Package 'PWEALL'

October 18, 2018

Type Package Version 1.3.0 Date 2018-10-18

Title Design and Monitoring of Survival Trials Accounting for Complex Situations

Description Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-

uniform accrual,

and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution.

As compared with Version 1.2.1, two more types of hybrid crossover are added.

A bug is corrected in the function "pwecx" that calculates the crossover-adjusted survival, distribution,

density, hazard and cumulative hazard functions.

Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Depends R (>= 3.1.2) Imports survival, stats License GPL (>= 2) RoxygenNote 5.0.1 LazyData true

NeedsCompilation yes

Author Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph]

Maintainer Xiaodong Luo < Xiaodong Luo@sanofi.com>

Repository CRAN

Date/Publication 2018-10-18 11:30:13 UTC

87

Index

R topics documented:

PWEALL-package 3

PWEALL-package Design and Monitoring of Survival Trials Accounting for Complex Sit-

uations

Description

Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-uniform accrual, and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution. As compared with Version 1.2.1, two more types of hybrid crossover are added. A bug is corrected in the function "pwecx" that calculates the crossover-adjusted survival, distribution, density, hazard and cumulative hazard functions. Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Details

The DESCRIPTION file:

Package: PWEALL
Type: Package
Version: 1.3.0
Date: 2018-10-18

Title: Design and Monitoring of Survival Trials Accounting for Complex Situations

Description: Calculates various functions needed for design and monitoring survival trials accounting for complex situation

Authors@R: c(person(given="Xiaodong", family="Luo", email = "Xiaodong.Luo@sanofi.com", role =c("aut", "cre")), person(given="Xiaodong", family="Luo", email = "Xiaodong.Luo", email =

Depends: R (>= 3.1.2)
Imports: survival, stats

License: GPL (>= 2)
RoxygenNote: 5.0.1
LazyData: true

Author: Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph]

Maintainer: Xiaodong Luo <Xiaodong.Luo@sanofi.com>

Index of help topics:

PWEALL-package Design and Monitoring of Survival Trials

Accounting for Complex Situations

cp Conditional power given observed log hazard

ratio

cpboundary The stopping boundary based on the conditional

power criteria

cpstop The stopping probability based on the stopping

boundary

fourhr A utility functon

4 PWEALL-package

hxbeta A function to calculate the beta-smoothed

hazard rate

innercov A utility function to calculate the inner

integration of the overall covariance

innervar A utility function to calculate the inner

integration of the overall variance

instudyfindt calculate the timeline in study when some or

all subjects have entered

ovbeta calculate the overall log hazard ratio

overallcov calculate the overall covariance

overallcovp1 calculate the first part of the overall

covariance

overallcovp2 calculate the other parts of the overall

covariance

overallvar calculate the overall variance

pwe Piecewise exponential distribution: hazard,

cumulative hazard, density, distribution,

survival

pwecx Various function for piecewise exponential

distribution with crossover effect

exponential distribution with crossover effect

and the censoring function

pwecxpwu Integration of the density of piecewise

exponential distribution with crossover effect,

censoring and recruitment function

pwecxpwufindt calculate the timeline when certain number of

events accumulates

pwecxpwuforvar calculate the utility function used for

varaince calculation

pwefv2 A utility function
pwefvplus A utility functon

pwepower Calculating the powers of various the test

statistics for superiority trials

pwepowereq Calculating the powers of various the test

statistics for equivalence trials

pwepowerfindt Calculating the timepoint where a certain power

of the specified test statistics is obtained Calculating the powers of various the test

pwepowerni Calculating the powers of various the tes

statistics for non-inferiority trials

pwesim simulating the test statistics

pwu Piecewise uniform distribution: distribution qpwe Piecewise exponential distribution: quantile

function

qpwu Piecewise uniform distribution: quantile

function

rmstcov Calculation of the variance and covariance of

estimated restricted mean survival time

PWEALL-package 5

rmsth Estimate the restricted mean survival time (RMST) and its variance from data rmstpower Calculate powers at different cut-points based on difference of restricted mean survival times (RMST) rmstpowerfindt Calculating the timepoint where a certain power of mean difference of RMSTs is obtained simulating the restricted mean survival times rmstsim A utility function to calculate the true rmstutil restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry Piecewise exponential distribution: random rpwe number generation rpwecx Piecewise exponential distribution with crossover effect: random number generation Piecewise uniform distribution: random number rpwu generation A utility function spf wlrcal A utility function to calculate the weighted log-rank statistics and their varainces given the weights A function to calculate the various weighted wlrcom

There are 5 types of crossover considered in the package: (1) Markov crossover, (2) Semi-Markov crossover, (3) Hybrid crossover-1, (4) Hybrid crossover-2 and (5) Hybrid crossover-3. The first 3 types are described in Luo et al. (2018). The fourth and fifth types are added for Version 1.3.0. The crossover type is determined by the hazard function after crossover $\lambda_2^{\mathbf{x}}(t \mid u)$. For Type (1), the Markov crossover,

functions in contructing weights

log-rank statistics and their varainces

A utility function to calculate some common

$$\lambda_2^{\mathbf{x}}(t \mid u) = \lambda_2(t).$$

For Type (2), the Semi-Markov crossover,

$$\lambda_2^{\mathbf{x}}(t \mid u) = \lambda_2(t - u).$$

For Type (3), the hybrid crossover-1,

wlrutil

$$\lambda_2^{\mathbf{x}}(t \mid u) = \pi_2 \lambda_2(t - u) + (1 - \pi_2)\lambda_4(t).$$

For Type (4), the hazard after crossover is

$$\lambda_2^{\mathbf{x}}(t \mid u) = \frac{\pi_2 \lambda_2(t - u) S_2(t - u) + (1 - \pi_2) \lambda_4(t) S_4(t) / S_4(u)}{\pi_2 S_2(t - u) + (1 - \pi_2) S_4(t) / S_4(u)}.$$

For Type (5), the hazard after crossover is

$$\lambda_2^{\mathbf{x}}(t \mid u) = \frac{\pi_2 \lambda_2(t-u) S_2(t-u) + (1-\pi_2)\lambda_4(t-u) S_4(t-u)}{\pi_2 S_2(t-u) + (1-\pi_2)S_4(t-u)}.$$

6 cp

The types (4) and (5) are more closely related to "re-randomization", i.e. when a patient crosses, (s)he will have probability π_2 to have hazard λ_2 and probability $1-\pi_2$ to have hazard λ_4 . The types (4) and (5) differ in having λ_4 as Markov or Semi-markov.

Author(s)

NA

Maintainer: NA

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

ср

Conditional power given observed log hazard ratio

Description

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Usage

```
 \label{eq:cp(Dplan=300,alpha=0.05,two.sided=1,pi1=0.5,0bsbeta=log(seq(1,0.6,by=-0.01)), \\ BetaD=log(0.8),BetaO=log(1),prop=seq(0.1,0.9,by=0.1))
```

Arguments

Dplan Planned number of events at study end

alpha Type 1 error rate

two.sided =1 two-sided test and =0 one-sided test

pi1 Allocation probability for the treatment group

Obsbeta observed log hazard ratio

BetaD designed log hazard ratio, i.e. under alternative hypothesis

Beta0 null log hazard ratio, i.e. under null hypothesis

prop proportion of Dplan observed

Details

This is to calculated conditional power at time point when certain percent of target number of event has been observed and an observed log hazard ratio is provided.

cpboundary 7

Value

CPT	Conditional power under current trend
CPN	Conditional power under null hypothesis
CPD	Conditional power according to design, i.e. under alternative hypothesis

Note

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cpboundary,cpstop

Examples

```
###Calculate the CP at 10-90 percent of the target 300 events when the observed HR ###are seq(1,0.6,by=-0.01) with 2:1 allocation ###ratio between the treatment group and the control group cp(pi1=2/3)
```

cpboundary

The stopping boundary based on the conditional power criteria

Description

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

```
\label{eq:condition} $$ \cpboundary(Dplan=300,alpha=0.05,two.sided=1,pi1=0.5,cpcut=c(0.2,0.3,0.4), \\ BetaD=log(0.8),Beta0=log(1),prop=seq(0.1,0.9,by=0.1)) $$
```

8 cpboundary

Arguments

Dplan Planned number of events at study end

alpha Type 1 error rate

two.sided =1 two-sided test and =0 one-sided test

pi1 Allocation probability for the treatment group

cpcut the designated conditional power level

BetaD designed log hazard ratio, i.e. under alternative hypothesis

Beta0 null log hazard ratio, i.e. under null hypothesis

prop proportion of Dplan observed

Details

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

CPTbound Boundary based on the conditional power under current trend
CPNbound Boundary based on the conditional power under null hypothesis

CPDbound Boundary based on the conditional power according to design, i.e. under alter-

native hypothesis

Note

This will calculate the stopping boundary based on the conditional power criteria

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cp,cpstop

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events ###when the condition power are c(0.2,0.3,0.4) with ###2:1 allocation ratio between the treatment group and the control group cpboundary(pi1=2/3)
```

cpstop 9

cpstop	The stopping probability based on the stopping boundary	

Description

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

```
\label{eq:cpstop} \begin{split} & \operatorname{cpstop}(\operatorname{Dplan=300,pi1=0.5,Beta1=log(0.8),Beta0=log(1),} \\ & \operatorname{prop=seq(0.1,0.9,by=0.1),HRbound=rep(0.85,length(prop)))} \end{split}
```

Arguments

Dplan	Planned number of events at study end
pi1	Allocation probability for the treatment group
Beta1	designed log hazard ratio, i.e. under alternative hypothesis
Beta0	null log hazard ratio, i.e. under null hypothesis
prop	proportion of Dplan observed
HRbound	the stopping boundary

Details

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

pstop0	Stopping probability under null hypothesis
pstop1	Stopping probability under alternative hypothesis

Note

This will calculate the stopping probability given the stopping boundary

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cp,cpboundary

10 cpstop

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events
###when the condition power are c(0.2,0.3,0.4) with 2:1 allocation ratio
###between the treatment group and the control group, we pick the boundary
###based on 20 percent conditional power according to design, i.e. under alternative
targetD<-800 ###target number of events at study end
############Allocation prob for the treatment group#############
pi1<-2/3
propevent<-seq(0.1,0.9,by=0.1) ###proportion of events at interim
HRbound<-cpboundary(Dplan=targetD,pi1=pi1,prop=propevent)$CPDbound[,1] ###picking a boundary</pre>
pa<-cpstop(pi1=pi1,HRbound=HRbound) ###stopping probabilities under null and alternative
ра
###Calculate the stopping probability under non-constant hazard ratio
n1<-length(propevent)</pre>
####time point at which hazard rates and hazard ratios change
tchange < -c(0,6,12,24)
###annual event rates=0.09(1st yr), 0.07(2nd yr) and 0.05(2+yr) for control
ratet<-c(0.09/12,0.09/12,0.07/12,0.05/12)
###annual censoring rate=0%(1st yr) and 1.5%(after) for control and treatment
ratec0<-c(0/12,0/12,0.015/12,0.015/12)
ratec1<-ratec0
###annual treatment discontinuation rate=4% (1st yr) and 3% (after)
rate31<-c(0.04/12,0.04/12,0.03/12,0.03/12)
rate30<-rep(0,length(tchange))</pre>
ntotal<-sum(oa)</pre>
ntotal
taur<-length(oa)
ut<-seq(1,taur,by=1)
u<-oa/ntotal
############Type-1 error rate############
alpha<-0.05
####null hypothesis
eta0<-log(1)
####constant HR
etac < -log(0.8)
####non-constant HR
eta<-c(log(1), log(0.75), log(0.75), log(0.75)) ###6-m delayed
####target number of events where calculations are performed#############
sevent<-propevent*targetD
```

fourhr 11

```
nse<-length(sevent)</pre>
xtimeline<-xbeta<-xvar<-pxstop<-matrix(0,ncol=2,nrow=nse)</pre>
xtimeline[,1]<-xbeta[,1]<-xvar[,1]<-pxstop[,1]<-sevent</pre>
tbegin<-proc.time()</pre>
for (i in 1:nse){
###find timeline
xtimeline[i,2]<-pwecxpwufindt(target=sevent[i],ntotal=ntotal,</pre>
                 taur=taur,u=u,ut=ut,pi1=0.5,
                rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                 rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                 tchange = tchange, eps = 0.001, init = taur, epsilon = 0.000001, maxiter = 100) \$tau1
#Overall hazard ratio and varaince
xbeta[i,2]<-ovbeta(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,</pre>
                rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                 rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                 tchange=tchange,eps=0.001,veps=0.001,epsbeta=1.0e-10)$b1
xvar[i,2]<-overallvar(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,</pre>
                rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                 rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                 tchange=tchange.eps=0.001,veps=0.001,beta=xbeta[i,2])$vbeta
}
##stopping prob
pxstop[,2]<-1-pnorm(sqrt(ntotal)*(log(HRbound)-xbeta[,2])/sqrt(xvar[,2]))</pre>
tend<-proc.time()
xout<-cbind(xtimeline[,1],xtimeline[,2],xbeta[,2],xvar[,2]/ntotal,</pre>
            1/pi1/(1-pi1)/xtimeline[,1],pxstop[,2],pa$pstop0,pa$pstop1)
xnames<-c("# of events", "Time", "Estbeta", "TrueV", "ApproxV", "NCHR", "Null", "CHR")
colnames(xout)<-xnames</pre>
options(digits=2)
xout
```

fourhr

A utility function

Description

This will calculate the more complex integration

Usage

```
fourhr(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,
rate3=c(0.1,0.2),rate4=rate2,tchange=c(0,3),eps=1.0e-2)
```

Arguments

t A vector of time points rate1 piecewise constant event rate 12 fourhr

rate2	piecewise constant event rate
rate3	piecewise constant event rate
rate4	additional piecewise constant
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.

eps tolerance

Details

Let h_1, \ldots, h_4 correspond to rate1,...,rate4, and H_1, \ldots, H_4 be the corresponding survival functions. We calculate

$$\int_0^t h_1(s)H_2(s)h_3(t-s)H_4(t-s)ds.$$

Value

fx values

Note

This provides the result of the complex integration

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

hxbeta 13

h	X	h	Δ	+	_
п	X	D	\leftarrow	ι.	а

A function to calculate the beta-smoothed hazard rate

Description

A function to calculate the beta-smoothed hazard rate

Usage

```
hxbeta(x=c(0.5,1),y=seq(.1,1,by=0.01),d=rep(1,length(y)),

tfix=2,K=20,eps=1.0e-06)
```

Arguments

X	time points where the estimated hazards are calculated
У	observed times
d	non-censoring indicators
tfix	maximum time point at which the hazard function is estimated
K	smooth parameter for the hazard estimate

sinooni parameter for the nazard estimate

eps the error tolerance when comparing event times

Details

V1:3/21/2018

Value

lambda estimated hazard at points x

Author(s)

Xiaodong Luo

```
n<-200
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
tfix<-taur+2
tseq<-seq(0,tfix,by=0.1)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
tchange<-c(0,1.873)</pre>
```

14 innercov

innercov

A utility function to calculate the inner integration of the overall covariance

Description

This will calculate the inner integration of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tupp

tlow	A vector of lower bounds
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group

A vector of upper bounds

innercov 15

r	rate41	Hazard after crossover for the treatment group for complex case
r	rate51	Hazard after crossover for the treatment group for complex case
r	ratec1	Hazard for time to censoring for the treatment group
r	rate10	Hazard before crossover for the control group
r	rate20	Hazard after crossover for the control group
r	rate30	Hazard for time to crossover for the control group
r	rate40	Hazard after crossover for the control group for complex case
r	rate50	Hazard after crossover for the control group for complex case
r	ratec0	Hazard for time to censoring for the control group
t	tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
t	type1	Type of crossover in the treatment group
1	type0	Type of crossover in the control group
r	rp21	re-randomization prob for the treatment group
r	rp20	re-randomization prob for the control group
6	eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
		with $l = 0, 1, 2$.
١	veps	A small number representing the error tolerance when calculating the integrations.
k	oeta	The value at which the inner part of the covaraince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

qf1	The first part of the inner integration
qf2	The second part of the inner integration

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

16 innervar

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,pwecx,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
rate11=r11, rate21=r21, rate31=r31,
                   rate41=r41, rate51=r51, ratec1=rc1,
                   rate10=r10, rate20=r20, rate30=r30,
                   rate40=r40, rate50=r50, ratec0=rc0,
                   tchange=c(0,1), type1=1, type0=1,
                   eps=1.0e-2, veps=1.0e-2, beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```

innervar

A utility function to calculate the inner integration of the overall variance

Description

This will calculate the inner integration of the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

innervar 17

Arguments

t	A vector of time points where the integration is calculated.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob for the treatment group
rp20	re-randomization prob for the control group
eps	A small number representing the error tolerance when calculating the utility function $\int_{-\infty}^{\infty} dx dx = 8.1$
	$\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the varaince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

18 innervar

Value

qf1	The first part of the inner integration
qf2	The second part of the inner integration

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,pwecx,ovbeta,innervar

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
getinner<-innervar(t=seq(0,10,by=0.5),taur=taur,u=u,ut=ut,pi1=0.5,</pre>
                       rate11=r11, rate21=r21, rate31=r31,
                       rate41=r41, rate51=r51, ratec1=rc1,
                       rate10=r10, rate20=r20, rate30=r30,
                       rate40=r40, rate50=r50, ratec0=rc0,
                       tchange=c(0,1),type1=1,type0=1,
                       eps=1.0e-2, veps=1.0e-2, beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```

instudyfindt

calculate the timeline in study when some or all subjects have entered

Description

This will calculate the timeline from some timepoint in study when some/all subjects have entered accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
instudyfindt(target=400,y=exp(rnorm(300)),z=rbinom(300,1,0.5),
                  d=rep(c(0,1,2),each=100),
                  tcut=2,blinded=1,type0=1,type1=type0,
                  rp20=0.5,rp21=0.5,tchange=c(0,1),
              rate10=c(1,0.7),rate20=c(0.9,0.7),rate30=c(0.4,0.6),rate40=rate20,
                  rate50=rate20, ratec0=c(0.3,0.3),
                  rate11=rate10, rate21=rate20, rate31=rate30,
                  rate41=rate40, rate51=rate50, ratec1=ratec0,
                  withmorerec=1,
               ntotal=1000,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                  ntype0=1,ntype1=1,
                  nrp20=0.5,nrp21=0.5,ntchange=c(0,1),
                  nrate10=rate10, nrate20=rate20, nrate30=rate30, nrate40=rate40,
                  nrate50=rate50,nratec0=ratec0,
                  nrate11=rate10,nrate21=rate20,nrate31=rate30,nrate41=rate40,
                  nrate51=rate50,nratec1=ratec0,
                  eps=1.0e-2,init=tcut*1.1,epsilon=0.001,maxiter=100)
```

Arguments

target	target number of events
У	observed times
Z	observed treatment indicator when blinded=0, z=1 denotes the treatment group and 0 the control group
d	event indicator, 1=event, 0=censored, 2=no event or censored up to tcut, the data cut-point
tcut	the data cut-point
blinded	blinded=1 if the data is blinded,=0 if it is unblinded
type0	type of the crossover for the observed data in the control group
type1	type of the crossover for the observed data in the treatment group
rp20	re-randomization prob for the observed data in the control group
rp21	re-randomization prob for the observed data in the treatment group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as $ratejk$, $j=1,2,3,4,5,c$; $k=0,1$

rate10	Hazard before crossover for the old subjects in the control group
rate20	Hazard after crossover for the old subjects in the control group
rate30	Hazard for time to crossover for the old subjects in the control group
rate40	Hazard after crossover for the old subjects in the control group for complex case
rate50	Hazard after crossover for the old subjects in the control group for complex case
ratec0	Hazard for time to censoring for the old subjects in the control group
rate11	Hazard before crossover for the old subjects in the treatment group
rate21	Hazard after crossover for the old subjects in the treatment group
rate31	Hazard for time to crossover for the old subjects in the treatment group
rate41	Hazard after crossover for the old subjects in the treatment group for complex case
rate51	Hazard after crossover for the old subjects in the treatment group for complex case
ratec1	Hazard for time to censoring for the old subjects in the treatment group
withmorerec	withmorerec=1 if more subjects are needed to be recruited; =0 otherwise
ntotal	total number of the potential new subjects
taur	recruitment time for the potential new subjects
u	Piecewise constant recuitment rate for the potential new subjects
ut	Recruitment intervals for the potential new subjects
pi1	Allocation probability to the treatment group for the potential new subjects
ntype0	type of the crossover for the potential new subjects in the control group
ntype1	type of the crossover for the potential new subjects in the treatment group
nrp20	re-randomization prob for the potential new subjects in the control group
nrp21	re-randomization prob for the potential new subjects in the treatment group
ntchange	A strictly increasing sequence of time points at which the event rates changes. The first element of ntchange must be zero. It must have the same length as $nratejk, j=1,2,3,4,5,c; k=0,1$
nrate10	Hazard before crossover for the potential new subjects in the control group
nrate20	Hazard after crossover for the potential new subjects in the control group
nrate30	Hazard for time to crossover for the potential new subjects in the control group
nrate40	Hazard after crossover for the potential new subjects in the control group for complex case
nrate50	Hazard after crossover for the potential new subjects in the control group for complex case
nratec0	Hazard for time to censoring for the potential new subjects in the control group
nrate11	Hazard before crossover for the potential new subjects in the treatment group
nrate21	Hazard after crossover for the potential new subjects in the treatment group
nrate31	Hazard for time to crossover for the potential new subjects in the treatment group

nrate41	Hazard after crossover for the potential new subjects in the treatment group for complex case
nrate51	Hazard after crossover for the potential new subjects in the treatment group for complex case
nratec1	Hazard for time to censoring for the potential new subjects in the treatment group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
init epsilon	initital value of the timeline estimate A small number representing the error tolerance when calculating the timeline.

Details

maxiter

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange. The hazard functions corresponding to nrate11,...,nrate51,nratec1, nrate10,...,nrate50,nratec0 are all piecewise constant functions and all must have the same ntchange.

Maximum number of iterations when calculating the timeline

Value

t1	the calculated timeline
dvalue	the number of events
dvprime	the derivative of the event cumulative function at time t1
tvar	the variance of the timeline estimator
ny	total number of subjects that could be in the study
eps	final tolerance
iter	Number of iterations performed
t1hist	the history of the iteration for timeline
dvaluehist	the history of the iteration for the event count
dvprimehist	the history of the iteration for the derivative of event count with respect to time

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,pwecxpwufindt

```
n<-1000
target<-550
ntotal<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21<-c(0.5,0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
tchange<-c(0,1.873)
tcut<-2
####generate the data
E<-T<-C<-Z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
Z < -rbinom(n, 1, pi1)
n1 < -sum(Z)
n0 < -sum(1-Z)
C[Z==1]<-rpwe(nr=n1,rate=rc1,tchange=tchange)$r</pre>
C[Z==0]<-rpwe(nr=n0,rate=rc0,tchange=tchange)$r
T[Z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                 rate4=r41, rate5=r51, tchange=tchange, type=1) $r
T[Z==0]<-rpwecx(nr=n0,rate1=r10,rate2=r20,rate3=r30,
                 rate4=r40, rate5=r50, tchange=tchange, type=1) $r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
delta[T \le y] \le -1
delta[C<=y]<-0
delta[tcut-E<=y & tcut-E>0]<-2
delta[tcut-E<=y & tcut-E<=0]<--1
ys<-y[delta>-1]
Zs < -Z[delta > -1]
ds<-delta[delta>-1]
```

ovbeta 23

```
nplus<-sum(delta==-1)
nd0 < -sum(ds == 0)
nd1 < -sum(ds == 1)
nd2 < -sum(ds == 2)
ntaur<-taur-tcut
nu<-c(1/ntaur,1/ntaur)</pre>
nut<-c(ntaur/2,ntaur)</pre>
###calculate the timeline at baseline
xt<-pwecxpwufindt(target=target,ntotal=n,taur=taur,u=u,ut=ut,pi1=pi1,
              rate11=r11, rate21=r21, rate31=r31, ratec1=rc1,
              rate10=r10, rate20=r20, rate30=r30, ratec0=rc0,
              tchange=tchange,eps=0.001,init=taur,epsilon=0.000001,maxiter=100)
###calculate the timeline in study
yt<-instudyfindt(target=target,y=ys,z=Zs,d=ds,</pre>
                        tcut=tcut,blinded=0,type1=1,type0=1,tchange=tchange,
                        rate10=r10, rate20=r20, rate30=r30, ratec0=rc0,
                        rate11=r11, rate21=r21, rate31=r31, ratec1=rc1,
                        withmorerec=1,
                        ntotal=nplus,taur=ntaur,u=nu,ut=nut,pi1=pi1,
                        ntype1=1,ntype0=1,ntchange=tchange,
                        nrate10=r10,nrate20=r20,nrate30=r30,nratec0=rc0,
                        nrate11=r11,nrate21=r21,nrate31=r31,nratec1=rc1,
                        eps=1.0e-2,init=2,epsilon=0.001,maxiter=100)
##timelines
c(yt$t1,xt$t1)
##standard errors of the timeline estimators
c(sqrt(yt$tvar/yt$ny),sqrt(xt$tvar/n))
###95 percent CIs
c(yt$t1-1.96*sqrt(yt$tvar/yt$ny),yt$t1+1.96*sqrt(yt$tvar/yt$ny))
c(xt$t1-1.96*sqrt(xt$tvar/n),xt$t1+1.96*sqrt(xt$tvar/n))
```

ovbeta

calculate the overall log hazard ratio

Description

This will calculate the overall (log) hazard ratio accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
ovbeta(tfix=2.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
    rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),rate41=rate21,
    rate51=rate21,ratec1=c(0.5,0.6),
    rate10=rate11,rate20=rate10,rate30=rate31,rate40=rate20,
    rate50=rate20,ratec0=c(0.4,0.3),
```

24 ovbeta

```
tchange=c(0,1),type1=1,type0=1,
rp21=0.5,rp20=0.5,
eps=1.0e-2,veps=1.0e-2,
beta0=0,epsbeta=1.0e-4,iterbeta=25)
```

Arguments

tfix	The time point where the overall log hazard ratio is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\int_{-\infty}^{x} dx dx = 8 J_0$
	$\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta0	The starting value of the Newton-Raphson iterative procedure.
epsbeta	Absolute tolerance when calculating the overall log hazard ratio.
iterbeta	Maximum number of iterations when calculating the overall log hazard ratio.

ovbeta 25

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

b1	The overall log hazard ratio
hr	The overall hazard ratio
err	Error at the last iterative step
iter	Number of iterations performed
bhist	The overall log hazard ratio at each step
xnum	The expected score function at each step
xdenom	The Fisher information at each step
atsupp	The grids used to cut the interval $[0,tfix]$ in order to approximate the Fisher information

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
```

26 overallcov

overallcov

calculate the overall covariance

Description

This will calculate the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group

overallcov 27

rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

covbeta	The covariance the score functions
covbeta1	The first part of the cov
covbeta2	The second part of the cov
covbeta3	The third part of the cov
covbeta4	The fourth part of the cov
EA1	The first score function
EA2	The second score function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

28 overallcovp1

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21<-c(0.5,0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
getcov<-overallcov(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
               rate11=r11, rate21=r21, rate31=r31,
               rate41=r41, rate51=r51, ratec1=rc1,
               rate10=r10, rate20=r20, rate30=r30,
               rate40=r40,rate50=r50,ratec0=rc0,
               tchange=c(0,1),type1=1,type0=1,
               eps=1.0e-2, veps=1.0e-2, beta=0, beta0=0)
getcov$covbeta
```

overallcovp1

calculate the first part of the overall covariance

Description

This will calculate the first part of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

overallcovp1 29

Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{r^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	
	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

30 overallcovp1

Value

covbeta1 The first part of the covariance

EA1 The first score function

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

```
pwe,rpwe,qpwe,ovbeta,innervar
```

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
\verb|getcov1<-overall covp1| (\verb|tfix=2.0|, \verb|tfix0=1.0|, \verb|taur=taur|, \verb|u=u|, \verb|ut=ut|, \verb|pi1=0.5|, \\
                rate11=r11,rate21=r21,rate31=r31,
                rate41=r41, rate51=r51, ratec1=rc1,
                rate10=r10, rate20=r20, rate30=r30,
                rate40=r40,rate50=r50,ratec0=rc0,
                tchange=c(0,1),type1=1,type0=1,
                eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov1$covbeta1
```

overallcovp2 31

overallcovp2	calculate the other parts of the overall covariance

Description

This will calculate the other parts of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.

32 overallcovp2

type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound
	The value at which the covarance is computed, lower bound

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

cov234	The other part of the covariance
covbeta2	The second part of the covariance
covbeta3	The third part of the covariance
covbeta4	The fourth part of the covariance
EA2	The second score function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

overallvar 33

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5,1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
getcov2<-overallcovp2(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
               rate11=r11, rate21=r21, rate31=r31,
               rate41=r41, rate51=r51, ratec1=rc1,
               rate10=r10, rate20=r20, rate30=r30,
               rate40=r40, rate50=r50, ratec0=rc0,
               tchange=c(0,1),type1=1,type0=1,
               eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov2
```

overallvar

calculate the overall variance

Description

This will calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tfix	The time point where the overall variance is computed.
taur	Recruitment time

u Piecewise constant recuitment rate

ut Recruitment intervals

34 overallvar

pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the varaince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

vbeta	The variance of the overall log hazard ratio at the specified beta
VS	The variance of the score function at the specified beta
xdenom	Fisher information at the specified beta
EA	value of the score function
EA2	The first part of the variance
AB	Half of the second part of the variance

overallvar 35

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
###variance with beta=0, calculate log-rank variance under the alternative
vbeta0<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=0)
###variance with beta=0, calculate log-rank variance under the alternative
###Estimate the overall beta
getbeta<-ovbeta(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1), type1=1, type0=1, eps=1.0e-2, veps=1.0e-2, beta0=0,\\
        epsbeta=1.0e-4,iterbeta=25)
vbeta<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
      tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=getbeta$b1)
cbind(vbeta0$vs,vbeta$vs)
```

36 pwe

pwe Piecewise exponential distribution: hazard, cumulative hazard, density, distribution, survival

Description

This will provide the related functions of the specified piecewise exponential distribution.

Usage

```
pwe(t=seq(0,5,by=0.5), rate=c(0,5,0.8), tchange=c(0,3))
```

Arguments

t A vector of time points.

A vector of event rates

tchange A strictly increasing sequence of time points at which the event rate changes.

The first element of tchange must be zero. It must have the same length as rate.

Details

Let $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \le t < t_j)$ be the hazard function, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of rate and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. The cumulative hazard function

$$\Lambda(t) = \sum_{j=1}^{m} \lambda_j (t \wedge t_j - t \wedge t_{j-1}),$$

the survival function $S(t) = \exp\{-\Lambda(t)\}$, the distribution function F(t) = 1 - S(t) and the density function $f(t) = \lambda(t)S(t)$.

Value

hazard Hazard function

cumhazard Cumulative hazard function

density Density function
dist Distribution function
surv Survival function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

pwecx 37

References

```
Luo, et al. (2017)
```

See Also

rpwe,qpwe

Examples

```
t<-seq(0,3,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pwefun<-pwe(t=t,rate=rate,tchange=tchange)
pwefun</pre>
```

pwecx

Various function for piecewise exponential distribution with crossover effect

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecx(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),\\ rate4=rate2,rate5=rate2,tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```

Arguments

t	a vector of time points
rate1	piecewise constant event rate before crossover
rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to rate5 and tchange must have the same length.
tchange	rate changes. The first element of tchange must be zero. The above rates rate1
J	rate changes. The first element of tchange must be zero. The above rates rate1 to rate5 and tchange must have the same length. type of crossover, i.e. 1: markov, 2: semi-markov, 3: hybrid case 1(as indicated
type	rate changes. The first element of tchange must be zero. The above rates rate1 to rate5 and tchange must have the same length. type of crossover, i.e. 1: markov, 2: semi-markov, 3: hybrid case 1(as indicated in the reference), 4: hybrid case 2, 5: hybrid case 3.

38 pwecx

Details

More details

Value

hazard Hazard function

cumhazard Cumulative hazard function

density Density function

dist Distribution function

surv Survival function

Note

This provides a random number generator of the piecewise exponetial distribution with crossover

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

pwecxcens 39

pwecxcens	Integration of the density of piecewise exponential distribution with crossover effect and the censoring function
,	

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

Arguments

t	a vector of time points
rate1	piecewise constant event rate before crossover
rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
ratec	censoring piecewise constant event rate
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.
type	type of crossover, i.e. markov, semi-markov and hybrid
rp2	re-randomization prob
eps	tolerance

Details

This is to calculate the function (and its derivative)

$$\xi(t) = \int_0^t \widetilde{f}(s) S_C(s) ds,$$

where S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \tilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

40 pwecxpwu

Value

 $\begin{array}{lll} \mbox{du} & \mbox{the function} \\ \mbox{duprime} & \mbox{its derivative} \\ \mbox{s} & \mbox{the survival function of } \widetilde{f} \\ \mbox{sc} & \mbox{the survival function } S_C \end{array}$

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

rpwe

Examples

рмесхрми

Integration of the density of piecewise exponential distribution with crossover effect, censoring and recruitment function

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

pwecxpwu 41

Arguments

t	a vector of time points
taur	recruitment time
u	recruitment rate
ut	recruitment interval, must have the same length as u
rate1	piecewise constant event rate before crossover
rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
ratec	censoring piecewise constant event rate
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.
type	type of crossover, i.e. markov, semi-markov and hybrid
rp2	re-randomization prob
eps	tolerance

Details

This is to calculate the function (and its derivative)

$$\xi(t) = \int_0^t G_E(t-s)\widetilde{f}(s)S_C(s)ds,$$

where G_E is the accrual function defined by taur, u and ut, S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \widetilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

Value

du the function duprime its derivative

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

rpwe

42 pwecxpwufindt

Examples

```
 \begin{array}{l} taur<-2 \\ u<-c(0.6,0.4) \\ ut<-c(1,2) \\ r1<-c(0.6,0.3) \\ r2<-c(0.6,0.6) \\ r3<-c(0.1,0.2) \\ r4<-c(0.5,0.4) \\ r5<-c(0.4,0.5) \\ rc<-c(0.5,0.6) \\ exu<-pwecxpwu(t=seq(0,10,by=0.5),taur=taur,u=u,ut=ut, \\ rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,ratec=rc, \\ tchange=c(0,1),type=1,eps=1.0e-2) \\ c(exu$du,exu$duprime) \\ \end{array}
```

target number of events

pwecxpwufindt

calculate the timeline when certain number of events accumulates

Description

This will calculate the timeline from study inception accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwecxpwufindt(target=400,ntotal=1000,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,\\ rate11=c(1,0.5),rate21=c(0.8,0.9),rate31=c(0.7,0.4),\\ rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),\\ rate10=c(1,0.7),rate20=c(0.9,0.7),rate30=c(0.4,0.6),\\ rate40=rate20,rate50=rate20,ratec0=c(0.3,0.3),\\ tchange=c(0,1),type1=1,type0=1,\\ rp21=0.5,rp20=0.5,eps=1.0e-2,\\ init=taur,epsilon=0.000001,maxiter=100)
```

Arguments

target

ea. 800	target name of of thoms
ntotal	total number of subjects
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group

pwecxpwufindt 43

rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
init	initital value of the timeline estimate
epsilon	A small number representing the error tolerance when calculating the timeline.
maxiter	Maximum number of iterations when calculating the timeline

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

t1	the calculated timeline
tvar	the true variance of the timeline estimator
eps	final tolerance
iter	Number of iterations performed

Note

Version 1.0 (7/19/2016)

44 pwecxpwuforvar

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,instudyfindt

Examples

```
target<-400
ntotal<-2000
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21<-c(0.5,0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
gettimeline<-pwecxpwufindt(target=target,ntotal=ntotal,</pre>
                 taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                 rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                 rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
              tchange=c(0,1), type1=1, type0=1, eps=1.0e-2, init=taur, epsilon=0.000001, maxiter=100)
gettimeline$t1
```

pwecxpwuforvar

calculate the utility function used for varaince calculation

Description

This is a utility function to calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
\label{eq:pwecxpwuforvar} $$ pwecxpwuforvar(tfix=10,t=seq(0,10,by=0.5),taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),\\ rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),\\ tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```

pwecxpwuforvar 45

Arguments

tfix The upper point where the integral is computed.

t A vector of lower bounds where the integral is computed.

taur Recruitment time

u Piecewise constant recuitment rate

ut Recruitment intervals
rate1 Hazard before crossover
rate2 Hazard after crossover

rate3 Hazard for time to crossover

rate4 Hazard after crossover for complex case rate5 Hazard after crossover for complex case

ratec Hazard for time to censoring

tchange A strictly increasing sequence of time points at which the event rates changes.

The first element of tchange must be zero. It must have the same length as

rate1, rate2, rate3, etc.

type Type of crossover

rp2 re-randomization prob

eps A small number representing the error tolerance when calculating the utility

function

 $\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$

with l = 0, 1, 2.

Details

This is to calculate the function

$$B_l(t,s) = \int_0^s x^l G_E(t-x) \widetilde{f}(x) S_C(x) dx,$$

where G_E is the accrual function defined by taur, u and ut, S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \widetilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type. This function is useful when calculating the overall varaince and covariance.

Value

f0 the integral when l=0 f1 the integral when l=1

Note

Version 1.0 (7/19/2016)

pwefv2

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

pwefv2

A utility function

Description

This will $\int_0^s s^k \ ds \le 1$, and rate 1 = 1 and 1 are 1 and 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 are 1 are 1 and 1 are 1 are

Usage

```
pwefv2(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),
rate2=rate1,tchange=c(0,3),eps=1.0e-2)
```

Arguments

t	A vector of time points
rate1	piecewise constant event rate
rate2	piecewise constant event rate
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.
eps	tolerance

pwefvplus 47

Details

Let h_1, h_2 correspond to rate1,rate2, and H_1, H_2 be the corresponding survival functions. This function will calculate

$$\int_0^t s^k h_1(s) H_2(s) ds, \qquad k = 0, 1, 2.$$

Value

f0	values when $k = 0$
f1	values when $k=1$
f2	values when $k=2$

Note

This will provide the number of events.

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

pwefvplus

A utility functon

Description

This will calculate the more complex integration accounting for crossover

48 pwefvplus

Usage

Arguments

t	A vector of time points
rate1	piecewise constant event rate
rate2	piecewise constant event rate
rate3	piecewise constant event rate
rate4	additional piecewise constant
rate5	additional piecewise constant
rate6	piecewise constant event rate for censoring
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.
type	type of the crossover, markov, semi-markov and hybrid
rp2	re-randomization prob
eps	tolerance

Details

Let h_1, \ldots, h_6 correspond to rate1,...,rate6, and H_1, \ldots, H_6 be the corresponding survival functions. Also let $\pi_2 = \text{rp2}$. when type=1, we calculate

$$\int_0^t s^k h_2(s) H_2(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) / H_2(u) du ds;$$

when type=2, we calculate

$$\int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds;$$

when type=3, we calculate the sum of

$$\pi_2 \int_0^t s^k H_4^{1-\pi_2}(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2^{\pi_2}(s-u) / H_4^{1-\pi_2}(u) du ds$$

and

$$(1-\pi_2)\int_0^t s^k h_4(s) H_4^{1-\pi_2}(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) H_2^{\pi_2}(s-u) / H_4^{1-\pi_2}(u) du ds;$$

when type=4, we calculate the sum of

$$\pi_2 \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds$$

pwefvplus 49

and

$$(1-\pi_2)\int_0^t s^k h_4(s)H_4(s)H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)/H_4(u)duds;$$

when type=5, we calculate the sum of

$$\pi_2 \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds$$

and

$$(1-\pi_2)\int_0^t s^k H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_4(s-u)H_4(s-u)duds.$$

Value

f0 values when k=0f1 values when k=1f2 values when k=2

Note

This provides the result of the complex integration

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

```
 \begin{array}{l} r1 < -c(0.6,0.3) \\ r2 < -c(0.6,0.6) \\ r3 < -c(0.1,0.2) \\ r4 < -c(0.5,0.4) \\ r5 < -c(0.4,0.5) \\ tchange < -c(0,1.75) \\ pwefun < -pwefvplus(t = seq(0,5,by = 0.5), rate1 = r1, rate2 = r2, rate3 = r3, \\ rate4 = r4, rate5 = r5, rate6 = r6, \\ tchange = c(0,3), type = 1, eps = 1.0e - 2) \\ pwefun \end{array}
```

50 pwepower

pwepower	Calculating the powers of various the test statistics for superiority tri- als
pwepower	

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

t	a vector of time points at which power is calculated, t must be positive
alpha	type-1 error rate
twosided	twosided test or not
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case

pwepower 51

ratec0 Hazard for time to censoring for the control group

tchange A strictly increasing sequence of time points at which the event rates changes.

The first element of tchange must be zero. It must have the same length as

rate11, rate21, rate31, etc.

type1 Type of crossover in the treatment group type0 Type of crossover in the control group

rp21 re-randomization prob for the treatment group rp20 re-randomization prob for the control group

eps error tolerence

veps error tolenrence for calculating variance
epsbeta error tolerance for calculating overall log HR

iterbeta maximum number of iterations for calculating overall log HR

n total number of subjects

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power

powers for various test statistics. Columns 2-6 are for log-rank and columns 12-16 are for cox model. Column 2 is the exact power based on log-rank/score test; column 3 uses variance approximated by Fisher information, i.e. Lakatos's method; column 4 uses approximated Fisher info by number of events i.e. 4/D(t); column 5 uses approximated Fisher info by assuming exp dist. 1/D1(t)+1/D0(t); column 6 uses Fisher information at beta. Column 12 is the exact power based on Wald test; column 13 uses variance approximated by Fisher information; column 14 uses approximated Fisher info by number of events i.e. 4/D(t); column 15 uses approximated Fisher info by assuming exp dist. 1/D1(t)+1/D0(t); column 16 uses Fisher information at beta=0.

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

52 pwepowereq

See Also

pwe,rpwe,qpwe,ovbeta,innervar, pwepowerni,pwepowereq

Examples

```
t < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31 < -c(0.03, 0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10 < -c(0.2, 0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0 < -c(0.02, 0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,
                    rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                    rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
                    tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpower$power[,c(2:4,12:14)])
```

pwepowereq

Calculating the powers of various the test statistics for equivalence trials

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

pwepowereq 53

Arguments

t	a vector of time points at which power is calculated, t must be positive
uppermargin	the upper margin for the hazard ratio
lowermargin	the lower margin for the hazard ratio
alpha	type-1 error rate
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	error tolerence
veps	error tolenrence for calculating variance
epsbeta	error tolerance for calculating overall log HR
iterbeta	maximum number of iterations for calculating overall log HR
n	total number of subjects

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

54 pwepowereq

Value

power

powers for cox model. First column is the more accurate power, second column is the power assuming the Fisher information equal to the varaince of beta

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar, pwepower,pwepowerni

Examples

```
t < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10 < -c(0.2, 0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0 < -c(0.02, 0.01)
getpowereq<-pwepowereq(t=t,uppermargin=1.3,lowermargin=0.8,alpha=0.05,taur=taur,</pre>
            u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,
            rate41=r41, rate51=r51, ratec1=rc1,
            rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
            tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpowereq$power[,1:3])
```

pwepowerfindt 55

pwepowerfindt	Calculating the timepoint where a certain power of the specified test statistics is obtained

Description

This will calculate the timepoint where a certain power of the specified test statistics is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

power	the desired power
alpha	type-1 error
twosided	twoside test or not
tupp	an upper time point where the power should be larger than power
tlow	a lower time point where the power should be smaller than power
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group

56 pwepowerfindt

rate40 Hazard after crossover for the control group for complex case rate50 Hazard after crossover for the control group for complex case

ratec0 Hazard for time to censoring for the control group

tchange A strictly increasing sequence of time points at which the event rates changes.

The first element of tchange must be zero. It must have the same length as

rate11, rate21, rate31, etc.

type1 Type of crossover in the treatment group type0 Type of crossover in the control group

rp21 re-randomization prob in the treatment group rp20 re-randomization prob in the control group

eps error tolerence

veps error tolenrence for calculating variance
epsbeta error tolerance for calculating overall log HR

iterbeta maximum number of iterations for calculating overall log HR

n total number of subjects

test type test statistics, =1 log-rank;=2 Cox model; =3 log-rank with robust variance

maxiter maximum number of bi-section iterations

itereps error tolerance of power

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

testtype type of statistic, =1 log-rank;=2 Cox model; =3 log-rank with robust variance

time time calculated when the iterations stop

power the power at time

err distance from the desired power

k number of bi-section iterations performed

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

pwepowerni 57

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
t < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
                   rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                   rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
                   tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpower$power[,1:3])
###90% power should be in (3,3.5)
getpwtime<-pwepowerfindt(power=0.9,alpha=0.05,twosided=1,tupp=3.5,tlow=3,taur=taur,
      u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,n=1000,testtype=1,maxiter=30)
getpwtime
```

pwepowerni

Calculating the powers of various the test statistics for non-inferiority trials

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

58 pwepowerni

Usage

Arguments

t	a vector of time points at which power is calculated, t must be positive
nimargin	the non-inferiority margin for the hazard ratio
alpha	type-1 error rate
twosided	twosided test or not
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group

pwepowerni 59

eps	error tolerence
veps	error tolenrence for calculating variance
epsbeta	error tolerance for calculating overall log HR
iterbeta	maximum number of iterations for calculating overall log HR
n	total number of subjects

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power powers for cox model. First column is the more accurate power, second column

is the power assuming the Fisher information equal to the varaince of beta

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar, pwepower,pwepowereq

Examples

```
t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
```

60 pwesim

pwesim

simulating the test statistics

Description

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

t	a vector of time points
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case

pwesim 61

rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
n	number of subjects
rn	number of simulations
testtype	types of test statistics.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

outr

test statistics at each time point and each simulation run

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)</pre>
```

62 pwu

pwu

Piecewise uniform distribution: distribution

Description

This will calculate the distribution function of the piecewise uniform distribution

Usage

```
pwu(t=seq(0,1,by=0.1),u=c(0,5,0.5),ut=c(1,2))
```

Arguments

t a vector of time points

u piecewise constant density

ut a strictly increasing sequence of time points defining the pieces. The first element must be strictly greater than zero. u and ut must have the same length.

Details

Let $f(t) = \sum_{j=1}^m u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \dots, u_m are the corresponding elements of u and t_1, \dots, t_m are the corresponding elements of u and $t_0 = 0$. The distribution function

$$F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).$$

User must make sure that $\sum_{j=1}^m u_j(t_j-t_{j-1})=1$ before using this function.

Value

dist distribution

Note

This provides distribution of the piecewise uniform distribution

qpwe 63

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe

Examples

```
t<-seq(-1,3,by=0.5)
u<-c(0.6,0.4)
ut<-c(1,2)
pwud<-pwu(t=t,u=u,ut=ut)
pwud</pre>
```

qpwe

Piecewise exponential distribution: quantile function

Description

This will provide the quantile function of the specified piecewise exponential distribution

Usage

```
qpwe(p=seq(0,1,by=0.1),rate=c(0,5,0.8),tchange=c(0,3))
```

Arguments

p a vector of probabilities

rate piecewise constant event rate

tchange time points at which event rate changes. This must be an strictly increasing

sequence starting from zero. rate and tchange must have the same length.

Details

More details

Value

q quantiles

Note

This provides the quantile function related to the piecewise exponetial distribution

64 qpwu

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

piecewise exponential

Examples

```
p<-seq(0,1,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pweq<-qpwe(p=p,rate=rate,tchange=tchange)
pweq</pre>
```

qpwu

Piecewise uniform distribution: quantile function

Description

This will provide the quantile function of the specified piecewise uniform distribution

Usage

```
qpwu(p=seq(0,1,by=0.1),u=c(0,5,0.5),ut=c(1,2))
```

Arguments

p a vector of probabilitiesu piecewise constant density

ut time points at which event rate changes. This must be an strictly increasing sequence. ut and u must have the same length.

Details

Let $f(t) = \sum_{j=1}^m u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \dots, u_m are the corresponding elements of u and t_1, \dots, t_m are the corresponding elements of u and $t_0 = 0$. The distribution function

$$F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).$$

User must make sure that $\sum_{j=1}^{m} u_j(t_j - t_{j-1}) = 1$ before using this function.

rmstcov 65

Value

q quantiles

Note

This provides the quantile function related to the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

piecewise uniform

Examples

```
p<-seq(0,1,by=0.1)
u<-c(0.6,0.4)
ut<-c(1,2)
pwuq<-qpwu(p=p,u=u,ut=ut)
pwuq</pre>
```

rmstcov

Calculation of the variance and covariance of estimated restricted mean survival time

Description

A function to calculate the variance and covariance of estimated restricted mean survival time using data from different cut-off points accounting for delayed treatment, discontinued treatment and non-uniform entry

Usage

66 rmstcov

Arguments

t1cut time point at which rmst is calculated

t1study the study time point from first patient in, it must be larger than t1cut. This will

be used for study monitoring.

t2cut time point at which rmst is calculated. t2cut must be not smaller than t1cut.

the study time point from first patient in, it must be larger than t2cut. This will

be used for study monitoring.

taur Recruitment time

u Piecewise constant recuitment rate

ut Recruitment intervals

rate1 piecewise constant event rate before crossover rate2 piecewise constant event rate after crossover rate3 piecewise constant event rate for crossover

rate4 additional piecewise constant event rate for more complex crossover rate5 additional piecewise constant event rate for more complex crossover

ratec Hazard for time to censoring

tchange a strictly increasing sequence of time points starting from zero at which event

rate changes. The first element of tchange must be zero. The above rates rate1

to ratec and tchange must have the same length.

type type of crossover, 1=markov, 2=semi-markov, 3=hybrid

rp2 re-randomization probability to receive the rescue treatment when semi-markov

crossover occurs. When it happens, the overall hazard will be pi2*r2(t-s)+(1-pi2)*r4(t), where r2 is the hazard for the semi-markov rescue treatment and r4

is hazard for the markov rescue treatment.

eps A small number representing the error tolerance when calculating the utility

function

 $\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$

with l = 0, 1, 2.

veps A small number representing the error tolerance when calculating the variance.

Details

More details

Value

t1cut time point at which rmst is calculated

t1study the study time point from first patient in, it must be larger than t1cut. This will

be used for study monitoring.

t2cut time point at which rmst is calculated. t2cut must be not smaller than t1cut.

rmsth 67

t2study	the study time point from first patient in, it must be larger than t2cut. This will be used for study monitoring.
rmst	rmst at cut-point t1cut with study time t1study
rmst1	rmst at cut-point t2cut with study time t2study
rmstx	rmst at cut-point t1cut with study time t2study, which should be the same as rmst.
V	the variance of rmst
v1	the variance of rmst1
COV	the covariance of rmst and rmst1
cov1	another covariance of rmst and rmst1, should be the same as cov

Note

This calculates the "true" variance and covariance of restricted mean survival times

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

Examples

rmsth Estimate the restricted mean survival time (RMST) and its variance from data

Description

A function to estimate the restricted mean survival time (RMST) and its variance from data

68 rmsth

Usage

```
rmsth(y=c(1,2,3),d=c(1,1,0),tcut=2.0,eps=1.0e-08)
```

Arguments

y observed times

d non-censoring indicators

tcut time point at which rmst is calculated

eps A small number representing the error tolerance when comparing the event times

Details

More details

Value

tcut time point at which rmst is calculated

rmst estimated RMST

var estimated variance of rmst

vadd estimated variance-covariance term of rmst

Note

This estimates the restricted mean survival time and its asymptotic variance

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

Examples

```
lamt<-0.8
lamc<-0.4
n<-3000
tcut<-2.0
truermst<-(1-exp(-lamt*tcut))/lamt
tt<-rexp(n)/lamt
cc<-rexp(n)/lamc
yy<-pmin(tt,cc)
dd<-rep(1,n)
dd[tt>cc]<-0
aest<-rmsth(y=yy,d=dd,tcut=tcut)
aest</pre>
```

rmstpower 69

rmstpower	Calculate powers at different cut-points based on difference of re-
	stricted mean survival times (RMST)

Description

A function to calculate powers at different cut-points based on difference of restricted mean survival times (RMST) account for delayed treatment, discontinued treatment and non-uniform entry

Usage

Arguments

tcut	timepoint at which rmst is calculated
tstudy	a vector of study time points, which must be not smaller than tcut
alpha	type-1 error rate
twosided	twosided test=1 or not
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case

70 rmstpower

Hazard for time to censoring for the control group ratec0 A strictly increasing sequence of time points at which the event rates changes. tchange The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc. Type of crossover in the treatment group type1 Type of crossover in the control group type0 re-randomization prob for the treatment group rp21 re-randomization prob for the control group rp20 error tolerence eps error tolenrence for calculating variance veps total number of subjects, both groups combined

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power	power
rmst1	rmst in the treatment group
se1	standard error of the rmst in the treatment group
rmst0	rmst in the control group
se0	standard error of the rmst in the control group
drmst	rmst1-rmst0
sed	standard error of the mean difference

Note

This calculates the restricted mean survival times between the treatment and control groups and their standard errors

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

rmstpowerfindt 71

Examples

```
tcut<-3.0
tstudy < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31 < -c(0.03, 0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30 < -c(0.02, 0.01)
r40<-r50<-r20
rc0 < -c(0.02, 0.01)
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,</pre>
           taur=taur, u=u, ut=ut, pi1=0.5,
           rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
           rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
           tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,n=1000)
###powers at each time point
cbind(tstudy,getrmst$power)
```

rmstpowerfindt

Calculating the timepoint where a certain power of mean difference of RMSTs is obtained

Description

This will calculate the timepoint where a certain power of the mean difference of RMSTs is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

power

the desired power

72 rmstpowerfindt

alpha	type-1 error
twosided	twoside test or not
tcut	time point at which rmst is calculated
tupp	an upper study time point where the power should be larger than power
tlow	a lower study time point where the power should be smaller than power, tlow must be not smaller than tcut
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	error tolerence
veps	error tolenrence for calculating variance
n	total number of subjects
maxiter	maximum number of bi-section iterations
itereps	error tolerance of power

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

rmstpowerfindt 73

Value

time time calculated when the iterations stop

power the power at time

err distance from the desired power

k number of bi-section iterations performed

Note

```
Version 1.0 (8/8/2017)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

```
tcut<-3.0
tstudy < -seq(3,6,by=0.2)
taur<-2
u < -c(0.3, 0.7)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31 < -c(0.03, 0.02)
r41<-r51<-r21
rc1 < -c(0.05, 0.04)
r10<-c(0.22,0.22)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0 < -c(0.04, 0.05)
ntotal<-1200
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,</pre>
        taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,n=ntotal)
###powers at each time point
cbind(tstudy,getrmst$power)
###90 percent power should be in (3,4)
gettime<-rmstpowerfindt(power=0.9,alpha=0.05,twosided=1,tcut=tcut,tupp=4,tlow=3.0,taur=taur,
```

74 rmstsim

rmstsim

simulating the restricted mean survival times

Description

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tcut	a vector of time points at which rmst are calculated
tstudy	a vector of study time points, should be the same length as tcut and should be not less than tcut element-wise
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group

rmstsim 75

rate40	Hazard after crossover for the control group for complex case	
rate50	Hazard after crossover for the control group for complex case	
ratec0	Hazard for time to censoring for the control group	
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.	
type1	Type of crossover in the treatment group	
type0	Type of crossover in the control group	
rp21	re-randomization prob in the treatment group	
rp20	re-randomization prob in the control group	
n	number of subjects	
rn	number of simulations	
eps	tolerence for comparing event times	

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

outr test statistics at each pair of tcut and tstudy in column and each simulation

run in row

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,ovbeta

76 rmstutil

Examples

```
tcuta < -c(2,3)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1.5, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
ar<-rmstsim(tcut=tcuta,tstudy=tcuta+0.1,taur=taur,u=u,ut=ut,pi1=0.5,
             rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
             rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
             tchange=c(0,1),type1=1,type0=1,
             n=300, rn=200)
##Empirical power
apply(ar$outr>1.96,2,mean)
```

rmstutil

A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry

Description

A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry

Usage

Arguments

tcut time point at which rmst is calculated

tstudy the study time point from first patient in, it must be not smaller than tcut.

taur Recruitment time

u Piecewise constant recuitment rate

rmstutil 77

ut	Recruitment intervals		
rate1	piecewise constant event rate before crossover		
rate2	piecewise constant event rate after crossover		
rate3	piecewise constant event rate for crossover		
rate4	additional piecewise constant event rate for more complex crossover		
rate5	additional piecewise constant event rate for more complex crossover		
ratec	Hazard for time to censoring		
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.		
type	type of crossover, 1=markov, 2=semi-markov, 3=hybrid		
rp2	re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be $rp2*r2(t-s)+(1-rp2)*r4(t)$, where r2 is the hazard for the semi-markov rescue treatment and r4 is hazard for the markov rescue treatment.		
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$		
	with $l = 0, 1, 2$.		
veps	A small number representing the error tolerance when calculating the variance.		

Details

More details

Value

tcut time point at which rmst is calculated
tstudy the study time point from first patient in, it must be not smaller than tcut
rmst rmst at cut-point tcut
var the variance of rmst
vadd the additional variance term of rmst

Note

This calculates the "true" variance of restricted mean survival times

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

78 rpwe

Examples

rpwe

Piecewise exponential distribution: random number generation

Description

This will generate random numbers according to the specified piecewise exponential distribution

Usage

```
rpwe(nr=10, rate=c(0,5,0.8), tchange=c(0,3))
```

Arguments

nr number of random numbers to be generated

rate piecewise constant event rate

tchange a strictly increasing sequence of time points starting from zero at which event

rate changes. The first element of tchange must be zero. rate and tchange must

have the same length.

Details

More details

Value

r random numbers

Note

This provides a random number generator of the piecewise exponetial distribution

Author(s)

Xiaodong Luo

rpwecx 79

References

```
Luo, et al. (2017)
```

See Also

piecewise exponential

Examples

```
nr<-10
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pwer<-rpwe(nr=nr,rate=rate,tchange=tchange)
pwer</pre>
```

rpwecx

Piecewise exponential distribution with crossover effect: random number generation

Description

This will generate random numbers according to the piecewise exponential distribution with crossover

Usage

```
rpwecx(nr=1,rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
rate4=rate2,rate5=rate2,tchange=c(0,1),type=1,rp2=0.5)
```

Arguments

nr	number of random numbers to be generated	
rate1	piecewise constant event rate before crossover	
rate2	piecewise constant event rate after crossover	
rate3	piecewise constant event rate for crossover	
rate4	additional piecewise constant event rate for more complex crossover	
rate5	additional piecewise constant event rate for more complex crossover	
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to rate6 and tchange must have the same length.	
type	type of crossover, 1=markov, 2=semi-markov, 3=hybrid	
rp2	re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be pi2*r2(t-s)+(1-pi2)*r4(t), where r2 is the hazard for the semi-markov rescue treatment and r4 is hazard for the markov rescue treatment.	

rpwu rpwu

Details

More details

Value

r random numbers for the event time
rx random numbers for the crossover time
cxind indicators for the crossover, the first column indicates whether crossover occurs,

i.e. rx < r. When type=3,4,5, the second column of cxind indicates whether

it crosses to the arm with rate2

Note

This provides a random number generator of the piecewise exponetial distribution with crossover

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

```
 r1<-c(0.6,0.3) \\ r2<-c(0.6,0.6) \\ r3<-c(0.1,0.2) \\ r4<-c(0.5,0.4) \\ r5<-c(0.4,0.5) \\ pwecxr<-rpwecx(nr=10,rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,tchange=c(0,1),type=1) \\ pwecxr$r
```

rpwu

Piecewise uniform distribution: random number generation

Description

This will generate random numbers according to the specified piecewise uniform distribution

Usage

```
rpwu(nr=10,u=c(0,6,0.4),ut=c(1,2))
```

rpwu 81

Arguments

nr number of random numbers to be generated

u piecewise constant density

ut a strictly increasing sequence of time points defining the pieces. The first element must be strictly greater than zero. u and ut must have the same length.

Details

Let $f(t) = \sum_{j=1}^m u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \dots, u_m are the corresponding elements of u and t_1, \dots, t_m are the corresponding elements of u and $t_0 = 0$. The distribution function

$$F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).$$

User must make sure that $\sum_{j=1}^{m} u_j(t_j - t_{j-1}) = 1$ before using this function.

Value

r random numbers

Note

This provides a random number generator of the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

rpwe

```
nr<-10
u<-c(0.6,0.4)
ut<-c(1,2)
pwur<-rpwu(nr=nr,u=u,ut=ut)
pwur</pre>
```

spf

spf

A utility function

Description

A utility function to calculate a ratio.

Usage

Arguments

x A vector eps tolerance

Details

This is to calculate

$$\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}, \quad l = 0, 1, 2.$$

This function is well defined even when x=0. However, it is numerical chanllenging to calculate it when x is small. So when $|x| \le \text{eps}$ we approximate this function and the absolute error is eps^5 .

Value

fx1 when l=0; fx2 when l=1; fx3 when l=2.

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

```
fun<-spf(x=seq(-1,1,by=0.2),eps=1.0e-3)
fun</pre>
```

wlrcal 83

wlrcal	A utility function to calculate the weighted log-rank statistics and their varainces given the weights

Description

A utility function to calculate the weighted log-rank statistics and their varainces given the weights

Usage

Arguments

n	total number of subjects in the study
te	(ascendingly) ordered unique event times from both groups
tfix	time point where weighted log-rank is calcualted
dd1	number of events from treatment group at each te
dd0	number of events from control group at each te
r1	number of at-risk subjects from treatment group at each te
r0	number of at-risk subjects from control group at each te
weights	user specified weights, each column is a set of weights at each te
eps	tolerence when comparing event times

Details

More details

Value

test	unscaled test statistics
var	variances of the unsclaed test statistics
wlr	weighted log-rank statistics, i.e. scaled test statsitics
wlcor	the correlation matrix of the weighted log-rank statistics

Author(s)

Xiaodong Luo

```
 lr <-wlrcal(n=10,t=c(1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3)) \\ lr = (1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3)) \\ lr = (1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=
```

84 wlrcom

wlrcom	A function to calculate the various weighted log-rank statistics and their varainces

Description

A function to calculate the weighted log-rank statistics and their varainces given the weights including log-rank, gehan, Tarone-Ware, Peto-Peto, mPeto-Peto and Fleming-Harrington

Usage

```
wlrcom(y,d,z,tfix=max(y),p=c(1),q=c(1),eps=1.0e-08)
```

Arguments

у	observed times
d	non-censoring indicators
z	group indicators, z=1: treatment, z=0 control
tfix	time point at which weighted log-rank is calculated
р	a vector of power numbers for S in the Fleming-Harrington weight
q	a vector of power numbers for 1-S in the Fleming-Harrington weight, ${\bf q}$ and ${\bf p}$ should have the same length
eps	the error tolerance when comparing event times

Details

V1:3/21/2018

Value

n tota	l number (of subjects,	combined	groups
--------	------------	--------------	----------	--------

test unscaled test statistics

var variances of the unsclaed test statistics

wlr weighted log-rank statistics, i.e. scaled test statsitics

pvalue two-sided p-values of wlr

Author(s)

Xiaodong Luo

wlrutil 85

Examples

```
n<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
tchange<-c(0,1.873)
tcut<-2
E <-T <-C <-z <-delta <-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
z < -rbinom(n, 1, pi1)
n1 < -sum(z)
n0 < -sum(1-z)
C[z==1]<-rpwe(nr=n1,rate=rc1,tchange=tchange)$r
C[z==0]<-rpwe(nr=n0,rate=rc0,tchange=tchange)$r
T[z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                 rate4=r41, rate5=r51, tchange=tchange, type=1) $r
T[z==0]<-rpwecx(nr=n0,rate1=r10,rate2=r20,rate3=r30,
                 rate4=r40, rate5=r50, tchange=tchange, type=1) $r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
d<-rep(0,n);</pre>
d[T \le y] \le -1
wlr4<-wlrcom(y=y,d=d,z=z,p=c(1,1),q=c(0,1))
wlr4
```

wlrutil

A utility function to calculate some common functions in contructing weights

Description

A utility function to calculate some common functions in contructing weights

Usage

```
wlrutil(y=c(1,2,3), d=c(1,0,1), z=c(1,0,0), t==c(1,3), eps=1.0e-08)
```

86 wlrutil

Arguments

V	observed	times
.y	obsci vcu	um

d non-censoring indicators

z group indicators with z=1 treatment and z=0 control

te (ascendingly) ordered unique event times from both groups

eps tolerence when comparing event times

Details

More details

Value

mfunc various functions in column

Author(s)

Xiaodong Luo

```
ww<-wlrutil(y=c(1,2,3),d=c(1,0,1),z=c(1,0,0),te=c(1,3),eps=1.0e-08)
```

Index

*Topic conditional power	pwepowerni,57
cp, 6	*Topic overall hazard ratio
cpboundary, 7	ovbeta, 23
*Topic covariance	pwecxpwuforvar,44
rmstcov, 65	pwepowerfindt, 55
*Topic crossover effect	pwesim, 60
rmstpower, 69	rmstsim, 74
*Topic crossover	*Topic piecewise exponential
pwecx, 37	distribution
*Topic delayed treatment effect	rmstpower, 69
innercov, 14	*Topic piecewise exponential
innervar, 16	fourhr, 11
instudyfindt, 19	innercov, 14
ovbeta, 23	innervar, 16
overallcov, 26	instudyfindt, 19
overallcovp1, 28	ovbeta, 23
overallcovp2, 31	overallcov, 26
overallvar, 33	overallcovp1, 28
pwecxpwufindt, 42	overallcovp2,31
pwecxpwuforvar,44	overallvar, 33
pwepower, 50	PWEALL-package, 3
pwepowereq, 52	pwecx, 37
pwepowerfindt, 55	pwecxcens, 39
pwepowerni, 57	pwecxpwu, 40
pwesim, 60	pwecxpwufindt, 42
rmstpower, 69	pwecxpwuforvar,44
rmstpowerfindt, 71	pwefv2, 46
rmstsim,74	pwefvplus, 47
*Topic distribution	pwepower, 50
pwu, 62	pwepowereq, 52
*Topic equivalence	pwepowerfindt, 55
pwepowereq, 52	pwepowerni, 57
*Topic hazard estimate	pwesim, 60
hxbeta, 13	qpwe, 63
*Topic mean difference of RMSTs	rmstcov, 65
rmstpowerfindt, 71	rmstpowerfindt, 71
*Topic mean difference	rmstsim, 74
rmstpower, 69	rmstutil,76
*Topic non-inferiority	rpwe, 78

88 INDEX

rpwecx, 79	rmstsim, 74
*Topic piecewise exponetial	*Topic smoothed estimate
pwe, 36	hxbeta, 13
*Topic piecewise uniform	*Topic stopping boundary
innercov, 14	cpboundary, 7
innervar, 16	*Topic stopping probability
instudyfindt, 19	cpstop, 9
ovbeta, 23	*Topic timeline for certain power
overallcov, 26	pwepowerfindt, 55
overallcovp1, 28	rmstpowerfindt, 71
overallcovp2, 31	*Topic timeline
overallvar, 33	instudyfindt, 19
pwecxcens, 39	pwecxpwufindt, 42
pwecxpwu, 40	*Topic treatment crossover
pwecxpwufindt, 42	fourhr, 11
pwecxpwuforvar, 44	innercov, 14
pwepower, 50	innervar, 16
pwepowereq, 52	instudyfindt, 19
pwepowerfindt, 55	ovbeta, 23
pwepowerni, 57	overallcov, 26
pwesim, 60	overallcovp1,28
pwu, 62	overallcovp2,31
qpwu, 64	overallvar, 33
rmstpowerfindt, 71	pwecxcens, 39
rmstsim, 74	pwecxpwu, 40
rpwu, 80	pwecxpwufindt, 42
*Topic power	pwecxpwuforvar,44
pwepower, 50	pwefvplus, 47
pwepowereq, 52	pwepower, 50
pwepowerni, 57	pwepowereq, 52
rmstpowerfindt, 71	pwepowerfindt, 55
*Topic quantiles	pwepowerni, 57
qpwe, 63	pwesim, 60
qpwu, 64	rmstcov, 65
*Topic random number generator	rmstpowerfindt, 71
pwecx, 37	rmstsim,74
pwecxpwu, 40	rmstutil, 76
rpwe, 78	rpwecx,79
rpwecx, 79	*Topic utility function
rpwu, 80	spf, 82
*Topic restricted mean survival times	*Topic variance
rmstcov, 65	rmsth, 67
rmstutil, 76	rmstpower, 69
*Topic restricted mean survival time	rmstutil, 76
rmsth, 67	*Topic various functions
rmstpower, 69	PWEALL-package, 3
*Topic simulation	*Topic weighted log-rank
pwesim, 60	wlrcal,83

INDEX 89

```
wlrcom, 84
                                                     rmstutil, 76
    wlrutil, 85
                                                     rpwe, 12, 16, 18, 22, 25, 28, 30, 32, 35, 37, 38,
                                                               40, 41, 44, 46, 47, 49, 52, 54, 57, 59,
cp, 6, 8, 9
                                                               61, 73, 75, 78, 80, 81
cpboundary, 7, 7, 9
                                                     rpwecx, 79
cpstop, 7, 8, 9
                                                     rpwu, 80
fourhr, 11
                                                     spf, 82
hxbeta, 13
                                                     wlrcal, 83
                                                     wlrcom, 84
innercov, 14
                                                     wlrutil, 85
innervar, 16, 16, 18, 28, 30, 32, 35, 46, 52,
         54, 57, 59, 61, 73
instudyfindt, 19, 44
ovbeta, 16, 18, 23, 28, 30, 32, 35, 46, 52, 54,
         57, 59, 61, 73, 75
overallcov, 26
overallcovp1, 28
overallcovp2, 31
overallvar, 33
pwe, 16, 18, 22, 25, 28, 30, 32, 35, 36, 44, 46,
         52, 54, 57, 59, 61, 63, 73, 75
PWEALL (PWEALL-package), 3
PWEALL-package, 3
pwecx, 16, 18, 37
pwecxcens, 39
pwecxpwu, 40
pwecxpwufindt, 22, 42
pwecxpwuforvar, 44
pwefv2, 46
pwefvplus, 47
pwepower, 50, 54, 59
pwepowereq, 52, 52, 59
pwepowerfindt, 55
pwepowerni, 52, 54, 57
pwesim, 60
pwu, 62
qpwe, 16, 18, 22, 25, 28, 30, 32, 35, 37, 44, 46,
         52, 54, 57, 59, 61, 63, 73, 75
qpwu, 64
rmstcov, 65
rmsth, 67
rmstpower, 69
rmstpowerfindt, 71
rmstsim, 74
```