Package 'PUMP'

February 9, 2022

```
Description
      Estimates power, minimum detectable effect size (MDES) and sample size requirements. The con-
      text is multilevel randomized experiments with multiple outcomes. The estimation takes into ac-
      count the use of multiple testing procedures. Development of this package was sup-
      ported by a grant from the Institute of Education Sciences (R305D170030). For a full pack-
      age description, including a detailed technical appendix, see <arXiv:2112.15273>.
URL https://github.com/MDRCNY/PUMP
BugReports https://github.com/MDRCNY/PUMP/issues
Depends R (>= 3.5.0)
Imports dplyr, ggplot2, ggpubr, here, future, magrittr, mvtnorm,
      parallel, purrr, randomizr, readr, rlang, stats, stringr,
      tibble, tidyr, tidyselect
Suggests testthat, kableExtra, knitr, furrr, PowerUpR (>= 1.1.0)
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2
VignetteBuilder knitr
NeedsCompilation no
Author Kristin Porter [aut],
      Luke Miratrix [aut, cre],
      Kristen Hunter [aut] (<a href="https://orcid.org/0000-0002-5678-4620">https://orcid.org/0000-0002-5678-4620</a>),
      Zarni Htet [aut],
      MDRC [cph],
      Institute of Education Sciences [fnd]
Maintainer Luke Miratrix < luke_miratrix@gse.harvard.edu>
Repository CRAN
Date/Publication 2022-02-09 09:50:05 UTC
```

Type Package

Version 1.0.0

Title Power Under Multiplicity Project

2 calc_df

R topics documented:

alc_df	. 2
convert_params	. 3
gen_assignments	. 4
gen_corr_matrix	. 4
gen_full_data	. 5
gen_T.x	. 5
gen_Yobs	. 6
et_power_results	. 6
parse_d_m	. 7
olot.pumpgridresult	. 8
olot.pumpresult	. 9
olot_power_curve	. 9
olot_power_search	. 11
ower_curve	. 11
orint_context	. 12
orint_search	. 13
PUMP	. 13
oumpgridresult	. 14
pumpresult	. 15
oump_info	. 17
pump_mdes	. 18
oump_mdes_grid	. 21
pump_power	. 23
oump_power_grid	. 26
pump_sample	
pump_sample_grid	. 31
ranspose_power_table	
pdate.pumpresult	. 34
pdate_grid	
· -	
	36

calc_df

Index

Calculate degrees of freedom (support function)

Description

Given sample sizes, return the used degrees of freedom (frequently conservative) for the design and model.

```
calc_df(d_m, J, K, nbar, numCovar.1, numCovar.2, numCovar.3, validate = TRUE)
```

convert_params 3

Arguments

d_m	string; a single context, which is a design and model code. See pump_info() for list of choices.
J	scalar; the harmonic mean of number of level 2 units per level 3 unit (schools per district). Note that this is not the total number of level 2 units, but instead the number of level 2 units nested within each level 3 unit, so the total number of level 2 units is J $_{\rm X}$ K.
K	scalar; the number of level 3 units (districts).
nbar	scalar; the harmonic mean of the number of level 1 units per level 2 unit (students per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number of level 1 units is nbar x J x K.
numCovar.1	scalar; number of level 1 (individual) covariates.
numCovar.2	scalar; number of level 2 (school) covariates.
numCovar.3	scalar; number of level 3 (district) covariates.
validate	logical; whether or not to validate if output df is ≤ 0 .

Value

scalar; degrees of freedom for the context.

convert_params	Converts model params into DGP params (simulation function)
555. 5 <u>-</u> par ame	converts model params and 2 of params (simulation junction)

Description

Converts user-provided parameters such as ICC and omega into data-generating parameters that can produce simulated data, such as variance values and covariate coefficients.

This function is beyond the main scope of calculating power, and is instead used for simulating data. For more info on use, see the simulation vignette.

Usage

```
convert_params(model.params.list)
```

Arguments

```
model.params.list
```

list; model parameters.

Value

list; data-generating parameters.

gen_corr_matrix

gen_assignments

Generates school and district assignments (simulation function)

Description

Generates simple default schools and districts IDs for individual students for the purpose of simulations. This assumes equal sized schools in equal sized districts.

This function is beyond the main scope of calculating power, and is instead used for simulating data. For more info on use, see the simulation vignette.

Usage

```
gen_assignments(J, K, nbar)
```

Arguments

J scalar; number of schools per district.

K scalar; number of districts.

nbar scalar; number of individuals per school.

Value

list; school and district assignments (S.id, D.id) for each individual.

gen_corr_matrix

Generate correlation matrix (simulation function)

Description

Generate correlation matrix (simulation function)

Usage

```
gen_corr_matrix(M, rho.scalar)
```

Arguments

M scalar; dimension of matrix.

rho.scalar scalar; rho value.

Value

matrix; M x M correlation matrix with rho.scalar as diagonal.

gen_full_data 5

gen	full	data

Generate simulated multi-level data (simulation function)

Description

Generates simulated data for multi-level RCTs for pump-suppored designs and models for both unobserved and observed potential outcomes.

Takes in a list of necessary data-generating parameters.

This function is beyond the main scope of calculating power, and is instead used for simulating data. For more info on use, see the simulation vignette.

Usage

```
gen_full_data(dgp.params.list)
```

Arguments

```
dgp.params.list
```

list of data generating parameters.

Value

list; potential outcomes given control y0, treatment y1, covariates V.k, X.jk, C.ijk.

gen_T.x

Generate treatment assignment vector (simulation function)

Description

Given a RCT design and supporting information, generates treatment assignments for each student. This function is beyond the main scope of calculating power, and is instead used for simulating data. For more info on use, see the simulation vignette.

Usage

```
gen_T.x(d_m, S.id, D.id, nbar, Tbar)
```

Arguments

d_m	string; design and model.
S.id	vector; school assignments.
D.id	vector; district assignments.
nbar	scalar; number of level 1 units.
Tbar	scalar; probability of treatment assignment.

6 get_power_results

Value

vector; treatment assignments for each unit.

gen_Yobs

Generate observed outcomes (simulation function)

Description

Takes in a full dataset of both observed and latent potential outcomes and the treatment assignment vector, and returns only the observed outcomes.

This function is beyond the main scope of calculating power, and is instead used for simulating data. For more info on use, see the simulation vignette.

Usage

```
gen_Yobs(full.data, T.x)
```

Arguments

full.data data.frame; full dataset of potential outcomes.

T. x vector; binary assignment to treat/control.

Value

vector; observed outcomes

get_power_results

Calculates different definitions of power (support function)

Description

This function takes in a matrix of adjusted p-values and unadjusted p-values and outputs different types of power.

This function is mostly for internal use, but may be of interest to users who wish to calculate power on their own.

```
get_power_results(
  adj.pval.mat,
  unadj.pval.mat,
  ind.nonzero,
  alpha,
  drop.zero.outcomes = TRUE,
  adj = TRUE
)
```

parse_d_m 7

Arguments

```
adj.pval.mat matrix; adjusted p-values, columns are outcomes
unadj.pval.mat matrix; unadjusted p-values, columns are outcomes
ind.nonzero vector; which outcomes are nonzero.
alpha scalar; the family wise error rate (FWER).
drop.zero.outcomes
logical; whether to report power results for outcomes with MDES = 0.
adj logical; whether p-values are unadjusted or not.
```

Value

data frame; power results for individual, minimum, complete power.

parse_d_m

Return characteristics of a given context (d_m code)

Description

Returns number of levels and model at each level. See pump_info()\$Context to get a list of supported d_ms.

Usage

```
parse_d_m(d_m)
```

Arguments

d_m string; context to parse.

Value

list; list of features including number of levels, level of randomization, etc.

```
supported <- pump_info(comment = FALSE)$Context
parse_d_m( supported$d_m[4] )</pre>
```

8 plot.pumpgridresult

plot.pumpgridresult Plot a pump grid result object (result function)

Description

Plots grid results across values of a single parameter, specified by the user using var.vary, for a single definition of power, specified by power.definition.

If multiple things vary in the grid, the outcome (power, mdes, or sample size) will be averaged (marginalized) across the other varying factors. This treats the grid as a multifactor simulation, with this showing the "main effect" of the specified parameter.

Usage

```
## $3 method for class 'pumpgridresult'
plot(
    x,
    power.definition = NULL,
    var.vary = NULL,
    lines = TRUE,
    include.title = FALSE,
    ...
)
```

Arguments

```
x pumpgridresult object.

power.definition
string; definition of power to plot. If NULL, plot all definitions as a facet wrap.

var.vary string; variable to vary on X axis. If NULL, and only one thing varies, then it will default to single varying parameter.

lines logical; TRUE means connect dots with lines on the plots. FALSE means no lines.

include.title logical; whether to include/exclude title (if planning a facet wrap, for example).

additional parameters.
```

Value

plot; a ggplot object of outcome across parameter values.

```
 g \leftarrow pump\_power\_grid( \ d\_m = "d3.2\_m3ff2rc", \ MTP = c( "H0", "BF" ), \\ MDES = 0.10, \ J = seq(5, 10, 1), \ M = 5, \ K = 7, \ nbar = 58, \\ Tbar = 0.50, \ alpha = 0.15, \ numCovar.1 = 1, \\ numCovar.2 = 1, \ R2.1 = 0.1, \ R2.2 = 0.7, \\ ICC.2 = 0.25, \ ICC.3 = 0.25, \ rho = 0.4, \ tnum = 500) \\ plot(g, power.definition = 'min1')
```

plot.pumpresult 9

plot.pumpresult

Plot a single scenario pump object (result function)

Description

Works on an object returned by pump_power(), and visualizes different definitions of power across MTPs. This function does not apply to pump_mdes() or pump_sample() objects, as these functions only return a single value.

Usage

```
## S3 method for class 'pumpresult' plot(x, ...)
```

Arguments

x pumpresult object.... additional parameters.

Value

plot; a ggplot object of power across differen definitions.

Examples

```
pp1 <- pump_power(d_m = "d2.2_m2rc", MTP = 'H0',
    nbar = 50, J = 20, M = 8, numZero = 5,
    MDES = 0.30, Tbar = 0.5, alpha = 0.05, two.tailed = FALSE,
    numCovar.1 = 1, numCovar.2 = 1, R2.1 = 0.1, R2.2 = 0.7,
    ICC.2 = 0.05, rho = 0.2, tnum = 5000)

plot(pp1)</pre>
```

plot_power_curve

Examine a power curve (result function)

Description

This will give a plot of power vs. MDES or sample size. It can be useful to see how quickly power changes as a function of these design parameters. Can be useful to diagnose relatively flat power curves, where power changes little as a function of MDES or sample size, and can also be useful to gauge where convergence went poorly.

10 plot_power_curve

Usage

```
plot_power_curve(
   pwr,
   plot.points = TRUE,
   all = TRUE,
   low = NULL,
   high = NULL,
   grid.size = 5,
   tnum = 2000,
   breaks = grid.size,
   fit = NULL
)
```

Arguments

pwr	pumpresult object or data.frame; result from calling pump_sample or pump_mdes (or data frame from, e.g., power_curve()).
plot.points	logical; whether to plot individually tested points on curve.
all	logical; if TRUE, merge in the search path from the original search.
low	scalar; low range for the plot x-axis.
high	scalar; high range for the plot.
grid.size	scalar; number of points to calculate power.
tnum	scalar; number of iterations to calculate power at each grid point.
breaks	scalar; the desired number of tick marks on the axes.
fit	a four parameter bounded logistic curve (if NULL will fit one to passed points).

Value

plot; a ggplot object of power across values.

```
mdes <- pump_mdes(d_m = "d2.1_m2fc", MTP = 'H0',
   power.definition = 'D1indiv', target.power = 0.7,
   J = 60, nbar = 50, M = 3, Tbar = 0.5, alpha = 0.05,
   numCovar.1 = 1, R2.1 = 0.1, ICC.2 = 0.05, rho = 0.2)
plot_power_curve(mdes)</pre>
```

plot_power_search 11

plot_power_search

Examine search path of a power search (result function)

Description

This will give triple-plots about how the search narrowed down into the final estimate. Can be useful to gauge where convergence went poorly.

Usage

```
plot_power_search(pwr, fit = NULL, target.line = NULL)
```

Arguments

pwr pumpresult object; result from a pump_sample or pump_mdes call.

fit a fitted curve to the search.

target.line scalar; if non-NULL, add a reference line for the true power (if known, e.g.,

from a pump_power call).

Value

plot; a ggplot object (a ggpubr arrangement of 3 plots, technically) of the search path.

Examples

```
J <- pump_sample(d_m = "d2.1_m2fc",
    MTP = 'H0', power.definition = 'D1indiv',
    typesample = 'J', target.power = 0.6,
    nbar = 50, M = 3, MDES = 0.125,
    Tbar = 0.5, alpha = 0.05,
    numCovar.1 = 1, R2.1 = 0.1, ICC.2 = 0.05,
    rho = 0.2, tnum = 1000)
plot_power_search(J)</pre>
```

power_curve

Obtain power curve over a range of parameters (result function)

Description

This is used to see rate of power change as a function of sample size or MDES.

print_context

Usage

```
power_curve(
   x,
   all = FALSE,
   low = NULL,
   high = NULL,
   grid.size = 5,
   tnum = 2000
)
```

Arguments

x a pumpresult object.
 all logical; if TRUE, merge in the search path from the original search.
 low scalar; low range for the plot x-axis.
 high scalar; high range for the plot.
 grid.size scalar; number of points to calculate power.
 tnum scalar; number of iterations to calculate power at each grid point.

Value

data.frame of power results.

print_context	Print context (design, model, parameter values) of pumpresult or
	pumpgridresult

Description

Print out the context (design and model, with parameter values) of given pump result or pump grid result object. The "***" denotes varying values in the printout.

Usage

```
print_context(x, insert_results = FALSE, insert_control = FALSE, ...)
```

Arguments

```
    x A pumpresult object or pumpgridresult object.
    insert_results Include actual results in the printout.
    insert_control Include the optimizer control parameter information.
    Extra arguments to pass to print.pumpresult.
```

Value

No return value; prints results.

print_search 13

print_search

Print the search history of a pump result object (result function)

Description

For pump_mdes and pump_sample, print the (abbreviated) search history.

Usage

```
print_search(x, n = 10)
```

Arguments

- x a pumpresult object (except for is.pumpresult, where it is a generic object to check).
- n Number of lines of search path to print, max.

Value

No return value; prints results.

PUMP

PUMP: A package for estimating power under multiplicity

Description

The PUMP package provides three core functions:

- pump_power() for estimating power
- pump_mdes() for estimating minimum detectable effect size
- pump_sample() for estimating sample size.

Details

For a full package description, see https://arxiv.org/abs/2112.15273.

14 pumpgridresult

pumpgridresult Result object for results of grid power calculations

Description

The pumpgridresult object is an S3 class that holds the results from 'pump_power_grid()', 'pump_sample_grid()', and 'pump_mdes_grid()'.

It has several methods that pull different information from this object, and some printing methods for getting nicely formatted results.

Usage

```
is.pumpgridresult(x)
## S3 method for class 'pumpgridresult'
print(x, header = TRUE, ...)
## S3 method for class 'pumpgridresult'
summary(object, ...)
```

Arguments

X	a pumpgridresult object (except for is.pumpgridresult, where it is a generic object to check).
header	logical; FALSE means skip some header info on the result, just print the data.frame of actual results.
• • •	extra options passed to print.pumpgridresult
object	object to summarize.

Value

```
is.pumpgridresult: TRUE if object is a pumpgridresult object.
print: No return value; prints results.
summary: No return value; prints results.
```

pumpresult 15

pumpresult

pumpresult object for results of power calculations

Description

The pumpresult object is an S3 class that holds the results from 'pump_power()', 'pump_sample()', and 'pump_mdes()'.

It has several methods that pull different information from this object, and some printing methods for getting nicely formatted results.

Pump result objects are also data.frames, so they can be easily manipulated and combined. The return values from the 'grid' functions will just return data frames in general.

Returns whether call was power, mdes, or sample.

Calls the print_context method with results and control both set to TRUE.

```
params(x, ...)
d_m(x, \ldots)
search_path(x, ...)
pump_type(x)
is.pumpresult(x)
## S3 method for class 'pumpresult'
x[...]
## S3 method for class 'pumpresult'
x[[...]]
## S3 method for class 'pumpresult'
dim(x, ...)
## S3 method for class 'pumpresult'
summary(object, ...)
## S3 method for class 'pumpresult'
print(x, n = 10, header = TRUE, search = FALSE, ...)
## S3 method for class 'pumpresult'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

16 pumpresult

Arguments

a pumpresult object (except for is.pumpresult, where it is a generic object to Х check). additional arguments to be passed to the as.data.frame.list methods. Object to summarize. object Number of lines of search path to print, max. FALSE means skip some header info on the result, just print the data.frame of header actual results. search FALSE means don't print the search path for a result for mdes or sample. row.names NULL or a character vector giving the row names for the data frame. optional logical. If TRUE, setting row names and converting column names is optional.

Value

params: List of design parameters used.

d_m: Context (d_m) used (as string).

search_path: Dataframe describing search path, if it was saved in the pumpresult object.

pump_type: power, mdes, or sample, as a string.

is.pumpresult: TRUE if object is a pumpresult object.

'[': pull out rows and columns of the dataframe.

'[[': pull out single element of dataframe.

dim: Dimension of pumpresult (as matrix)

summary: No return value; prints results.

print: No return value; prints results.

as.data.frame: pumpresult object as a clean dataframe (no more attributes from pumpresult).

See Also

update update_grid print_context print_context

```
pp <- pump_power(d_m = "d3.2_m3ff2rc",
   MTP = 'H0', nbar = 50, J = 30, K = 10,
   M = 5, MDES = 0.125, Tbar = 0.5, alpha = 0.05,
   numCovar.1 = 1, numCovar.2 = 1,
   R2.1 = 0.1, R2.2 = 0.1, ICC.2 = 0.2, ICC.3 = 0.2,
   omega.2 = 0, omega.3 = 0.1, rho = 0.5, tnum = 1000)
print(pp)</pre>
```

pump_info 17

```
params(pp)
print_context(pp)
d_m(pp)
pump_type(pp)
is.pumpresult(pp)
as.data.frame(pp)
dim(pp)
summary(pp)
transpose_power_table(pp)
J \leftarrow pump_sample(d_m = "d2.1_m2fc",
  MTP = 'HO', power.definition = 'D1indiv',
  typesample = 'J', target.power = 0.7,
  nbar = 50, M = 3, MDES = 0.125,
  Tbar = 0.5, alpha = 0.05, numCovar.1 = 1,
  R2.1 = 0.1, ICC.2 = 0.05, rho = 0.2, tnum = 1000)
print_search(J)
search_path(J)
power_curve(J)
```

pump_info

Provides details about supported package features (core function)

Description

List user options: designs and models (d_m), including what parameters are relevant for each context; multiple testing procedures; types of power; design and model parameters.

Usage

```
pump_info(
  topic = c("all", "context", "adjustment", "power", "parameters"),
  comment = TRUE
)
```

Arguments

topic string; what kind of info. One of: all, context, adjustment, power, parameters. comment logical; prints out long description of each design and method.

Value

list; a list of data frames with information about each topic.

See Also

For more detailed information about user choices, see the manuscript https://arxiv.org/abs/2112.15273, which includes a detailed Technical Appendix including information about the designs and models and parameters.

pump_mdes

pump_mdes

Estimate the minimum detectable effect size (MDES) (core function)

Description

The user chooses the context (d_m), MTP, power definition, and choices of all relevant design parameters.

The functions performs a search algorithm, and returns the MDES value within the specified tolerance. For a list of choices for specific parameters, see pump_info().

```
pump_mdes(
  d_m,
 MTP = NULL
  numZero = NULL,
 Μ,
  nbar,
  J,
 K = 1,
  Tbar,
  alpha = 0.05,
  two.tailed = TRUE,
  target.power,
  power.definition,
  tol = 0.01,
  numCovar.1 = 0,
  numCovar.2 = 0,
  numCovar.3 = 0,
  R2.1 = 0,
 R2.2 = 0,
  R2.3 = 0,
  ICC.2 = 0,
  ICC.3 = 0,
  omega.2 = 0,
  omega.3 = 0,
  rho = NULL,
  rho.matrix = NULL,
  B = 1000,
  max.steps = 20,
  tnum = 1000,
  start.tnum = tnum/10,
  final.tnum = 4 * tnum,
  parallel.WY.cores = 1,
  updateProgress = NULL,
  give.optimizer.warnings = FALSE,
```

pump_mdes 19

```
verbose = FALSE
)
```

Arguments

guinents	
d_m	string; a single context, which is a design and model code. See pump_info() for list of choices.
MTP	string, or vector of strings; multiple testing procedure(s). See pump_info() for list of choices.
numZero	scalar; additional number of outcomes assumed to be zero. Please provide $NumZero + length(MDES) = M$.
М	scalar; the number of hypothesis tests (outcomes), including zero outcomes.
nbar	scalar; the harmonic mean of the number of level 1 units per level 2 unit (students per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number of level 1 units is nbar x J x K.
J	scalar; the harmonic mean of number of level 2 units per level 3 unit (schools per district). Note that this is not the total number of level 2 units, but instead the number of level 2 units nested within each level 3 unit, so the total number of level 2 units is $J \times K$.
K	scalar; the number of level 3 units (districts).
Tbar	scalar; the proportion of samples that are assigned to the treatment.
alpha	scalar; the family wise error rate (FWER).
two.tailed	scalar; TRUE/FALSE for two-tailed or one-tailed power calculation.
target.power	target power for search algorithm.
power.definiti	
	see pump_info() for possible power definitions.
tol	tolerance for target power, defaults to 0.01 (1 This parameter controls when the search is done: when estimated power (checked with 'final.tnum' iterations) is within 'tol', the search stops.
numCovar.1	scalar; number of level 1 (individual) covariates.
numCovar.2	scalar; number of level 2 (school) covariates.
numCovar.3	scalar; number of level 3 (district) covariates.
R2.1	scalar, or vector of length M; percent of variation explained by level 1 covariates for each outcome.
R2.2	scalar, or vector of length M; percent of variation explained by level 2 covariates for each outcome.
R2.3	scalar, or vector of length M; percent of variation explained by level 3 covariates for each outcome.
ICC.2	scalar, or vector of length M; level 2 (school) intraclass correlation.
ICC.3	scalar, or vector length M; level 3 (district) intraclass correlation.
omega.2	scalar, or vector of length M; ratio of variance of level 2 average impacts to

variance of level 2 random intercepts.

20 pump_mdes

omega.3	scalar, or vector of length M; ratio of variance of level 3 average impacts to variance of level 3 random intercepts.
rho	scalar; assumed correlation between all pairs of test statistics.
rho.matrix	matrix; alternate specification allowing a full matrix of correlations between test statistics. Must specify either rho or rho.matrix, but not both.
В	scalar; the number of permutations for Westfall-Young procedures.
max.steps	how many steps allowed before terminating.
tnum	max number of samples for first iteration of search algorithm.
start.tnum	number of samples to start search (this will increase with each step).
final.tnum	number of samples for final draw.
parallel.WY.cores	
	number of cores to use for parallel processing of WY-SD.
updateProgress	function to update progress bar (only used for PUMP shiny app).
give.optimizer	warnings whether to return verbose optimizer warnings.
verbose	TRUE/FALSE; Print out diagnostics of time, etc.

Value

a pumpresult object containing MDES results.

See Also

For more detailed information about this function and the user choices, see the manuscript https://arxiv.org/abs/2112.15273, which includes a detailed Technical Appendix including information about the designs and models and parameters.

```
mdes <- pump_mdes(</pre>
  d_m = "d3.1_m3rr2rr",
  MTP = 'HO',
  power.definition = 'D1indiv',
  target.power = 0.6,
  J = 30,
  K = 15,
  nbar = 50,
  M = 3,
  Tbar = 0.5, alpha = 0.05,
  two.tailed = FALSE,
  numCovar.1 = 1, numCovar.2 = 1,
  R2.1 = 0.1, R2.2 = 0.1,
  ICC.2 = 0.2, ICC.3 = 0.2,
  omega.2 = 0.1, omega.3 = 0.1,
  rho = 0.5, tnum = 2000)
```

pump_mdes_grid 21

pump_mdes_grid

Run pump_mdes on varying values of parameters (grid function)

Description

See pump_power_grid() for more details.

Usage

```
pump_mdes_grid(
  d_m,
 MTP,
 Μ,
  target.power,
 power.definition,
  tol = 0.01,
  nbar,
  J = 1,
 K = 1,
 Tbar,
  alpha,
  numCovar.1 = NULL,
 numCovar.2 = NULL,
  numCovar.3 = NULL,
 R2.1 = NULL
 R2.2 = NULL
 R2.3 = NULL,
 ICC.2 = NULL,
  ICC.3 = NULL,
 omega.2 = NULL,
  omega.3 = NULL,
  rho,
  verbose = FALSE,
 drop.unique.columns = TRUE,
)
```

Arguments

d_m	string; a single context, which is a design and model code. See pump_info() for list of choices.
MTP	string, or vector of strings; multiple testing procedure(s). See pump_info() for list of choices.
М	scalar; the number of hypothesis tests (outcomes), including zero outcomes.
target.power	target power for search algorithm.

22 pump_mdes_grid

		· ·		
power	de	t ı n	1 t	1 On
power	·uc	1 111	тι	TOIL

see pump_info() for possible power definitions.

tol tolerance for target power, defaults to 0.01 (1 This parameter controls when the

search is done: when estimated power (checked with 'final.tnum' iterations) is

within 'tol', the search stops.

nbar scalar; the harmonic mean of the number of level 1 units per level 2 unit (students

per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number

of level 1 units is nbar x J x K.

J scalar; the harmonic mean of number of level 2 units per level 3 unit (schools

per district). Note that this is not the total number of level 2 units, but instead the number of level 2 units nested within each level 3 unit, so the total number

of level 2 units is J x K.

K scalar; the number of level 3 units (districts).

Tbar scalar; the proportion of samples that are assigned to the treatment.

alpha scalar; the family wise error rate (FWER).

numCovar.1 scalar; number of level 1 (individual) covariates.

numCovar.2 scalar; number of level 2 (school) covariates.

numCovar. 3 scalar; number of level 3 (district) covariates.

R2.1 scalar, or vector of length M; percent of variation explained by level 1 covariates

for each outcome.

R2.2 scalar, or vector of length M; percent of variation explained by level 2 covariates

for each outcome.

R2.3 scalar, or vector of length M; percent of variation explained by level 3 covariates

for each outcome.

ICC. 2 scalar, or vector of length M; level 2 (school) intraclass correlation.

ICC. 3 scalar, or vector length M; level 3 (district) intraclass correlation.

omega. 2 scalar, or vector of length M; ratio of variance of level 2 average impacts to

variance of level 2 random intercepts.

omega.3 scalar, or vector of length M; ratio of variance of level 3 average impacts to

variance of level 3 random intercepts.

rho scalar; assumed correlation between all pairs of test statistics.

verbose TRUE/FALSE; Print out diagnostics of time, etc.

drop.unique.columns

logical; drop all parameter columns that did not vary across the grid.

... extra arguments passed to the underlying pump_power, pump_sample, or pump_mdes

functions.

Value

a pumpgridresult object containing MDES results.

pump_power 23

See Also

Other grid functions: pump_power_grid(), pump_sample_grid()

Examples

```
g <- pump_mdes_grid(d_m = "d3.2_m3ff2rc", MTP = "HO",
  target.power = c( 0.50, 0.80 ), power.definition = "D1indiv",
  tol = 0.05, M = 5, J = c( 3, 9), K = 7, nbar = 58,
  Tbar = 0.50, alpha = 0.15, numCovar.1 = 1, numCovar.2 = 1,
  R2.1 = 0.1, R2.2 = 0.7, ICC.2 = 0.05, ICC.3 = 0.9,
  rho = 0.4, tnum = 500)</pre>
```

pump_power

Estimate power across definitions (core function)

Description

The user chooses the context (d_m), MTP, MDES, and choices of all relevant design parameters.

The functions returns power for all definitions of power for any MTP. For a list of choices for specific parameters, see pump_info().

```
pump_power(
  d_m
 MTP = NULL,
  MDES,
  numZero = NULL,
 Μ,
  nbar,
  J = 1,
 K = 1,
  Tbar,
  alpha = 0.05,
  two.tailed = TRUE,
  numCovar.1 = 0,
  numCovar.2 = 0,
  numCovar.3 = 0,
 R2.1 = 0,
 R2.2 = 0,
 R2.3 = 0,
  ICC.2 = 0,
  ICC.3 = 0,
  omega.2 = 0,
  omega.3 = 0,
  rho = NULL,
  rho.matrix = NULL,
```

24 pump_power

```
tnum = 10000,
B = 1000,
parallel.WY.cores = 1,
drop.zero.outcomes = TRUE,
updateProgress = NULL,
validate.inputs = TRUE,
long.table = FALSE,
verbose = FALSE
```

Arguments

R2.2

R2.3

d_m	string; a single context, which is a design and model code. See pump_info() for list of choices.
MTP	string, or vector of strings; multiple testing procedure(s). See pump_info() for list of choices.
MDES	scalar or vector; the desired MDES values for each outcome. Please provide a scalar, a vector of length M, or vector of values for non-zero outcomes.
numZero	scalar; additional number of outcomes assumed to be zero. Please provide $NumZero + length(MDES) = M$.
М	scalar; the number of hypothesis tests (outcomes), including zero outcomes.
nbar	scalar; the harmonic mean of the number of level 1 units per level 2 unit (students per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number of level 1 units is nbar x J x K.
J	scalar; the harmonic mean of number of level 2 units per level 3 unit (schools per district). Note that this is not the total number of level 2 units, but instead the number of level 2 units nested within each level 3 unit, so the total number of level 2 units is J x K.
K	scalar; the number of level 3 units (districts).
Tbar	scalar; the proportion of samples that are assigned to the treatment.
alpha	scalar; the family wise error rate (FWER).
two.tailed	scalar; TRUE/FALSE for two-tailed or one-tailed power calculation.
numCovar.1	scalar; number of level 1 (individual) covariates.
numCovar.2	scalar; number of level 2 (school) covariates.
numCovar.3	scalar; number of level 3 (district) covariates.
R2.1	scalar, or vector of length M; percent of variation explained by level 1 covariates

 ${\tt ICC.2} \qquad \qquad {\tt scalar, or \, vector \, of \, length \, M; \, level \, 2 \, (school) \, intraclass \, correlation.}$

scalar, or vector of length M; percent of variation explained by level 2 covariates

scalar, or vector of length M; percent of variation explained by level 3 covariates

for each outcome.

for each outcome.

for each outcome.

pump_power 25

ICC.3	scalar, or vector length M; level 3 (district) intraclass correlation.				
omega.2	scalar, or vector of length M; ratio of variance of level 2 average impacts to variance of level 2 random intercepts.				
omega.3	scalar, or vector of length M; ratio of variance of level 3 average impacts to variance of level 3 random intercepts.				
rho	scalar; assumed correlation between all pairs of test statistics.				
rho.matrix	matrix; alternate specification allowing a full matrix of correlations between test statistics. Must specify either rho or rho.matrix, but not both.				
tnum	scalar; the number of test statistics to draw. Increasing tnum increases precision and computation time.				
В	scalar; the number of permutations for Westfall-Young procedures.				
parallel.WY.co	res				
	number of cores to use for parallel processing of WY-SD.				
drop.zero.outcomes					
	whether to report power results for outcomes with MDES = 0 .				
updateProgress	function to update progress bar (only used for PUMP shiny app).				
validate.inputs					
	TRUE/FALSE; whether or not to check whether parameters are valid given the choice of d_m.				
long.table	TRUE for table with power as rows, correction as columns, and with more verbose names. See 'transpose_power_table'.				
verbose	TRUE/FALSE; Print out diagnostics of time, etc.				

Value

a pumpresult object containing power results.

See Also

For more detailed information about this function and the user choices, see the manuscript https://arxiv.org/abs/2112.15273, which includes a detailed Technical Appendix including information about the designs and models and parameters.

```
pp <- pump_power(
    d_m = "d3.2_m3ff2rc",
    MTP = 'HO',
    nbar = 50,
    J = 30,
    K = 10,
    M = 5,
    MDES = 0.125,
    Tbar = 0.5, alpha = 0.05,
    numCovar.1 = 1, numCovar.2 = 1,
    R2.1 = 0.1, R2.2 = 0.1,
    ICC.2 = 0.2, ICC.3 = 0.2,</pre>
```

26 pump_power_grid

```
omega.2 = 0, omega.3 = 0.1, rho = 0.5)
```

pump_power_grid

Run pump_power on varying values of parameters (grid function)

Description

This extension of 'pump_power()' will take lists of parameter values and run 'pump_power()' on all combinations of these values.

It can only assume the same MDES value for all outcomes due to this. (I.e., a vector of MDES values will be interpreted as a sequence of calls to pump_power, one for each MDES value given).

Each parameter in the parameter list can be a list, not scalar. It will cross all combinations of the list.

```
pump_power_grid(
  d_m,
  MTP,
 MDES,
 Μ,
  nbar,
  J = 1,
 K = 1,
  numZero = NULL,
  Tbar,
  alpha = 0.05,
  numCovar.1 = NULL,
  numCovar.2 = NULL,
  numCovar.3 = NULL,
 R2.1 = NULL
 R2.2 = NULL
  R2.3 = NULL
  ICC.2 = NULL,
  ICC.3 = NULL,
  omega.2 = NULL,
  omega.3 = NULL,
  rho,
  long.table = FALSE,
  verbose = FALSE,
  drop.unique.columns = TRUE,
)
```

pump_power_grid 27

Arguments

0	
d_m	string; a single context, which is a design and model code. See pump_info() for list of choices.
MTP	string, or vector of strings; multiple testing procedure(s). See pump_info() for list of choices.
MDES	vector of numeric; This is *not* a list of MDES for each outcome, but rather a list of MDES to explore. Each value will be assumed held constant across all M outcomes.
М	scalar; the number of hypothesis tests (outcomes), including zero outcomes.
nbar	scalar; the harmonic mean of the number of level 1 units per level 2 unit (students per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number of level 1 units is nbar x J x K.
J	scalar; the harmonic mean of number of level 2 units per level 3 unit (schools per district). Note that this is not the total number of level 2 units, but instead the number of level 2 units nested within each level 3 unit, so the total number of level 2 units is J x K.
K	scalar; the number of level 3 units (districts).
numZero	scalar; additional number of outcomes assumed to be zero. Please provide $NumZero + length(MDES) = M$.
Tbar	scalar; the proportion of samples that are assigned to the treatment.
alpha	scalar; the family wise error rate (FWER).
numCovar.1	scalar; number of level 1 (individual) covariates.
numCovar.2	scalar; number of level 2 (school) covariates.
numCovar.3	scalar; number of level 3 (district) covariates.
R2.1	scalar, or vector of length M; percent of variation explained by level 1 covariates for each outcome.
R2.2	scalar, or vector of length M; percent of variation explained by level 2 covariates for each outcome.
R2.3	scalar, or vector of length M; percent of variation explained by level 3 covariates for each outcome.
ICC.2	scalar, or vector of length M; level 2 (school) intraclass correlation.
ICC.3	scalar, or vector length M; level 3 (district) intraclass correlation.
omega.2	scalar, or vector of length M; ratio of variance of level 2 average impacts to variance of level 2 random intercepts.
omega.3	scalar, or vector of length M; ratio of variance of level 3 average impacts to variance of level 3 random intercepts.
rho	scalar; assumed correlation between all pairs of test statistics.
long.table	TRUE for table with power as rows, correction as columns, and with more verbose names. See 'transpose_power_table'.
verbose	logical; TRUE means print out some text as calls processed. FALSE do not.

28 pump_sample

```
drop.unique.columns
```

logical; drop all parameter columns that did not vary across the grid.

extra arguments passed to the underlying pump_power, pump_sample, or pump_mdes functions.

Value

a pumpgridresult object containing power results.

See Also

```
Other grid functions: pump_mdes_grid(), pump_sample_grid()
```

Examples

```
 g \leftarrow pump\_power\_grid( \ d\_m = "d3.2\_m3ff2rc", \ MTP = c( "HO", "BF" ), \\ MDES = 0.10, \ J = seq(5, 10, 1), \ M = 5, \ K = 7, \ nbar = 58, \\ Tbar = 0.50, \ alpha = 0.15, \ numCovar.1 = 1, \\ numCovar.2 = 1, \ R2.1 = 0.1, \ R2.2 = 0.7, \\ ICC.2 = 0.25, \ ICC.3 = 0.25, \ rho = 0.4, \ tnum = 1000)
```

pump_sample

Estimate the required sample size (core function)

Description

The user chooses the context (d_m), MTP, type of sample size, MDES, power definition, and choices of all relevant design parameters.

The functions performs a search algorithm, and returns the sample size value within the specified tolerance. For a list of choices for specific parameters, see pump_info().

```
pump_sample(
   d_m,
   MTP = NULL,
   typesample,
   MDES,
   M,
   numZero = NULL,
   nbar = NULL,
   J = NULL,
   K = NULL,
   target.power,
   power.definition,
   alpha,
   two.tailed = TRUE,
   Tbar,
```

pump_sample 29

```
numCovar.1 = 0,
  numCovar.2 = 0,
  numCovar.3 = 0,
 R2.1 = 0,
 R2.2 = 0,
 R2.3 = 0,
  ICC.2 = 0,
  ICC.3 = 0,
  rho = NULL,
  rho.matrix = NULL,
  omega.2 = 0,
  omega.3 = 0,
  B = 1000,
 max.steps = 20,
  tnum = 1000,
  start.tnum = tnum/10,
  final.tnum = 4 * tnum,
  parallel.WY.cores = 1,
  updateProgress = NULL,
  max_sample_size_nbar = 10000,
 max_sample_size_JK = 1000,
  tol = 0.01,
  give.optimizer.warnings = FALSE,
  verbose = FALSE
)
```

Arguments

d_	m s	string; a sing	gle context,	which is a	design and	l model	code. S	ee pump_	_info() for
----	-----	----------------	--------------	------------	------------	---------	---------	----------	-------------

list of choices.

MTP string, or vector of strings; multiple testing procedure(s). See pump_info() for

list of choices.

typesample string; type of sample size to calculate: "nbar", "J", or "K".

MDES scalar or vector; the desired MDES values for each outcome. Please provide a

scalar, a vector of length M, or vector of values for non-zero outcomes.

M scalar; the number of hypothesis tests (outcomes), including zero outcomes.

numZero scalar; additional number of outcomes assumed to be zero. Please provide

NumZero + length(MDES) = M.

nbar scalar; the harmonic mean of the number of level 1 units per level 2 unit (students

per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number

of level 1 units is nbar x J x K.

J scalar; the harmonic mean of number of level 2 units per level 3 unit (schools per district). Note that this is not the total number of level 2 units, but instead

the number of level 2 units nested within each level 3 unit, so the total number

of level 2 units is J x K.

30 pump_sample

scalar; the number of level 3 units (districts). target.power target power for search algorithm. power.definition see pump info() for possible power definitions. alpha scalar; the family wise error rate (FWER). two.tailed scalar; TRUE/FALSE for two-tailed or one-tailed power calculation. Tbar scalar; the proportion of samples that are assigned to the treatment. numCovar.1 scalar; number of level 1 (individual) covariates. scalar; number of level 2 (school) covariates. numCovar.2 numCovar.3 scalar; number of level 3 (district) covariates. R2.1 scalar, or vector of length M; percent of variation explained by level 1 covariates for each outcome. scalar, or vector of length M; percent of variation explained by level 2 covariates R2.2 for each outcome. R2.3 scalar, or vector of length M; percent of variation explained by level 3 covariates for each outcome. ICC.2 scalar, or vector of length M; level 2 (school) intraclass correlation. ICC.3 scalar, or vector length M; level 3 (district) intraclass correlation. rho scalar; assumed correlation between all pairs of test statistics. rho.matrix matrix; alternate specification allowing a full matrix of correlations between test statistics. Must specify either rho or rho.matrix, but not both. scalar, or vector of length M; ratio of variance of level 2 average impacts to omega.2 variance of level 2 random intercepts. scalar, or vector of length M; ratio of variance of level 3 average impacts to omega.3 variance of level 3 random intercepts. scalar; the number of permutations for Westfall-Young procedures. В how many steps allowed before terminating. max.steps max number of samples for first iteration of search algorithm. tnum number of samples to start search (this will increase with each step). start.tnum final.tnum number of samples for final draw. parallel.WY.cores number of cores to use for parallel processing of WY-SD. updateProgress function to update progress bar (only used for PUMP shiny app). max_sample_size_nbar scalar; default upper bound for nbar for search algorithm. max_sample_size_JK scalar; default upper bound for J or K for search algorithm. tolerance for target power, defaults to 0.01 (1 This parameter controls when the tol search is done: when estimated power (checked with 'final.tnum' iterations) is within 'tol', the search stops. give.optimizer.warnings whether to return verbose optimizer warnings.

TRUE/FALSE; Print out diagnostics of time, etc.

verbose

pump_sample_grid 31

Value

a pumpresult object containing sample size results.

See Also

For more detailed information about this function and the user choices, see the manuscript https://arxiv.org/abs/2112.15273, which includes a detailed Technical Appendix including information about the designs and models and parameters.

Examples

```
J <- pump_sample(
    d_m = 'd2.1_m2fc',
    MTP = 'HO',
    power.definition = 'D1indiv',
    typesample = 'J',
    target.power = 0.8,
    nbar = 50,
    M = 3,
    MDES = 0.125,
    Tbar = 0.5, alpha = 0.05,
    numCovar.1 = 1,
    R2.1 = 0.1, ICC.2 = 0.05, rho = 0.2,
    tnum = 1000)</pre>
```

pump_sample_grid

Run pump_sample on varying values of parameters (grid function)

Description

See pump_power_grid() for further details.

```
pump_sample_grid(
    d_m,
    MTP,
    M,
    target.power,
    power.definition,
    tol = 0.01,
    MDES = NULL,
    typesample,
    nbar = NULL,
    J = NULL,
    K = NULL,
    Tbar,
    alpha,
```

32 pump_sample_grid

```
numCovar.1 = NULL,
numCovar.2 = NULL,
numCovar.3 = NULL,
R2.1 = NULL,
R2.2 = NULL,
R2.3 = NULL,
ICC.2 = NULL,
ICC.3 = NULL,
omega.2 = NULL,
omega.3 = NULL,
rho,
verbose = FALSE,
drop.unique.columns = TRUE,
...
)
```

Arguments

d_m string; a single context, which is a design and model code. See pump_info() for

list of choices.

MTP string, or vector of strings; multiple testing procedure(s). See pump_info() for

list of choices.

M scalar; the number of hypothesis tests (outcomes), including zero outcomes.

target.power target power for search algorithm.

power.definition

see pump info() for possible power definitions.

tol tolerance for target power, defaults to 0.01 (1 This parameter controls when the

search is done: when estimated power (checked with 'final.tnum' iterations) is

within 'tol', the search stops.

MDES scalar or vector; the desired MDES values for each outcome. Please provide a

scalar, a vector of length M, or vector of values for non-zero outcomes.

typesample string; type of sample size to calculate: "nbar", "J", or "K".

nbar scalar; the harmonic mean of the number of level 1 units per level 2 unit (students

per school). Note that this is not the total number of level 1 units, but instead the number of level 1 units nested within each level 2 unit, so the total number

of level 1 units is nbar x J x K.

J scalar; the harmonic mean of number of level 2 units per level 3 unit (schools

per district). Note that this is not the total number of level 2 units, but instead the number of level 2 units nested within each level 3 unit, so the total number

of level 2 units is J x K.

K scalar; the number of level 3 units (districts).

Tbar scalar; the proportion of samples that are assigned to the treatment.

alpha scalar; the family wise error rate (FWER).

numCovar.1 scalar; number of level 1 (individual) covariates. numCovar.2 scalar; number of level 2 (school) covariates. pump_sample_grid 33

	numCovar.3	scalar; number of level 3 (district) covariates.			
	R2.1	scalar, or vector of length M; percent of variation explained by level 1 covariates for each outcome.			
	R2.2	scalar, or vector of length M; percent of variation explained by level 2 covariates for each outcome.			
	R2.3	scalar, or vector of length M; percent of variation explained by level 3 covariates for each outcome.			
	ICC.2	scalar, or vector of length M; level 2 (school) intraclass correlation.			
	ICC.3	scalar, or vector length M; level 3 (district) intraclass correlation.			
	omega.2	scalar, or vector of length M; ratio of variance of level 2 average impacts to variance of level 2 random intercepts.			
	omega.3	scalar, or vector of length M; ratio of variance of level 3 average impacts to variance of level 3 random intercepts.			
	rho	scalar; assumed correlation between all pairs of test statistics.			
	verbose	TRUE/FALSE; Print out diagnostics of time, etc.			
drop.unique.columns					
		logical; drop all parameter columns that did not vary across the grid.			
		extra arguments passed to the underlying pump_power, pump_sample, or pump_mdes functions.			

Value

a pumpgridresult object containing sample results.

See Also

```
Other grid functions: pump_mdes_grid(), pump_power_grid()
```

```
g <- pump_sample_grid(d_m = "d3.2_m3ff2rc", typesample = "J",
    MTP = "HO", MDES = 0.10, target.power = c( 0.50, 0.80 ),
    power.definition = "min1", tol = 0.03,
    M = 5, K = 7, nbar = 58, Tbar = 0.50,
    alpha = 0.15, numCovar.1 = 1, numCovar.2 = 1,
    R2.1 = 0.1, R2.2 = 0.7, ICC.2 = 0.25, ICC.3 = 0.25,
    rho = 0.4, tnum = 400)</pre>
```

34 update.pumpresult

transpose_power_table Convert power table from wide to long (result function)

Description

Transform table returned from pump_power to a long format table or to a wide format table.

Usage

```
transpose_power_table(power_table, M = NULL)
```

Arguments

М

power_table pumpresult object for a power result (not mdes or sample). (It can also take a raw dataframe of the wide table to convert to long, as an internal helper method.)

scalar; set if power_table is a data.frame without set number of outcomes. Usu-

ally ignore this.

Value

data.frame of power results in long format.

update.pumpresult

Update a pump call, tweaking some parameters (core function)

Description

Works on objects returned by pump_power(), pump_mdes(), or pump_sample(). One of the optional parameters can be a 'type = something' argument, where the "something" is either "power", "sample", or "mdes", if the call should be shifted to a different pump call (pump_power, pump_sample, or pump_mdes, respectively).

Usage

```
## S3 method for class 'pumpresult'
update(object, type = NULL, ...)
```

Arguments

object pump result object.

type string; can be "power", "mdes" or "sample", sets the type of the updated call

(can be different from original).

... parameters as specified in 'pump_power', 'pump_mdes', and 'pump_sample'

that should be overwritten.

update_grid 35

Value

a pumpresult object: results of a new call using parameters of old object with newly specified parameters replaced.

Examples

```
ss <- pump_sample( d_m = "d2.1_m2fc", MTP = "H0",
  typesample = "J", nbar = 200, power.definition = "min1",
  M = 5, MDES = 0.05, target.power = 0.5, tol = 0.05,
  Tbar = 0.50, alpha = 0.05, numCovar.1 = 5, R2.1 = 0.1,
  ICC.2 = 0.15, rho = 0, final.tnum = 1000 )</pre>
up <- update(ss, nbar = 40, tnum = 2000 )
```

update_grid

Update a single pump call to a grid call (grid function)

Description

Take a pumpresult and provide lists of parameters to explore various versions of the initial scenario.

Usage

```
update_grid(x, ...)
```

Arguments

x pump result object.

... list of parameters to expand into a grid.

Value

a pumpgridresult object; result of calling corresponding grid.

```
pp <- pump_power(d_m = "d2.1_m2fc", MTP = "HO",
    nbar = 200, J = 20, MDES = 0.2, M = 3,
    Tbar = 0.50, alpha = 0.05, numCovar.1 = 5,
    R2.1 = 0.1, ICC.2 = 0.05, rho = 0, tnum = 500)
gd <- update_grid( pp, J = c( 10, 20, 30 ) )</pre>
```

Index

```
* grid functions
                                                pump_info, 17
    pump_mdes_grid, 21
                                                pump_mdes, 18
    pump_power_grid, 26
                                                pump_mdes_grid, 21, 28, 33
    pump_sample_grid, 31
                                                pump_power, 23
* pump_info
                                                pump_power_grid, 23, 26, 33
    parse_d_m, 7
                                                pump_sample, 28
[.pumpresult(pumpresult), 15
                                                pump_sample_grid, 23, 28, 31
[[.pumpresult (pumpresult), 15
                                                pump_type (pumpresult), 15
                                                pumpgridresult, 14
as.data.frame.pumpresult(pumpresult),
                                                pumpresult, 15
        15
                                                 search_path (pumpresult), 15
calc_df, 2
                                                 summary.pumpgridresult
convert_params, 3
                                                         (pumpgridresult), 14
                                                 summary.pumpresult (pumpresult), 15
d_m (pumpresult), 15
dim.pumpresult (pumpresult), 15
                                                transpose_power_table, 34
gen_assignments, 4
                                                update.pumpresult, 34
gen_corr_matrix, 4
                                                update_grid, 35
gen_full_data, 5
gen_T.x, 5
gen_Yobs, 6
get_power_results, 6
is.pumpgridresult(pumpgridresult), 14
is.pumpresult(pumpresult), 15
params (pumpresult), 15
parse_d_m, 7
plot.pumpgridresult, 8
plot.pumpresult, 9
plot_power_curve, 9
plot_power_search, 11
power_curve, 11
print.pumpgridresult(pumpgridresult),
print.pumpresult (pumpresult), 15
print_context, 12
print_search, 13
PUMP, 13
```