Package 'Opportunistic'

June 27, 2017

June 27, 2017
Type Package
Title Routing Distribution, Broadcasts, Transmissions and Receptions in an Opportunistic Network
Version 1.2
Date 2017-06-27
Author Christian E. Galarza, Jonathan M. Olate
Maintainer Christian E. Galarza <cgalarza88@gmail.com></cgalarza88@gmail.com>
Description Computes the routing distribution, the expectation of the number of broadcasts, transmissions and receptions considering an Opportunistic transport model. It provides theoretical results and also estimated values based on Monte Carlo simulations.
License GPL (>= 2)
Suggests hopbyhop, endtoend
NeedsCompilation no
Repository CRAN
Date/Publication 2017-06-27 21:44:06 UTC
R topics documented:
Expected
Index 5
Expected Theoretical broadcasts/transmissions/receptions for an Opportunistic model

Description

This function computes the probability of success and the expected values of the number of broadcasts, transmissions and receptions for an Opportunistic model.

2 MonteCarlo

Usage

```
Expected(p)
```

Arguments

p vector of probabilities of length N where N represents the number of hops

Value

A matrix with the probabilities and expected values for an Opportunistic model for all hops sizes $\leq N$

Author(s)

Christian E. Galarza and Jonathan M. Olate

References

Biswas, S., & Morris, R. (2004). Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Computer Communication Review, 34(1), 69-74.

See Also

```
routes, MonteCarlo
```

Examples

```
#An N=3 Opportunistic system with probabilities p = c(0.0,0.4,0.1) res1 = Expected(p=c(0.9,0.4,0.1)) res1
```

MonteCarlo

Monte Carlo broadcasts/transmissions/receptions for an Opportunistic model

Description

This function estimates via Monte Carlo the probability of success and the expected values of the number of broadcasts, transmissions and receptions for an Opportunistic model.

Usage

```
MonteCarlo(p, M = 10^4)
```

Arguments

p vector of probabilities of length N where N represents the number of hops

M Total number of Monte Carlo simulations

routes 3

Details

N is computed from p length. M is code10⁴ by default.

Value

A vector with the success probability and expected values (broadcast, transmissions and receptions) for an N Opportunistic model.

Author(s)

Christian E. Galarza and Jonathan M. Olate

References

Biswas, S., & Morris, R. (2004). Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Computer Communication Review, 34(1), 69-74.

See Also

```
routes, Expected
```

Examples

```
#Monte Carlo simulation for an N=3 Opportunistic system with probabilities \#p = c(0.0,0.4,0.1) res2 = MonteCarlo(p=c(0.9,0.4,0.1),M=10^4) res2
```

routes

Routing distribution for an Opportunistic network

Description

It provides the different possible routes, their frequency as well as their respective probabilities when considering uncertain probabilities lying on a interval p +- delta.

Usage

```
routes(p, delta = 0)
```

Arguments

p vector of probabilities of length N where N represents the number of hops delta Delta value when considering uncertain probabilities. The interval is of the type p+- delta.

4 routes

Details

By default, delta is considered to be zero disregarding uncertainty.

Value

A data frame containing the routes, frequencies, and respective probabilities.

Author(s)

Christian E. Galarza and Jonathan M. Olate

See Also

Expected, MonteCarlo

Examples

Index

```
*Topic Opportunistic
    Expected, 1
    MonteCarlo, 2
    routes, 3
*Topic boradcast
    Expected, 1
    MonteCarlo, 2
    routes, 3
*Topic network
    Expected, 1
    MonteCarlo, 2
    routes, 3
*Topic receptions
    Expected, 1
    MonteCarlo, 2
    routes, 3
*Topic routing
    routes, 3
*Topic transmissions
    Expected, 1
    MonteCarlo, 2
    routes, 3
Expected, 1, 3, 4
{\tt MonteCarlo}, {\tt 2}, {\tt 2}, {\tt 4}
routes, 2, 3, 3
```