Package 'PASSED'

February 17, 2022
Title Calculate Power and Sample Size for Two Sample Mean Tests
Version 1.2-1
Date 2022-02-17
Description Power calculations are a critical component of any research study to determine the minimum sample size necessary to detect differences between multiple groups. Here we present an 'R' package, 'PASSED', that performs power and sample size calculations for the test of two-sample means or ratios with data following beta, gamma (Chang et al. (2011), <doi:10.1007 s00180-010-0209-1="">), normal, Poisson (Gu et al. (2008), <doi:10.1002 bimj.200710403="">), binomial, geometric, and negative binomial (Zhu and Lakkis (2014), <doi:10.1002 sim.5947="">) distributions.</doi:10.1002></doi:10.1002></doi:10.1007>
Depends R (>= 4.0)
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.1
Imports betareg, stats, rootSolve
Suggests knitr, rmarkdown, MKmisc
NeedsCompilation no
Author Jinpu Li [aut, cre], Ryan Knigge [aut], Emily Leary [aut]
Maintainer Jinpu Li <lijinp@health.missouri.edu></lijinp@health.missouri.edu>
Repository CRAN
Date/Publication 2022-02-17 22:12:04 UTC
R topics documented:
power_Beta power_Binomial power_Gamma power_Geometric power_NegativeBinomial power_Normal power_Poisson

power_Beta

Index 11

power_Beta	Power Calculations for Test of Two Beta Means

Description

Compute the power for a test of two sample means with beta distributions, or determine the minimum sample size to obtain a target power.

Usage

```
power_Beta(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, sd1 = NULL, mu2 = NULL, equal.sample = TRUE,
trials = 100, equal.precision = TRUE, sd2 = NULL,
link.type = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"))
```

Arguments

n1	sample size in group 1, or sample size in each group if equal.sample = TRUE
n2	sample size in group 2
power	power of test (1 minus Type II error probability)
sig.level	significance level (Type I error probability)
mu1	sample mean of group 1
sd1	standard deviation for group 1
mu2	sample mean of group 2
equal.sample	equal sample sizes for two groups, see details
trials	number of trials in simulation
equal.precision	n
	equal dispersion parameter assumption in simulation
sd2	standard deviation for group 2. Only applicable when equal.precision = \ensuremath{FALSE}
link.type	type of link used in the beta regression, see details

Details

Exactly one of the parameters n1, n2 and power must be passed as NULL, and that parameter is determined from the others.

This function allows you to set the number of trials in the simulation to control the result accuracy, and type of link used in the beta regression. You can choose one of the following: "logit", "probit", "cloglog", "cauchit", "log", "loglog".

power_Binomial 3

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Examples

```
# calculate power
power_Beta(mu1 = 0.5, mu2 = 0.80, sd1 = 0.25, n1 = 60)
# calculate sample size for both groups
power_Beta(mu1 = 0.5, mu2 = 0.80, sd1 = 0.25, power=0.8)
```

power_Binomial

Power Calculations for Two-Sample Test for Proportions

Description

Compute power of test, or determine parameters to obtain target power for equal and unequal sample sizes.

Usage

```
power_Binomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
p1 = 0.5, p2 = 0.5, equal.sample = TRUE, alternative = c("two.sided", "one.sided"))
```

Arguments

n1	sample size in group 1, or sample size in each group if equal.sample = TRUE
n2	sample size in group 2
power	power of test (1 minus Type II error probability)
sig.level	significance level (Type I error probability)
p1	probability in group 1
p2	probability in group 2
equal.sample	equal sample sizes for two groups, see details
alternative	one- or two-sided test

Details

Exactly one of the parameters n1, n2, p1, p2, power, and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that p1, p2, sig.level have non-NULL defaults, so NULL must be explicitly expressed if you want to compute them.

If equal.sample = TRUE is used, N in output will denote the number in each group.

power_Gamma

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

Examples

```
# calculate power, equal sizes
power_Binomial(n1 = 100, p1 = 0.5, p2 = 0.7)
# calculate power, unequal sizes
power_Binomial(n1 = 150, n2 = 100, p1 = 0.5, p2 = 0.7)
# calculate n2
power_Binomial(n1 = 100, p1 = 0.5, p2 = 0.7, power = 0.9, equal.sample = FALSE)
```

power_Gamma

Power Calculations for Test of Two Gamma Means

Description

Compute the power for a test of two sample means with Gamma distributions, or determine parameters to obtain a target power.

Usage

```
power_Gamma(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, gmu1 = NULL, gmu2 = NULL, trials = 100,
M = 10000, equal.sample = TRUE, equal.shape = NULL, trace = FALSE)
```

Arguments

n1	sample size in group 1, or sample size in each group if equal.sample = TRUE
n2	sample size in group 2
power	power of test (1 minus Type II error probability)
sig.level	significance level (Type I error probability)
mu1	arithmetic mean of group 1
mu2	arithmetic mean of group 2
gmu1	geometric mean of group 1
gmu2	geometric mean of group 2
trials	number of trials in simulation
М	number of simulations used in CAT method, see Chang (2011)
equal.sample	equal sample sizes for two groups, see details
equal.shape	assume the shape parameters are equal for two groups, see details
trace	if positive, sample size and power are printed during the running of each simulation

power_Geometric 5

Details

Exactly one of the parameters n1, n2, and power must be passed as NULL, and that parameter is determined from the others. Notice that sig.level has non-NULL defaults, so NULL must be explicitly passed if you want to compute it.

If equal. sample = TRUE is used, N in output will denote the number in each group.

The equal shape parameter assumption will be tested automatically; otherwise it could be set manually with equal.shape.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method element.

References

Chang et al. (2011). Testing the equality of several gamma means: a parametric bootstrap method with applications. *Computational Statistics*, **26**:55-76.

Examples

```
# Calculate power, equal sizes
power_Gamma(n1 = 50, mu1 = 1, mu2 = 1.5, gmu1 = 0.6, gmu2 = 0.6, M = 100)
```

power_Geometric

Power Calculation for Comparing Two Geometric Rates.

Description

Compute sample size or power for comparing two geometric rates.

Usage

```
power_Geometric(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, duration = 1, equal.sample = TRUE,
alternative = c("two.sided", "one.sided"), approach = 3)
```

Arguments

n1	sample size in group 1, or sample size in each group if equal.sample = TRUE
n2	sample size in group 2
power	power of test (1 minus Type II error probability)
sig.level	significance level (Type I error probability)
mu1	expected rate of events per time unit for group 1
mu2	expected rate of events per time unit for group 2

```
duration (average) treatment duration
```

equal.sample equal sample sizes for two groups, see details

alternative one- or two-sided test

approach 1, 2, or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters n1, n2, and power must be passed as NULL, and that parameter is determined from the others.

If equal.sample = TRUE is used, N in output will denote the number in each group.

Since the geometric distribution is a special case of negative binomial distribution, we used the algorithm for negative binomial distribution with setting theta = 1. See power.nb.test for more details.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

Examples

```
# calculate power, equal sizes
power_Geometric(n1 = 100, mu1 = 0.3, mu2 = 0.6)
# calculate power, unequal sizes
power_Geometric(n1 = 180, n2 = 140, mu1 = 0.3, mu2 = 0.5)
# calculate n
power_Geometric( mu1 = 0.3, mu2 = 0.4, power = 0.8)
```

power_NegativeBinomial

Power Calculation for Comparing Two Negative Binomial Rates

Description

Compute sample size or power for comparing two negative binomial rates.

Usage

```
power_NegativeBinomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, duration = 1, theta = NULL, equal.sample = TRUE,
alternative = c("two.sided", "one.sided"), approach = 3)
```

Arguments

n1	sample size in group 1, or sample size in each group if equal.sample = TRUE
n2	sample size in group 2
power	power of test (1 minus Type II error probability)
sig.level	significance level (Type I error probability)
mu1	expected rate of events per time unit for group 1
mu2	expected rate of events per time unit for group 2
duration	(average) treatment duration
theta	theta parameter of negative binomial distribution; see rnegbin
equal.sample	equal sample sizes for two groups, see details
alternative	one- or two-sided test
approach	1, 2, or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters n1, n2, and power must be passed as NULL, and that parameter is determined from the others.

If equal.sample = TRUE is used, N in output will denote the number in each group.

The computations are based on the formulas given in Zhu and Lakkis (2014). See power.nb.test for more details.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

References

H. Zhu and H. Lakkis (2014). Sample size calculation for comparing two negative binomial rates. *Statistics in Medicine*, **33**:376-387.

Examples

```
# calculate power, equal sizes
power_NegativeBinomial(n1 = 20, mu1 = 1, mu2 = 2, theta = 0.8)
# calculate power, unequal sizes
power_NegativeBinomial(n1 = 80, n2 = 40, mu1 = 1, mu2 = 2, theta = 0.8)
# calculate n
power_NegativeBinomial( mu1 = 1, mu2 = 2, theta = 0.8, power = 0.8)
```

8 power_Normal

	_
nower	Normal
DOMEI	INOL IIIAT

Power Calculations for One and Two Sample T-tests

Description

Compute power of t test, or determine parameters to obtain target power.

Usage

```
power_Normal(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
delta = NULL, sd1 = 1, sd2 = 1, equal.sample = TRUE,
alternative = c("two.sided", "one.sided"),
type = c("two.sample", "one.sample", "paired"),
df.method = c("welch", "classical"), strict = FALSE)
```

Arguments

n1 sample size in group 1, or sample size in each group if equal.sample = TRUE

n2 sample size in group 2

power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)

delta true difference in means
sd1 standard deviation for group 1
sd2 standard deviation for group 2

equal.sample equal sample sizes for two groups, see details

alternative one- or two-sided test

type Type of t test

df.method Method for calculating the degrees of default. Possibilities are welch (the de-

fault) or classical.

strict Use strict interpretation in two-sided case

Details

Exactly one of the parameters n1, n2, delta, sd1, sd2, power, and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that sd1, sd2, sig.level have non-NULL defaults, so NULL must be explicitly expressed if you want to compute them.

If equal.sample = TRUE is used, N in output will denote the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

power_Poisson 9

Note

'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Examples

```
# Calculate power, equal sizes
power_Normal(n1 = 150, delta = 5, sd1 = 20, sd2 = 10)
# Calculate power, unequal sizes
power_Normal(n1 = 150, delta = 5, n2 = 120, sd1 = 10)
# Calculate n1, equal sizes
power_Normal(delta = 5, power = 0.9, sd1 = 10, sd2 = 12)
```

power_Poisson

Power Calculations for Test of Two Poisson Ratios

Description

Compute the power for a test of two sample means with Poisson distributions, or determine parameters to obtain a target power.

Usage

```
power_Poisson(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, lambda1 = NULL, lambda2 = NULL, t1 = 1, t2 = 1, RR0 = 1, equal.sample = TRUE, alternative = c("two.sided", "one.sided"))
```

Arguments

alternative

n1	sample size in group 1, or sample size in each group if equal.sample = TRUE
n2	sample size in group 2
power	power of test (1 minus Type II error probability)
sig.level	significance level (Type I error probability)
lambda1	Poisson rate for group 1
lambda2	Poisson rate for group 2
t1	observed time period for group 1
t2	observed time period for group 2
RR0	the ratio of lambda2 and lambda1 under null hypothesis
equal.sample	equal sample sizes for two groups, see details

one- or two-sided test

10 power_Poisson

Details

Exactly one of the parameters n1, n2, lambda1, lambda2, power, and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that sig.level has non-NULL defaults, so NULL must be explicitly passed if you want to compute them.

If equal.sample = TRUE is used, n2 would be ignored and N in output denotes the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method element.

Note

'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

References

Gu et al. (2008). Testing the ratio of two poisson rates. *Biometrical Journal: Journal of Mathematical Methods in Biosciences.* **50**:283-298.

Examples

```
# Calculate power, equal sizes
power_Poisson(lambda1 = 0.0005, lambda2 = 0.003, n1 = 2000, t1 = 2, t2 = 2)
# Calculate sample size, equal sizes
power_Poisson(lambda1 = 0.0005, lambda2 = 0.003, power = 0.8, t1 = 2, t2 = 2)
# Calculate sample size for group 2, unequal sizes
power_Poisson(n1 = 2000, lambda1 = 0.0005, lambda2 = 0.003, power = 0.8,
t1 = 2, t2 = 2, equal.sample = FALSE)
```

Index

```
power.nb.test, 6, 7
power_Beta, 2
power_Binomial, 3
power_Gamma, 4
power_Geometric, 5
power_NegativeBinomial, 6
power_Normal, 8
power_Poisson, 9
rnegbin, 7
```