Package 'PHclust'

February 8, 2022

Type Package		
Title Poisson Hurdle Clustering for Sparse Microbiome Data		
Version 0.1.0		
Author Zhili Qiao		
Maintainer Zhili Qiao <zlqiao@iastate.edu></zlqiao@iastate.edu>		
Description Clustering analysis for sparse microbiome data, based on a Poisson hurdle model.		
License GPL-3		
Encoding UTF-8		
LazyData true		
RoxygenNote 7.1.2		
Suggests knitr, rmarkdown, testthat (>= 3.0.0)		
VignetteBuilder knitr		
Depends R (>= 2.10)		
Config/testthat/edition 3		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2022-02-08 16:20:11 UTC		

R topics documented:

 plot_abundance	
Hybrid 2 PHcluster 3	3

Hybrid

Description

This function estimates the optimal number of clusters for a given dataset.

Usage

Hybrid(data, absolute = FALSE, Kstart = NULL, Treatment)

Arguments

data	Data matrix with dimension N*P indicating N features and P samples.
absolute	Logical. Whether we should use absolute (TRUE) or relative (FALSE) abundance of features to determine clusters.
Kstart	Positive integer. The number of clusters for starting the hybrid merging algorithm. Should be relatively large to ensure that Kstart > optimal number of clusters. Uses $max(50, sqrt(N))$ by default.
Treatment	Vector of length p, indicating replicates of different treatment groups. For example, $Treatment = c(1,1,2,2,3,3)$ indicates 3 treatment groups, each with 2 replicates.

Value

A positive integer indicating the optimal number of clusters

Examples

```
######## Run the following codes in order:
##
## This is a sample data set which has 100 features, and 4 treatment groups with 4 replicates each.
data('sample_data')
head(sample_data)
set.seed(1)
##
## Finding the optimal number of clusters
K <- Hybrid(sample_data, Kstart = 4, Treatment = rep(c(1,2,3,4), each = 4))</pre>
##
## Clustering result from EM algorithm
result <- PHcluster(sample_data, rep(c(1,2,3,4), each = 4), K, method = 'EM', nstart = 1)
print(result$cluster)
##
## Plot the feature abundance level for each cluster
plot_abundance(result, sample_data, Treatment = rep(c(1,2,3,4), each = 4))
```

PHcluster

Description

This function gives the clustering result based on a Poisson hurdle model.

Usage

```
PHcluster(
   data,
   Treatment,
   nK,
   method = c("EM", "SA"),
   absolute = FALSE,
   cool = 0.9,
   nstart = 1
)
```

Arguments

data	Data matrix with dimension N*P indicating N features and P samples. The cluster analysis is done feature-wised.
Treatment	Vector of length P. Indicating replicates of different treatment groups. For example, $Treatment = c(1,1,2,2,3,3)$ indicates 3 treatment groups, each with 2 replicates.
nK	Positive integer. Number of clusters.
method	Method for the algorithm. Can choose between " <i>EM</i> " as Expectation Maximization or " <i>SA</i> " as Simulated Annealing.
absolute	Logical. Whether we should use absolute (TRUE) or relative (False) abundance of features to determine clusters.
cool	Real number between (0, 1). Cooling rate for the "SA" algorithm. Uses 0.9 by default.
nstart	Positive integer. Number of starts for the entire algorithm. Note that as <i>nstart</i> increases the computational time also grows linearly. Uses 1 by default.

Value

- **cluster** Vector of length N consisting of integers from 1 to nK. Indicating final clustering result. For evaluating the clustering result please check NMI for *Normalized Mutual Information*.
- **prob** N*nK matrix. The (i, j)th element representing the probability that observation i belongs to cluster j.
- log_l Scaler. The Poisson hurdle log-likelihood of the final clustering result.
- **alpha** Vector of length N. The geometric mean abundance level for each feature, across all treatment groups.

Normalizer vector of length P. The normalizing constant of sequencing depth for each sample.

Examples

```
######## Run the following codes in order:
##
## This is a sample data set which has 100 features, and 4 treatment groups with 4 replicates each.
data('sample_data')
head(sample_data)
set.seed(1)
##
## Finding the optimal number of clusters
K <- Hybrid(sample_data, Kstart = 4, Treatment = rep(c(1,2,3,4), each = 4))</pre>
##
## Clustering result from EM algorithm
result <- PHcluster(sample_data, rep(c(1,2,3,4), each = 4), K, method = 'EM', nstart = 1)</pre>
print(result$cluster)
##
## Plot the feature abundance level for each cluster
plot_abundance(result, sample_data, Treatment = rep(c(1,2,3,4), each = 4))
```

plot_abundance

Plot of feature abundance level

Description

This function plots the feature abundance level for each cluster, after extracting the effect of samplewise normalization factors and feature-wise geometric mean.

Usage

plot_abundance(result, data, Treatment)

Arguments

result	Clustering result from function PHclust().
data	Data matrix with dimension N*P indicating N features and P samples.
Treatment	Vector of length P. Indicating replicates of different treatment groups. For example, $Treatment = c(1,1,2,2,3,3)$ indicates 3 treatment groups, each with 2 replicates.

Value

A plot for feature abundance level will be shown. No value is returned.

4

sample_data

Examples

```
######## Run the following codes in order:
##
## This is a sample data set which has 100 features, and 4 treatment groups with 4 replicates each.
data('sample_data')
head(sample_data)
set.seed(1)
##
## Finding the optimal number of clusters
K <- Hybrid(sample_data, Kstart = 4, Treatment = rep(c(1,2,3,4), each = 4))</pre>
##
## Clustering result from EM algorithm
result <- PHcluster(sample_data, rep(c(1,2,3,4), each = 4), K, method = 'EM', nstart = 1)
print(result$cluster)
##
## Plot the feature abundance level for each cluster
plot_abundance(result, sample_data, Treatment = rep(c(1,2,3,4), each = 4))
```

```
sample_data
```

Sample of sparse microbiome count data

Description

A sample data matrix with 100 features in 2 true clusters, 4 treatment groups with 4 replicates in each group.

Usage

sample_data

Format

The dataset contains 16 columns, indexed as A1 ~ A4, B1 ~ B4, C1 ~ C4, D1 ~ D4 to represent 4 treatment groups.

Examples

head(sample_data)

Index

* datasets
 sample_data, 5

 ${\tt Hybrid}, {\color{black} 2}$

NMI, **3**

PHcluster, 3 plot_abundance, 4

 $sample_data, 5$