Package 'PBIBD'

December 21, 2017

Type Package
Title Partially Balanced Incomplete Block Designs

Version 1.3
Date 2017-12-20

Author

Parneet Kaur parneet.nonu93@gmail.com, Kush Sharma <kush. vashishtha@gmail. com>, Davinder Kumar Garg dkgarg_stat@yahoo.co.in
Maintainer Kush Sharma kush.vashishtha@gmail.com
Description The PBIB designs are important type of incomplete block designs having wide area of their applications for example in agricultural experiments, in plant breeding, in sample surveys etc. This package constructs various series of PBIB designs and assists in checking all the necessary conditions of PBIB designs and the association scheme on which these designs are based on. It also assists in calculating the efficiencies of PBIB designs with any number of associate classes. The package also constructs Youdenm square designs which are Row-Column designs for the two-way elimination of heterogeneity. The incomplete columns of these Youden-m square designs constitute PBIB designs. With the present functionality, the package will be of immense importance for the researchers as it will help them to construct PBIB designs, to check if their PBIB designs and association scheme satisfy various necessary conditions for the existence, to calculate the efficiencies of PBIB designs based on any association scheme and to construct Youden-m square designs for the two-way elimination of heterogene-
ity. R. C. Bose and K. R. Nair (1939) http://www.jstor.org/stable/40383923.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-12-21 14:23:29 UTC

R topics documented:

PBIBD-package 2
apbibd 4
circulant 5
series1 6
series2 7
series3 7
series4 8
series5 9
series6 9
verify 10
ym1 11
ym2 12
ym3 13
Index 15
PBIBD-package Partially Balanced Incomplete Block Designs

Description

The PBIB designs are important type of incomplete block designs having wide area of their applications for example in agricultural experiments, in plant breeding, in sample surveys etc. This package constructs various series of PBIB designs and assists in checking all the necessary conditions of PBIB designs and the association scheme on which these designs are based on. It also assists in calculating the efficiencies of PBIB designs with any number of associate classes. The package also constructs Youden-m square designs which are Row-Column designs for the two-way elimination of heterogeneity. The incomplete columns of these Youden-m square designs constitute PBIB designs. With the present functionality, the package will be of immense importance for the researchers as it will help them to construct PBIB designs, to check if their PBIB designs and association scheme satisfy various necessary conditions for the existence, to calculate the efficiencies of PBIB designs based on any association scheme and to construct Youden-m square designs for the two-way elimination of heterogeneity.

Details

The DESCRIPTION file:

Package:	PBIBD
Type:	Package
Title:	Partially Balanced Incomplete Block Designs
Version:	1.3
Date:	$2017-12-20$
Author:	Parneet Kaur <parneet.nonu93@ gmail.com>, Kush Sharma <kush.vashishtha @ gmail.com>, Davinder Kumar
Maintainer:	Kush Sharma kush.vashishtha@gmail.com
Description:	The PBIB designs are important type of incomplete block designs having wide area of their applications for ex
License:	GPL $(>=2)$

Note

This package is currently under intensive development and changes are to be expected in the near future.

Author(s)

Parneet Kaur <parneet.nonu93@ gmail.com>
Kush Sharma kush.vashishtha@gmail.com
Davinder Kumar Garg dkgarg_stat@yahoo.co.in
Maintainer: Kush Sharma <kush.vashishtha@ gmail.com>

References

Dey, A. (1986). Theory of block designs.Wiley Eastern Limited, New Delhi
Garg, D.K., and Singh, G.P. (2015). General solution of normal equations in the intra-block analysis of PBIB designs with any $(\mathrm{m}>=2)$ number of associate classes. American Journal of Sustainable Cities and Society, 4(11), 196-202
Kaur, P. and Garg, D. K. (2016). Construction of some higher associate class PBIB designs using symmetrically repeated differences, Arya Bhatta Journal of Mathematics and Informatics, 8(2), 6578.

Rao, C. R. (1947b). General methods of analysis for incomplete block designs, J. Amer. Statist. Assoc. 42, 541-561
Sharma, K. and Garg, D. K. (2017) Construction of Three associate PBIB designs using some sets of initial blocks. International Journal of Agricultural and Statistical Sciences (IJASS), 13(1): 55-60
Sharma, K. and Garg, D. K. (2017). m-associate PBIB designs using Youden-m Squares. Communications in Statistics-Theory and Methods, In press. DOI: 10.1080/03610926.2017.1324990

apbibd \quad| Calculates the efficiencies of PBIB designs with any number of asso- |
| :--- |
| ciate classes. |

Description

This function calculates the different kinds of efficiencies and the overall efficiency factor of Partially Balanced Incomplete Block Designs with any number of associate classes. The total number of treatments i.e. v, replications i.e. r, block size i.e. k, vector 1 of lambda's (lambda i being the ith element of vector l), vector n of number of associates (n i, i.e. number of ith associates, being the ith element of vector n), a list P of P -matrices of the association scheme of the design (Pi being the ith matrix of the list P) are to be supplied as input to the function.

Usage

$\operatorname{apbibd}(v, r, k, l, n, P)$

Arguments

V
r
k
1
n
P

Total number of treatments of the design
Replication of the treatments in the design
Block size of the design
A vector containing lambda 1 , lambda 2 , lambda $3, \ldots$, lambda m as its first, second, third,..., mth elements
A vector containing $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \ldots, \mathrm{n}$ m as its first, second, third,..., mth elements
A list containing P-matrices of the association scheme of the design such that P 1 is its first element, P 2 is second element, P 3 is third element,..., Pm is the mth element

Value

Returns a list with ($\mathrm{m}+1$) components:
E1 Efficiency E1 of the design
E2 Efficiency E2 of the design and so on ...
Em Efficiency Em of the design
E Overall efficiency factor of the design

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

$\mathrm{v}<-25$
$r<-9$
$\mathrm{k}<-9$
$1<-c(5,2,5,2,5)$
$\mathrm{n}<-\mathrm{c}(2,8,2,8,4)$
P1<-matrix $(c(0,0,1,0,0,0,0,0,4,4,1,0,1,0,0,0,4,0,4,0,0,4,0,0,0)$, nrow=5, ncol=5)
P2<-matrix $(c(0,0,0,1,1,0,0,1,3,3,0,1,0,1,0,1,3,1,3,0,1,3,0,0,0)$, nrow=5, ncol=5)
P3<-matrix $(c(1,0,1,0,0,0,4,0,4,0,1,0,0,0,0,0,4,0,0,4,0,0,0,4,0)$, nrow=5, ncol=5)
P4<-matrix $(c(0,1,0,1,0,1,3,1,3,0,0,1,0,0,1,1,3,0,0,3,0,0,1,3,0)$, nrow=5, ncol=5)
P5<-matrix $(c(0,2,0,0,0,2,6,0,0,0,0,0,0,2,0,0,0,2,6,0,0,0,0,0,3)$, nrow=5, ncol=5)
P<-list(P1, P2, P3, P4, P5)
$\operatorname{apbibd}(v, r, k, l, n, P)$
circulant This function generates circulant matrix of order n.

Description

Circulant matrix, which is a special kind of Toeplitz matrix, is a square matrix of order n whose rows are obtained by cyclically rotated versions of a list "l" of length n such that the first row is obtained by cyclically rotating one element toward right the list " l " and each of the other row is the cyclically rotated one element toward the right version of the previous row. This function is used to generate a circulant matrix of order n. The order of the circulant matrix i.e. n is supplied as an argument to the function.

Usage

circulant(n)

Arguments

n
n is the order of the circulant matrix we want to generate.

Value

The function returns a circulant matrix c of order n .

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

circulant(7)
series1 This function constructs five-associate class PBIB designs.

Description

Let us consider a module M of residue class $\bmod (5)$ having elements $0,1,2,3,4$ and all the elements of M are assigned to each of the $n>=2$ classes. This function constructs PBIB designs with the following parameters:

$$
\mathrm{v}=5 \mathrm{n}, \mathrm{~b}=5 \mathrm{n}, \mathrm{r}=\mathrm{n}+4, \mathrm{k}=\mathrm{n}+4
$$

lambda $1=5$, lambda $2=2$, lambda $3=5$, lambda $4=2$, lambda $5=n$

Usage

```
    series1(n)
```


Arguments

n
n is the number of classes to which the elements of Module M are assigned

Value

The function returns the required PBIB design with specified parameters

Author(s)

Parneet Kaur, Davinder Kumar Garg

Examples

series1(2)

Description

Let us consider a module M of residue class $\bmod (5)$ having elements $0,1,2,3,4$ and all the elements of M are assigned to each of the $n>=2$ classes. This function constructs PBIB designs with the following parameters:
$\mathrm{v}=5 \mathrm{n}, \mathrm{b}=5 \mathrm{n}, \mathrm{r}=\mathrm{n}+3, \mathrm{k}=\mathrm{n}+3$
lambda $1=3$, lambda $2=1$, lambda $3=3$, lambda $4=2$, lambda $5=n$

Usage

series2(n)

Arguments

$\mathrm{n} \quad \mathrm{n}$ is the number of classes to which the elements of Module M are assigned.

Value

The function returns the required PBIB design with specified parameters.

Author(s)

Parneet Kaur, Davinder Kumar Garg

Examples

> series2(4)
series3 This function constructs five-associate class PBIB designs

Description

Let us consider a module M of residue class $\bmod (5)$ having elements $0,1,2,3,4$ and all the elements of M are assigned to each of the $\mathrm{n}>=2$ classes. This function constructs PBIB designs with the following parameters:
$\mathrm{v}=5 \mathrm{n}, \mathrm{b}=5 \mathrm{n}, \mathrm{r}=2(\mathrm{n}+1), \mathrm{k}=2(\mathrm{n}+1)$
lambda $1=\mathrm{n}+2$, lambda $2=\mathrm{n}+2$, lambda $3=3$, lambda $4=2$, lambda $5=2 \mathrm{n}$

Usage

series3(n)

Arguments

n n is the number of classes to which the elements of Module M are assigned

Value

The function returns the required PBIB design with specified parameters

Author(s)

Parneet Kaur, Davinder Kumar Garg

Examples

series3(5)
series4
This function constructs three-associate class PBIB designs.

Description

Let us consider a module M having m elements. To each element of the module, there corresponds n distinct classes, where $\mathrm{m}>=5$ and $\mathrm{n}>=2$. With these $\mathrm{v}=\mathrm{mn}$ treatments following are parameters of the three-associate class PBIB design:
$\mathrm{v}=\mathrm{mn}, \mathrm{b}=\mathrm{mn}, \mathrm{r}=(\mathrm{m}+\mathrm{n}-1), \mathrm{k}=(\mathrm{m}+\mathrm{n}-1)$
lambda $1=\mathrm{m}$, lambda $2=2$, lambda $3=\mathrm{n}$

Usage

series4(m, n)

Arguments

m Size of the module M.
$\mathrm{n} \quad \mathrm{n}$ is the number of classes to which the elements of Module M are assigned.

Value

This function returns the required three-associate class PBIB design.

Author(s)

Parneet Kaur, Davinder Kumar Garg

Examples

series4(5,2)

Description

Consider a module M having m elements and there are n classes corresponding to each element of the module. Thus, we have a total of $v=m n$ treatments (m is odd prime). For these $v=m n$ treatments following are the parameters of the three-associate class PBIB design:
$\mathrm{v}=\mathrm{mn}, \mathrm{b}=\mathrm{mn}, \mathrm{r}=(\mathrm{m}+\mathrm{n}-2), \mathrm{k}=(\mathrm{m}+\mathrm{n}-2)$
lambda $1=\mathrm{m}-2$, lambda $2=2$, lambda $3=\mathrm{n}-2$

Usage

series5(m, n)

Arguments

m Size of Module M.
$\mathrm{n} \quad \mathrm{n}$ is the number of classes to which the elements of Module M are assigned.

Value

The function returns the required three-associate class PBIB design with the parameters specified in the description.

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

```
    series5(5,3)
```

 series6
 This function constructs three-associate class PBIB designs.

Description

Consider a module M having m elements and there are n classes corresponding to each element of the module. Thus, we have a total of $v=m n$ treatments (m is odd prime). For these $v=m n$ treatments following are the parameters of the three-associate class PBIB design:
$\mathrm{v}=\mathrm{mn}, \mathrm{b}=\mathrm{m}, \mathrm{r}=(\mathrm{m}-1), \mathrm{k}=(\mathrm{m}-1) \mathrm{n}$
lambda $1=\mathrm{m}-2$, lambda $2=\mathrm{m}-2$, lambda $3=\mathrm{m}-1$

Usage

series6(m, n)

Arguments

m Size of Module M.
$\mathrm{n} \quad \mathrm{n}$ is the number of classes to which the elements of Module M are assigned.

Value

The function returns the required three-associate class PBIB design with the parameters specified in the description.

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

```
series6(5,3)
```

verify Verifies all the necessary conditions for the existence of PBIB designs based on any association scheme.

Description

There exists various necessary conditions for the existence of the PBIB design as well as the association scheme on which the PBIB design is based. This function Verifies all those necessary conditions for the existence of PBIB designs based on any association scheme. The total number of treatments i.e. v, the total number of blocks i.e. b, replications i.e. r, block size i.e. k, vector l of lambda's (lambda i being the ith element of vector l), vector n of number of associates (n i, i.e. number of ith associates, being the ith element of vector n), a list P of P -matrices of the association scheme of the design (Pi being the ith matrix of the list P) are to be supplied as input to the function.

Usage

verify (v, b, r, $k, l, n, P)$

Arguments

v
Total number of treatments of the design
b Total number of blocks in the design
r Replication of the treatments in the design
$k \quad$ Block size of the design

1 A vector containing lambda 1, lambda 2, lambda 3,..., lambda m as its first, second, third,..., mth elements
n
A vector containing $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \ldots, \mathrm{n} \mathrm{m}$ as its first, second, third,..., mth elements

P A list containing P-matrices of the association scheme of the design such that P 1 is its first element, P 2 is second element, P 3 is third element,..., Pm is the mth element

Value

The function tells if all the necesary conditions for the existence of PBIB design based on some association scheme hold. If not, it highlights all the conditions which do not hold.

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

```
v<-12
b<-12
r<-5
k<-5
l<-c(1,2,2)
n<-c(2,3,6)
P1<-matrix(c(1,0,0,0,0,3,0,3,3),nrow=3,ncol=3)
P2<-matrix(c(0,0,2,0,2,0,2,0,4),nrow=3,ncol=3)
P3<-matrix(c(0,1,1,1,0,2,1,2,2),nrow=3,ncol=3)
P<-list(P1,P2,P3)
verify(v,b,r,k,l,n,P)
```

The function constructs Youden-m square designs. The function provides the parameters of the PBIB design constituted when the incomplete columns of this Youden-m square are taken as blocks.

Description

If we omit the same number of rows, say t rows, from the top and the bottom of the Circulant matrix, such that we are left with atleast two rows, the resulting arrangement of rows is a Youden-m square.
(A) For even-ordered Circulant matrices with order $v>=4$, the columns of the Youden-m squares so obtained constitute the PBIB designs with the following parameters:
$\mathrm{v}>=4$ and even, $\mathrm{b}=\mathrm{v}, \mathrm{r}=\mathrm{k}=\mathrm{v}-2 \mathrm{t}$
lambda $1=\mathrm{v}-2(\mathrm{t}+1)$, lambda $\mathrm{m}-\mathrm{i}=\mathrm{v}-2 \mathrm{t}-1-2 \mathrm{i} ; \mathrm{i}=0,1, \ldots, \mathrm{t}-1$
lambda $\mathrm{t}=$ lambda $\mathrm{t}+1=\ldots=$ lambda $\mathrm{m}-\mathrm{t}=\mathrm{v}-4 \mathrm{t}$. If $\mathrm{t}>=3$ then, lambda $\mathrm{i}=\mathrm{v}-2(\mathrm{t}+\mathrm{i}) ; \mathrm{i}=2,3, \ldots$, t-1
(B)For odd-ordered Circulant matrices with order $\mathrm{v}>=5$, the columns of the Youden-m squares so obtained constitute the PBIB designs with the following parameters:
$\mathrm{v}>=5$ and odd, $\mathrm{b}=\mathrm{v}, \mathrm{r}=\mathrm{k}=\mathrm{v}-2 \mathrm{t}$
lambda $1=\mathrm{v}-2 \mathrm{t}-1$, lambda $\mathrm{m}-\mathrm{i}=\mathrm{v}-2(\mathrm{t}+1)-\mathrm{i} ; \mathrm{i}=0,1, \ldots, \mathrm{t}-1$, lambda $\mathrm{m}-(\mathrm{t}-1)-\mathrm{i}=$ lambda $\mathrm{m}-(\mathrm{t}-1)$ - $\mathrm{i} ; \mathrm{i}=0,1,2, \ldots, \mathrm{t}-1$
and lambda $2=$ lambda $3=\ldots=$ lambda $(\mathrm{m}-2 \mathrm{t}+1)=$ lambda $(\mathrm{m}-2 \mathrm{t}+2)$

Usage

ym1 (n, t)

Arguments

n
n is the order of the circulant matrix which is also the number of treatments
t
t is the number of rows you want to omit from both ends of the circulant matrix

Value

The function returns the required Youden-m square design. It also returns the parameters of the PBIB design constituted by taking the incomplete columns of the Youden-m square as blocks.

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

```
ym1 (6,1)
```

ym2
The function constructs Youden-m square designs. The function provides the parameters of the PBIB design constituted when the incomplete columns of this Youden-m square are taken as blocks.

Description

By omitting the middle $2 \mathrm{t}(\mathrm{t}=1,2, \ldots)$ rows of any even ordered Circulant matrix with order $\mathrm{v}>=6$ and considering only those rows which lie either above or below the omitted $2 t$ rows, the resulting arrangement of rows gives a new type of Youden-m square. The columns of these Youden-m squares constitute m -associate class PBIB designs, with the following parameters:
$\mathrm{v}>=6$ and even, $\mathrm{b}=\mathrm{v}, \mathrm{r}=\mathrm{k}=(\mathrm{v} / 2)-\mathrm{t}$, lambda $1=\mathrm{r}-2$, lambda $\mathrm{m}=$ lambda $1+1$
If m is even, then lambda $\mathrm{i}+1=$ lambda $\mathrm{i}-2 ; \mathrm{i}=1,2, \ldots, \mathrm{~m} / 2$ and lambda $\mathrm{i}-1=$ lambda $\mathrm{i}-2 ; \mathrm{i}=\mathrm{m}$, $\mathrm{m}-1, \ldots,(\mathrm{~m} / 2)+1$
If m is odd, then lambda $\mathrm{i}+1=$ lambda $\mathrm{i}-2 ; \mathrm{i}=1,2, \ldots,(\mathrm{~m}+1) / 2$ and lambda $\mathrm{i}-1=$ lambda $\mathrm{i}-2 ; \mathrm{i}=$ $m, m-1, \ldots,((m+1) / 2)+1$

Usage

$y m 2(n, t)$

Arguments

n
n is the order of the circulant matrix which is also the number of treatments
t
t is the number of rows you want to omit from both ends of the circulant matrix

Value

The function returns the required Youden-m square design. It also returns the parameters of the PBIB design constituted by taking the incomplete columns of the Youden-m square as blocks.

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

ym2 $(8,1)$

The function constructs Youden-m square designs. The function provides the parameters of the PBIB design constituted when the incomplete columns of this Youden-m square are taken as blocks.

Description

By omitting the middle and equal number of rows, say t rows, from both ends of any odd-ordered Circulant matrix with order $v>=7$ and considering those rows that lie either between the middle omitted row and omitted rows from the top or between the middle omitted row and the omitted rows from the bottom of the Circulant matrix. Then this arrangement of rows gives us a Youden-m square. These Youden-m square designs are the designs for two-way elimination of heterogenity. The columns of this Youden-m square constitue PBIB design with the following parameters:
$\mathrm{v}>=7$ and odd, $\mathrm{b}=\mathrm{v}, \mathrm{r}=\mathrm{k}=((\mathrm{v}+1) / 2)-1-\mathrm{t}$
lambda $1=\mathrm{v}-6-(\mathrm{m}-4+\mathrm{t})$, lambda $\mathrm{i}=0 ; \mathrm{i}=2,3, \ldots, \mathrm{t}+2$
if $\mathrm{m}>3$ then, lambda $\mathrm{j}=$ lambda $\mathrm{j}-1+1 ; \mathrm{j}=\mathrm{t}+3, \mathrm{t}+4, \ldots, \mathrm{~m}$

Usage

$y m 3(n, t)$

Arguments

n is the order of the circulant matrix which is also the number of treatments
t
t is the number of rows you want to omit from both ends of the circulant matrix

Value

The function returns the required Youden-m square design. It also returns the parameters of the PBIB design constituted by taking the incomplete columns of the Youden-m square as blocks.

Author(s)

Kush Sharma, Davinder Kumar Garg

Examples

ym3 $(7,1)$

Index

*Topic Circulant Matrix
circulant, 5
*Topic Construction of PBIB designs
PBIBD-package, 2
series1, 6
series2, 7
series3, 7
series4, 8
series5, 9
series6, 9
*Topic Efficiencies
apbibd, 4
PBIBD-package, 2
*Topic Initial Blocks
series5, 9
series6, 9
*Topic Necessary conditions
PBIBD-package, 2
verify, 10
*Topic Partially Balanced Incomplete Block Designs
apbibd, 4
PBIBD-package, 2
series1, 6
series2, 7
series3, 7
series4, 8
verify, 10
*Topic Partially Balanced Incomplete

Block designs

series5, 9
series6, 9
ym1, 11
ym2, 12
ym3, 13
*Topic Row-Column designs
PBIBD-package, 2
ym1, 11
ym2, 12
ym3, 13
*Topic Symmetric differences
PBIBD-package, 2
series1, 6
series2, 7
series3, 7
series 4,8
$*$ Topic Three-associate class
association scheme
series5, 9
series6, 9
*Topic Toeplitz Matrix circulant, 5
*Topic Two-way elimination of heterogenity PBIBD-package, 2
$*$ Topic Two-way eliminationof heterogenity
ym1, 11
ym2, 12
ym3, 13
$*$ Topic Youden-m square designs PBIBD-package, 2
*Topic Youden-m square design
ym1, 11
ym2, 12
ym3, 13
*Topic Youden-m squares
PBIBD-package, 2
*Topic Youden-m square
ym1, 11
ym2, 12
ym3, 13
*Topic five-associate class
series1, 6
series2, 7
series3, 7
*Topic m-associate class Association Scheme
verify, 10
*Topic m-associate class PBIB Design
apbibd, 4
PBIBD-package, 2
$*$ Topic three-associate class
series4, 8
apbibd, 4
circulant, 5
PBIBD (PBIBD-package), 2
PBIBD-package, 2
series1, 6
series2, 7
series3, 7
series4, 8
series5, 9
series6, 9
verify, 10
ym1, 11
ym2, 12
ym3, 13

