), 17
display.opiInitialize (opiInitialize),

19
display.opiPresent (opiPresent), 27
display.opiQueryDevice

(opiQueryDevice), 34
display.opiSetBackground

(opiSetBackground), 36

fourTwo.final (fourTwo.start), 6
fourTwo.start, 6, 10
fourTwo.step (fourTwo.start), 6

fourTwo.stop (fourTwo.start), 6
FT, 7, 8

imo.opiClose (opiClose), 17
imo.opiInitialize (opiInitialize), 19
imo.opiPresent (opiPresent), 27
imo.opiQueryDevice (opiQueryDevice), 34
imo.opiSetBackground

(opiSetBackground), 36

kowaAP7000.opiClose (opiClose), 17
kowaAP7000.opiInitialize

(opiInitialize), 19
kowaAP7000.opiPresent (opiPresent), 27
kowaAP7000.opiQueryDevice

(opiQueryDevice), 34
kowaAP7000.opiSetBackground

(opiSetBackground), 36

MOCS, 12

octo600.opiClose (opiClose), 17
octo600.opiInitialize (opiInitialize),

19
octo600.opiPresent (opiPresent), 27
octo600.opiQueryDevice

(opiQueryDevice), 34
octo600.opiSetBackground

(opiSetBackground), 36
octo900.opiClose (opiClose), 17
octo900.opiInitialize (opiInitialize),

19
octo900.opiPresentF310 (opiPresent), 27
octo900.opiQueryDevice

(opiQueryDevice), 34
octo900.opiSetBackground

(opiSetBackground), 36
OPI (OPI-package), 2
OPI-package, 2
opi.implementations, 16

53

54 INDEX

opiClose, 17, 25
opiDistributor (opi.implementations), 16
opiGetParams, 18
opiInitialise, 29
opiInitialise (opiInitialize), 19
opiInitialize, 19, 33
opiKineticStimulus, 26, 29, 33, 44, 45
opiPresent, 7, 10, 14, 25, 27, 29, 31, 51
opiQueryDevice, 34
opiSetBackground, 25, 27, 36, 44, 45
opiStaticStimulus, 27, 29, 33, 43, 45
opiTemporalStimulus, 27, 29, 33, 44, 44

phoneVR.opiClose (opiClose), 17
phoneVR.opiInitialize (opiInitialize),

19
phoneVR.opiPresent (opiPresent), 27
phoneVR.opiQueryDevice

(opiQueryDevice), 34
phoneVR.opiSetBackground

(opiSetBackground), 36
pixTodeg, 46

RtDbUnits, 46, 48
RtSigmaUnits, 47, 47

simG.opiClose (opiClose), 17
simG.opiInitialize (opiInitialize), 19
simG.opiPresent (opiPresent), 27
simG.opiQueryDevice (opiQueryDevice), 34
simG.opiSetBackground

(opiSetBackground), 36
simH.opiInitialize (opiInitialize), 19
simH.opiPresent (opiPresent), 27
simH.opiSetBackground

(opiSetBackground), 36
simH_RT.opiInitialize (opiInitialize),

19
simH_RT.opiPresent (opiPresent), 27
simH_RT.opiSetBackground

(opiSetBackground), 36
simNo.opiPresent (opiPresent), 27
simNo.opiSetBackground

(opiSetBackground), 36
simYes.opiPresent (opiPresent), 27
simYes.opiSetBackground

(opiSetBackground), 36

ZEST, 48

	OPI-package
	chooseOpi
	dbTocd
	fourTwo.start
	FT
	MOCS
	opi.implementations
	opiClose
	opiGetParams
	opiInitialize
	opiKineticStimulus
	opiPresent
	opiQueryDevice
	opiSetBackground
	opiStaticStimulus
	opiTemporalStimulus
	pixTodeg
	RtDbUnits
	RtSigmaUnits
	ZEST
	Index

