Package 'PWEALL'

October 18, 2018
Type Package
Version 1.3.0
Date 2018-10-18
Title Design and Monitoring of Survival Trials Accounting for Complex Situations
Description Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, nonuniform accrual,
and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution.
As compared with Version 1.2.1, two more types of hybrid crossover are added.
A bug is corrected in the function "pwecx" that calculates the crossoveradjusted survival, distribution,
density, hazard and cumulative hazard functions.
Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.
Depends R (>=3.1.2)
Imports survival, stats
License GPL (>=2)
RoxygenNote 5.0.1
LazyData true
NeedsCompilation yes
Author Xiaodong Luo [aut, cre],
Xuezhou Mao [ctb],
Xun Chen [ctb],
Hui Quan [ctb],
Sanofi [cph]
Maintainer Xiaodong Luo Xiaodong.Luo@sanofi.com
Repository CRAN
Date/Publication 2018-10-18 11:30:13 UTC

R topics documented:

PWEALL-package 3
cp 6
cpboundary 7
cpstop 9
fourhr 11
hxbeta 13
innercov 14
innervar 16
instudyfindt 19
ovbeta 23
overallcov 26
overallcovp1 28
overallcovp2 31
overallvar 33
pwe 36
pwecx 37
pwecxcens 39
pwecxpwu 40
pwecxpwufindt 42
pwecxpwuforvar 44
pwefv2 46
pwefvplus 47
pwepower 50
pwepowereq 52
pwepowerfindt 55
pwepowerni 57
pwesim 60
pwu 62
qpwe 63
qpwu 64
rmstcov 65
rmsth 67
rmstpower 69
rmstpowerfindt 71
rmstsim 74
rmstutil 76
rpwe 78
rpwecx 79
rpwu 80
spf 82
wlrcal 83
wlrcom 84
wlrutil 85
Index 87

Description

Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-uniform accrual, and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution. As compared with Version 1.2.1, two more types of hybrid crossover are added. A bug is corrected in the function "pwecx" that calculates the crossover-adjusted survival, distribution, density, hazard and cumulative hazard functions. Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Details

The DESCRIPTION file:

Package:	PWEALL
Type:	Package
Version:	1.3 .0
Date:	$2018-10-18$
Title:	Design and Monitoring of Survival Trials Accounting for Complex Situations
Description:	Calculates various functions needed for design and monitoring survival trials accounting for complex situatic
Authors@R:	c(person(given="Xiaodong", family="Luo", email = "Xiaodong.Luo@sanofi.com", role =c("aut", "cre")), pe
Depends:	R (>=3.1.2)
Imports:	survival, stats
License:	GPL $(>=2)$
RoxygenNote:	5.0 .1
LazyData:	true
Author:	Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph]
Maintainer:	Xiaodong Luo <Xiaodong.Luo@ sanofi.com>

Index of help topics:

```
PWEALL-package Design and Monitoring of Survival Trials
    Accounting for Complex Situations
cp Conditional power given observed log hazard
    ratio
cpboundary The stopping boundary based on the conditional
    power criteria
cpstop The stopping probability based on the stopping
    boundary
fourhr A utility functon
```

\(\left.$$
\begin{array}{ll}\text { hxbeta } & \begin{array}{l}\text { A function to calculate the beta-smoothed } \\
\text { hazard rate }\end{array}
$$

innercov \& A utility function to calculate the inner

integration of the overall covariance\end{array}\right]\)| A utility function to calculate the inner |
| :--- |
| innervar |
| instudyfindt |
| calculate the timeline in study when some or |
| ovbeta |
| all subjects have entered |
| overallcov |
| overallcovp1 |
| calculate the overall log hazard ratio |
| overallcovp2 |
| calculate the overall covariance |
| calculate the first part of the overall |

rmsth	Estimate the restricted mean survival time (RMST) and its variance from data
rmstpower	Calculate powers at different cut-points based on difference of restricted mean survival times (RMST)
rmstpowerfindt	Calculating the timepoint where a certain power of mean difference of RMSTs is obtained
rmstsim	simulating the restricted mean survival times
rmstutil	A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry
rpwe	Piecewise exponential distribution: random number generation
rpwecx	Piecewise exponential distribution with crossover effect: random number generation
rpwu	Piecewise uniform distribution: random number generation
spf	A utility function
wlrcal	A utility function to calculate the weighted log-rank statistics and their varainces given the weights
wlrcom	A function to calculate the various weighted log-rank statistics and their varainces
wlrutil	A utility function to calculate some common functions in contructing weights

There are 5 types of crossover considered in the package: (1) Markov crossover, (2) Semi-Markov crosover, (3) Hybrid crossover-1, (4) Hybrid crossover-2 and (5) Hybrid crossover-3. The first 3 types are described in Luo et al. (2018). The fourth and fifth types are added for Version 1.3.0. The crossover type is determined by the hazard function after crossover $\lambda_{2}^{\mathbf{x}}(t \mid u)$. For Type (1), the Markov crossover,

$$
\lambda_{2}^{\mathbf{x}}(t \mid u)=\lambda_{2}(t)
$$

For Type (2), the Semi-Markov crossover,

$$
\lambda_{2}^{\mathbf{x}}(t \mid u)=\lambda_{2}(t-u)
$$

For Type (3), the hybrid crossover-1,

$$
\lambda_{2}^{\mathbf{x}}(t \mid u)=\pi_{2} \lambda_{2}(t-u)+\left(1-\pi_{2}\right) \lambda_{4}(t)
$$

For Type (4), the hazard after crossover is

$$
\lambda_{2}^{\mathbf{x}}(t \mid u)=\frac{\pi_{2} \lambda_{2}(t-u) S_{2}(t-u)+\left(1-\pi_{2}\right) \lambda_{4}(t) S_{4}(t) / S_{4}(u)}{\pi_{2} S_{2}(t-u)+\left(1-\pi_{2}\right) S_{4}(t) / S_{4}(u)}
$$

For Type (5), the hazard after crossover is

$$
\lambda_{2}^{\mathbf{x}}(t \mid u)=\frac{\pi_{2} \lambda_{2}(t-u) S_{2}(t-u)+\left(1-\pi_{2}\right) \lambda_{4}(t-u) S_{4}(t-u)}{\pi_{2} S_{2}(t-u)+\left(1-\pi_{2}\right) S_{4}(t-u)}
$$

The types (4) and (5) are more closely related to "re-randomization", i.e. when a patient crosses, (s)he will have probability π_{2} to have hazard λ_{2} and probability $1-\pi_{2}$ to have hazard λ_{4}. The types (4) and (5) differ in having λ_{4} as Markov or Semi-markov.

Author(s)

NA
Maintainer: NA

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

```
cp Conditional power given observed log hazard ratio
```


Description

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Usage

cp (Dplan=300, alpha=0.05, two. sided=1, pi1=0.5, 0bsbeta=log $(\operatorname{seq}(1,0.6$, by=-0.01)), BetaD $=\log (0.8), \operatorname{Beta} 0=\log (1), p r o p=\operatorname{seq}(0.1,0.9, b y=0.1))$

Arguments

Dplan Planned number of events at study end
alpha Type 1 error rate
two. sided $\quad=1$ two-sided test and $=0$ one-sided test
pi1 Allocation probability for the treatment group
Obsbeta observed log hazard ratio
BetaD designed log hazard ratio, i.e. under alternative hypothesis
Beta0 null log hazard ratio, i.e. under null hypothesis
prop proportion of Dplan observed

Details

This is to calculated conditional power at time point when certain percent of target number of event has been observed and an observed log hazard ratio is provided.

Value

CPT Conditional power under current trend
CPN Conditional power under null hypothesis
CPD Conditional power according to design, i.e. under alternative hypothesis

Note
This will calculate the conditional power given the observed log hazard ratio based on Cox model

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

```
See Also
cpboundary,cpstop
```


Examples

```
###Calculate the CP at 10-90 percent of the target 300 events when the observed HR
###are seq(1,0.6,by=-0.01) with 2:1 allocation
###ratio between the treatment group and the control group
cp(pi1=2/3)
```

cpboundary

The stopping boundary based on the conditional power criteria

Description

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

cpboundary (Dplan $=300$, alpha $=0.05$, two. $\operatorname{sided}=1$, pi $1=0.5$, cpcut $=c(0.2,0.3,0.4)$,
$\operatorname{BetaD}=\log (0.8), \operatorname{Beta} 0=\log (1), \operatorname{prop}=\operatorname{seq}(0.1,0.9, b y=0.1))$

Arguments

Dplan	Planned number of events at study end
alpha	Type 1 error rate
two. sided	$=1$ two-sided test and $=0$ one-sided test
pi 1	Allocation probability for the treatment group
cpcut	the designated conditional power level
BetaD	designed log hazard ratio, i.e. under alternative hypothesis
Beta0	null log hazard ratio, i.e. under null hypothesis
prop	proportion of Dplan observed

Details

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

CPTbound Boundary based on the conditional power under current trend
CPNbound Boundary based on the conditional power under null hypothesis
CPDbound Boundary based on the conditional power according to design, i.e. under alternative hypothesis

Note

This will calculate the stopping boundary based on the conditional power criteria

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cp,cpstop

Examples

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events
###when the condition power are c(0.2,0.3,0.4) with
###2:1 allocation ratio between the treatment group and the control group
cpboundary(pi1=2/3)
```


cpstop The stopping probability based on the stopping boundary

Description

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

cpstop (Dplan=300, pi1 $=0.5, \operatorname{Beta} 1=\log (0.8), \operatorname{Beta} 0=\log (1)$, prop $=\operatorname{seq}(0.1,0.9, b y=0.1), \operatorname{HRbound=rep(0.85,length(prop)))}$

Arguments

Dplan	Planned number of events at study end
pi1	Allocation probability for the treatment group
Beta1	designed log hazard ratio, i.e. under alternative hypothesis
Beta0	null log hazard ratio, i.e. under null hypothesis
prop	proportion of Dplan observed
HRbound	the stopping boundary

Details

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

pstop0 Stopping probability under null hypothesis
pstop1 Stopping probability under alternative hypothesis

Note

This will calculate the stopping probability given the stopping boundary

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cp,cpboundary

Examples

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events
###when the condition power are c(0.2,0.3,0.4) with 2:1 allocation ratio
###between the treatment group and the control group, we pick the boundary
###based on 20 percent conditional power according to design, i.e. under alternative
targetD<-800 ###target number of events at study end
##############Allocation prob for the treatment group##############
pi1<-2/3
propevent<-seq(0.1,0.9,by=0.1) ###proportion of events at interim
HRbound<-cpboundary(Dplan=targetD,pi1=pi1,prop=propevent)$CPDbound[,1] ###picking a boundary
pa<-cpstop(pi1=pi1,HRbound=HRbound) ###stopping probabilities under null and alternative
pa
###Calculate the stopping probability under non-constant hazard ratio
n1<-length(propevent)
####time point at which hazard rates and hazard ratios change
tchange<-c(0,6,12, 24)
###annual event rates=0.09(1st yr), 0.07(2nd yr) and 0.05(2+yr) for control
ratet<-c(0.09/12,0.09/12,0.07/12,0.05/12)
###annual censoring rate=0%(1st yr) and 1.5%(after) for control and treatment
ratec0<-c(0/12,0/12,0.015/12,0.015/12)
ratec1<-ratec0
###annual treatment discontinuation rate=4% (1st yr) and 3% (after)
rate31<-c(0.04/12,0.04/12,0.03/12,0.03/12)
rate30<-rep(0,length(tchange))
############Recruitment curve##################
oa<-c(100,200, 300, 300,400,400,400,400,400,400,400,400, 300, 200)
ntotal<-sum(oa)
ntotal
taur<-length(oa)
ut<-seq(1, taur, by=1)
u<-oa/ntotal
#############Type-1 error rate#############
alpha<-0.05
####null hypothesis
eta0<-log(1)
####constant HR
etac<-log(0.8)
####non-constant HR
eta<-c(log(1),log(0.75),log(0.75),log(0.75)) ###6-m delayed
```

\#\#\#\#target number of events where calculations are performed\#\#\#\#\#\#\#\#\#\#\#\#\#\#
sevent<-propevent*targetD

```
nse<-length(sevent)
xtimeline<-xbeta<-xvar<-pxstop<-matrix(0,ncol=2,nrow=nse)
xtimeline[,1]<-xbeta[,1]<-xvar[,1]<-pxstop[,1]<-sevent
i<-1
tbegin<-proc.time()
for (i in 1:nse){
###find timeline
xtimeline[i,2]<-pwecxpwufindt(target=sevent[i],ntotal=ntotal,
    taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
    rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
    tchange=tchange,eps=0.001,init=taur,epsilon=0.000001,maxiter=100)$tau1
#Overall hazard ratio and varaince
xbeta[i, 2]<-ovbeta(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,
    rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
    rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
    tchange=tchange,eps=0.001,veps=0.001,epsbeta=1.0e-10)$b1
xvar[i,2]<-overallvar(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,
    rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
    rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
    tchange=tchange,eps=0.001,veps=0.001,beta=xbeta[i, 2])$vbeta
}
##stopping prob
pxstop[,2]<-1-pnorm(sqrt(ntotal)*(log(HRbound)-xbeta[, 2])/sqrt(xvar[,2]))
tend<-proc.time()
xout<-cbind(xtimeline[,1],xtimeline[,2],xbeta[,2],xvar[,2]/ntotal,
    1/pi1/(1-pi1)/xtimeline[,1],pxstop[,2],pa$pstop0,pa$pstop1)
xnames<-c("# of events", "Time", "Estbeta", "TrueV", "ApproxV", "NCHR", "Null", "CHR")
colnames(xout)<-xnames
options(digits=2)
xout
```

fourhr A utility functon

Description

This will calculate the more complex integration

Usage

fourhr $(t=\operatorname{seq}(0,5, b y=0.5)$, rate $1=c(0,5,0.8)$, rate2=rate1, rate $3=c(0.1,0.2)$, rate $4=$ rate 2 , tchange $=c(0,3), e p s=1.0 e-2)$

Arguments

t
A vector of time points
rate1 piecewise constant event rate

rate2	piecewise constant event rate
rate3	piecewise constant event rate
rate4	additional piecewise constant
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.
eps	tolerance

Details

Let h_{1}, \ldots, h_{4} correspond to rate1, \ldots, rate 4 , and H_{1}, \ldots, H_{4} be the corresponding survival functions. We calculate

$$
\int_{0}^{t} h_{1}(s) H_{2}(s) h_{3}(t-s) H_{4}(t-s) d s
$$

Value

fx values

Note

This provides the result of the complex integration

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

```
r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4<-c(0.5,0.4)
tchange<-c(0,1.75)
fourhrfun<-fourhr(t=seq(0,5,by=0.5),rate1=r1,rate2=r2, rate3=r3,
    rate4=r4,tchange=c(0,3),eps=1.0e-2)
fourhrfun
```

hxbeta A function to calculate the beta-smoothed hazard rate

Description

A function to calculate the beta-smoothed hazard rate

Usage

$$
\begin{gathered}
\text { hxbeta }(x=c(0.5,1), y=\operatorname{seq}(.1,1, b y=0.01), d=r e p(1, \text { length }(y)), \\
\text { tfix=2,K=20,eps=1.0e-06) }
\end{gathered}
$$

Arguments

$x \quad$ time points where the estimated hazards are calculated
y observed times
d non-censoring indicators
tfix maximum time point at which the hazard function is estimated
K smooth parameter for the hazard estimate
eps the error tolerance when comparing event times

Details

> V1:3/21/2018

Value

lambda estimated hazard at points x

Author(s)

Xiaodong Luo

Examples

```
n<-200
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
tfix<-taur+2
tseq<-seq(0,tfix,by=0.1)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
tchange<-c(0,1.873)
```

```
E<-T<-C<-d<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
C<-rpwe(nr=n, rate=rc1,tchange=tchange)$r
T<-rpwecx (nr=n, rate1=r11, rate2=r21, rate3=r31,
    rate4=r41,rate5=r51,tchange=tchange,type=1)$r
y<-pmin(pmin(T,C),tfix-E)
y1<-pmin(C,tfix-E)
d[T<=y]<-1
lambda=hxbeta(x=tseq,y=y,d=d,tfix=tfix,K=20,eps=1.0e-06)$lambda
lambda
```

innercov | A utility function to calculate the inner integration of the overall co- |
| :--- |
| variance |

Description

This will calculate the inner integration of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
innercov(tupp=seq(0,10,by=0.5),tlow=tupp-0.1,taur=5,
                u=c(1/taur,1/taur),ut=c(taur/2, taur),pi1=0.5,
                rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                        rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                        rate10=rate11,rate20=rate10,rate30=rate31,
                        rate40=rate20,rate50=rate20,ratec0=ratec1,
                        tchange=c(0, ) , type 1=1, type 0=1,
                        rp21=0.5,rp20=0.5,
                        eps=1.0e-2,veps=1.0e-2,beta=0)
```


Arguments

tupp A vector of upper bounds
tlow A vector of lower bounds
taur recruitment time
u Piecewise constant recuitment rate
ut Recruitment intervals
pi1 Allocation probability for the treatment group
rate11 Hazard before crossover for the treatment group
rate21 Hazard after crossover for the treatment group
rate31 Hazard for time to crossover for the treatment group

rate41	Hazard after crossover for the treatment group for complex case		
rate51	Hazard after crossover for the treatment group for complex case		
ratec1	Hazard for time to censoring for the treatment group		
rate10	Hazard before crossover for the control group		
rate20	Hazard after crossover for the control group		
rate30	Hazard for time to crossover for the control group		
rate40	Hazard after crossover for the control group for complex case		
rate50	Hazard after crossover for the control group for complex case ratec0		
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.		
type1	Type of crossover in the treatment group type0 rp21		
rp20 of crossover in the control group			
re-randomization prob for the treatment group		\quad	re-randomization prob for the control group
:---			

with $l=0,1,2$.
veps A small number representing the error tolerance when calculating the integrations.
beta The value at which the inner part of the covaraince is computed.

Details

The hazard functions corresponding to rate $11, \ldots$, rate 51, ratec 1, rate $10, \ldots$, rate50, ratec 0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange.

Value

qf1 The first part of the inner integration
qf2 The second part of the inner integration

Note
Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,pwecx,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
getinner<-innercov(tupp=rep(5, times=11), tlow=seq(0,5,by=0.5), taur=taur,u=u,ut=ut, pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,
rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,
rate40=r40, rate50=r50, ratec0=rc0,
tchange=c(0,1), type1=1, type0=1,
eps=1.0e-2,veps=1.0e-2,beta=0.5)
cbind(getinner$qf1, getinner$qf0)
```

```
innervar
```

A utility function to calculate the inner integration of the overall variance

Description

This will calculate the inner integration of the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

innervar $(t=\operatorname{seq}(0,10, b y=0.5), \operatorname{taur}=5, u=c(1 /$ taur, $1 /$ taur $), u t=c(t a u r / 2, t a u r), p i 1=0.5$, rate11=c $(1,0.5)$, rate21=rate11, rate31=c $(0.7,0.4)$,
rate41=rate21, rate51=rate21, ratec1=c(0.5,0.6),
rate10=rate11, rate20=rate10, rate30=rate31,
rate $40=$ rate 20 , rate $50=$ rate 20 , ratec $0=c(0.6,0.5)$,
tchange $=c(0,1)$, type $1=1$, type $0=1$,

```
rp21=0.5,rp20=0.5,
eps=1.0e-2,veps=1.0e-2,beta=0)
```


Arguments

t
taur
u
ut
pi1
rate11
rate21
rate31
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
rate50 Hazard after crossover for the control group for complex case
ratec0 Hazard for time to censoring for the control group
tchange A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1 Type of crossover in the treatment group
type0 Type of crossover in the control group
rp21 re-randomization prob for the treatment group
rp20 re-randomization prob for the control group
eps A small number representing the error tolerance when calculating the utility function

$$
\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}
$$

with $l=0,1,2$.
veps A small number representing the error tolerance when calculating the Fisher information.
beta The value at which the varaince is computed.

Details

The hazard functions corresponding to rate $11, \ldots$, rate51, ratec 1, rate $10, \ldots$, rate50, ratec 0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange.

Value

qf1 The first part of the inner integration
qf2 The second part of the inner integration

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,pwecx,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
getinner<-innervar(t=seq(0, 10,by=0.5),taur=taur,u=u,ut=ut, pi1=0.5,
                                    rate11=r11,rate21=r21,rate31=r31,
                                    rate41=r41,rate51=r51,ratec1=rc1,
                                    rate10=r10,rate20=r20, rate30=r30,
                                    rate40=r40, rate50=r50, ratec0=rc0,
                                    tchange=c(0,1), type 1=1, type0=1,
                                    eps=1.0e-2,veps=1.0e-2,beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```


Description

This will calculate the timeline from some timepoint in study when some/all subjects have entered accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

instudyfindt(target=400, $y=\exp (r n o r m(300)), z=r b i n o m(300,1,0.5)$, d=rep(c (0,1,2), each=100), tcut=2, blinded=1, type $0=1$, type1=type0, rp20=0.5, rp21=0.5, tchange $=c(0,1)$,
rate $10=c(1,0.7)$, rate $20=c(0.9,0.7)$, rate $30=c(0.4,0.6)$, rate $40=$ rate 20 , rate $50=$ rate 20 , ratec $0=c(0.3,0.3)$, rate11=rate10, rate21=rate20, rate31=rate30, rate $41=$ rate 40 , rate $51=$ rate 50, ratec $1=$ ratec 0 , withmorerec=1,
ntotal $=1000$, taur $=5, \mathrm{u}=\mathrm{c}(1 /$ taur, $1 /$ taur $), \mathrm{ut}=\mathrm{c}($ taur $/ 2$, taur $), \mathrm{pi} 1=0.5$, ntype $0=1$, ntype $1=1$, nrp20 $=0.5, \operatorname{nrp} 21=0.5$, ntchange $=c(0,1)$, nrate $10=$ rate 10 , nrate $20=$ rate 20 , nrate $30=$ rate 30 , nrate $40=$ rate 40 , nrate $50=$ rate 50, nratec $0=$ ratec 0 , nrate11=rate10, nrate21=rate20, nrate31=rate30, nrate41=rate40, nrate51=rate50, nratec $1=$ ratec 0 , eps=1.0e-2, init=tcut*1.1,epsilon=0.001, maxiter=100)

Arguments

target	target number of events
y	observed times
z	observed treatment indicator when $\mathrm{blinded}=0, \mathrm{z}=1$ denotes the treatment group and 0 the control group
d	event indicator, $1=$ event, $0=$ censored, $2=$ no event or censored up to tcut, the data cut-point
tcut	the data cut-point
blinded	blinded $=1$ if the data is blinded, $=0$ if it is unblinded
type0	type of the crossover for the observed data in the control group
type1	type of the crossover for the observed data in the treatment group
rp20	re-randomization prob for the observed data in the control group
rp21	re-randomization prob for the observed data in the treatment group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as ratejk, $\mathrm{j}=1,2,3,4,5, \mathrm{c} ; \mathrm{k}=0,1$

rate10	Hazard before crossover for the old subjects in the control group
rate20	Hazard after crossover for the old subjects in the control group
rate30	Hazard for time to crossover for the old subjects in the control group
rate40	Hazard after crossover for the old subjects in the control group for complex case
rate50	Hazard after crossover for the old subjects in the control group for complex case
ratec0	Hazard for time to censoring for the old subjects in the control group
rate11	Hazard before crossover for the old subjects in the treatment group
rate21	Hazard after crossover for the old subjects in the treatment group
rate31	Hazard for time to crossover for the old subjects in the treatment group
rate41	Hazard after crossover for the old subjects in the treatment group for complex case
rate51	Hazard after crossover for the old subjects in the treatment group for complex case
ratec1	Hazard for time to censoring for the old subjects in the treatment group
withmorerec	withmorerec $=1$ if more subjects are needed to be recruited; $=0$ otherwise
ntotal	total number of the potential new subjects
taur	recruitment time for the potential new subjects
u	Piecewise constant recuitment rate for the potential new subjects
ut	Recruitment intervals for the potential new subjects
pi1	Allocation probability to the treatment group for the potential new subjects
ntype0	type of the crossover for the potential new subjects in the control group
ntype1	type of the crossover for the potential new subjects in the treatment group
nrp20	re-randomization prob for the potential new subjects in the control group
nrp21	re-randomization prob for the potential new subjects in the treatment group
ntchange	A strictly increasing sequence of time points at which the event rates changes. The first element of ntchange must be zero. It must have the same length as nratejk, $\mathrm{j}=1,2,3,4,5, \mathrm{c} ; \mathrm{k}=0,1$
nrate10	Hazard before crossover for the potential new subjects in the control group
nrate20	Hazard after crossover for the potential new subjects in the control group
nrate30	Hazard for time to crossover for the potential new subjects in the control group
nrate40	Hazard after crossover for the potential new subjects in the control group for complex case
nrate50	Hazard after crossover for the potential new subjects in the control group for complex case
nratec0	Hazard for time to censoring for the potential new subjects in the control group
nrate11	Hazard before crossover for the potential new subjects in the treatment group
nrate21	Hazard after crossover for the potential new subjects in the treatment group
nrate31	Hazard for time to crossover for the potential new subjects in the treatment group

nrate41	Hazard after crossover for the potential new subjects in the treatment group for complex case
nrate51	Hazard after crossover for the potential new subjects in the treatment group for complex case
nratec1	Hazard for time to censoring for the potential new subjects in the treatment group A small number representing the error tolerance when calculating the utility function
eps	$\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}$
init	with $l=0,1,2$. initital value of the timeline estimate
epsilon	A small number representing the error tolerance when calculating the timeline. maxiter

Details

The hazard functions corresponding to rate $11, \ldots$, rate 51, ratec 1, rate $10, \ldots$, rate50, ratec 0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange. The hazard functions corresponding to nrate $11, \ldots$, nrate 51, nratec 1, nrate $10, \ldots$, , nrate 50, nratec 0 are all piecewise constant functions and all must have the same ntchange.

Value

t1	the calculated timeline
dvalue	the number of events
dvprime	the derivative of the event cummulative function at time t1
tvar	the variance of the timeline estimator
ny	total number of subjects that could be in the study
eps	final tolerance
iter	Number of iterations performed
t1hist	the history of the iteration for timeline
dvaluehist	the history of the iteration for the event count
dvprimehist	the history of the iteration for the derivative of event count with respect to time

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,pwecxpwufindt

Examples

```
n<-1000
target<-550
ntotal<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
tchange<-c(0,1.873)
tcut<-2
####generate the data
E<-T<-C<-Z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
Z<-rbinom(n,1,pi1)
n1<-sum(Z)
n0<-sum(1-Z)
C[Z==1]<-rpwe(nr=n1, rate=rc1,tchange=tchange)$r
C[Z==0]<-rpwe(nr=n0, rate=rc0,tchange=tchange)$r
T[Z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                            rate4=r41,rate5=r51,tchange=tchange, type=1)$r
T[Z==0]<-rpwecx(nr=n0,rate1=r10,rate2=r20,rate3=r30,
                            rate4=r40, rate5=r50, tchange=tchange, type=1)$r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
delta[T<=y]<-1
delta[C<=y]<-0
delta[tcut-E<=y & tcut-E>0]<-2
delta[tcut-E<=y & tcut-E<=0]<--1
ys<-y[delta>-1]
Zs<-Z[delta>-1]
ds<-delta[delta>-1]
```

```
nplus<-sum(delta==-1)
nd0<-sum(ds==0)
nd1<-sum(ds==1)
nd2<-sum(ds==2)
ntaur<-taur-tcut
nu<-c(1/ntaur,1/ntaur)
nut<-c(ntaur/2,ntaur)
###calculate the timeline at baseline
xt<-pwecxpwufindt(target=target,ntotal=n, taur=taur,u=u,ut=ut,pi1=pi1,
                        rate11=r11,rate21=r21,rate31=r31,ratec1=rc1,
                        rate10=r10,rate20=r20,rate30=r30,ratec0=rc0,
    tchange=tchange,eps=0.001,init=taur,epsilon=0.000001,maxiter=100)
###calculate the timeline in study
yt<-instudyfindt(target=target,y=ys,z=Zs,d=ds,
                    tcut=tcut, blinded=0, type1=1, type 0=1, tchange=tchange,
                    rate10=r10, rate20=r20, rate30=r30, ratec0=rc0,
                    rate11=r11,rate21=r21,rate31=r31,ratec1=rc1,
                    withmorerec=1,
                    ntotal=nplus,taur=ntaur,u=nu,ut=nut,pi1=pi1,
                    ntype1=1, ntype0=1, ntchange=tchange,
                    nrate10=r10,nrate20=r20,nrate30=r30, nratec0=rc0,
                    nrate11=r11,nrate21=r21,nrate31=r31, nratec1=rc1,
                    eps=1.0e-2,init=2,epsilon=0.001,maxiter=100)
##timelines
c(yt$t1,xt$t1)
##standard errors of the timeline estimators
c(sqrt(yt$tvar/yt$ny),sqrt(xt$tvar/n))
###95 percent CIs
c(yt$t1-1.96*sqrt(yt$tvar/yt$ny),yt$t1+1.96*sqrt(yt$tvar/yt$ny))
c(xt$t1-1.96*sqrt(xt$tvar/n),xt$t1+1.96*sqrt(xt$tvar/n))
```

ovbeta calculate the overall log hazard ratio

Description

This will calculate the overall (log) hazard ratio accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

ovbeta(tfix=2.0, taur=5, u=c(1/taur, $1 /$ taur $), u t=c(t a u r / 2$, taur $), p i 1=0.5$, rate11=c $(1,0.5)$, rate21=rate11, rate31=c $(0.7,0.4)$, rate41=rate21, rate51=rate21, ratec1=c(0.5,0.6), rate10=rate11, rate20=rate10, rate30=rate31, rate40=rate20, rate50=rate20, ratec $0=c(0.4,0.3)$,

```
tchange=c(0, 1), type 1=1, type0=1,
rp21=0.5,rp20=0.5,
eps=1.0e-2,veps=1.0e-2,
beta0=0,epsbeta=1.0e-4,iterbeta=25)
```


Arguments

tfix	The time point where the overall log hazard ratio is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}$

with $l=0,1,2$.
veps A small number representing the error tolerance when calculating the Fisher information.
beta0 The starting value of the Newton-Raphson iterative procedure.
epsbeta Absolute tolerance when calculating the overall log hazard ratio.
iterbeta Maximum number of iterations when calculating the overall log hazard ratio.

Details

The hazard functions corresponding to rate11,.., rate51, ratec 1 , rate $10, \ldots$, rate50, ratec0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange.

Value

b1	The overall log hazard ratio
hr	The overall hazard ratio
err	Error at the last iterative step
iter	Number of iterations performed
bhist	The overall log hazard ratio at each step
xnum	The expected score function at each step
xdenom	The Fisher information at each step
atsupp	The grids used to cut the interval $[0$, tfix $]$ in order to approximate the Fisher information

Note
Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
```

```
rc0<-c(0.2,0.4)
getbeta<-ovbeta(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
    rate10=r10,rate20=r20,rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
    tchange=c(0, 1), type 1=1, type 0=1, eps=1.0e-2, veps=1.0e-2, beta0=0, epsbeta=1.0e-4,iterbeta=25)
getbeta$b1
```

overallcov calculate the overall covariance

Description

This will calculate the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallcov(tfix=2.0,tfix0=1.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2, taur),pi1=0.5,
                rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                rate10=c(1,0.7),rate20=rate10,rate30=rate31,
                rate40=rate20,rate50=rate20,ratec0=ratec1,
                tchange=c(0, ) , type 1=1, type0=1,
                rp21=0.5,rp20=0.5,
                eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
```


Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group

overallcov

rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}$
	with $l=0,1,2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate $11, \ldots$, rate 51, ratec 1, rate $10, \ldots$, rate50, ratec 0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange.

Value

covbeta	The covariance the score functions
covbeta1	The first part of the cov
covbeta2	The second part of the cov
covbeta3	The third part of the cov
covbeta4	The fourth part of the cov
EA1	The first score function
EA2	The second score function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
getcov<-overallcov(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=r11,rate21=r21,rate31=r31,
    rate41=r41,rate51=r51,ratec1=rc1,
    rate10=r10,rate20=r20,rate30=r30,
    rate40=r40,rate50=r50,ratec 0=rc0,
    tchange=c(0,1), type1=1, type0=1,
    eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
    getcov$covbeta
```

 overallcovp1 calculate the first part of the overall covariance

Description

This will calculate the first part of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

overallcovp1 (tfix=2.0, tfix $0=1.0$, taur $=5, u=c(1 /$ taur, $1 /$ taur $), \mathrm{ut}=\mathrm{c}($ taur $/ 2$, taur $), \mathrm{pi} 1=0.5$, rate11=c(1, 0.5), rate21=rate11, rate31=c(0.7,0.4), rate41=rate21, rate51=rate51, ratec1=c $(0.5,0.6)$, rate10=rate11, rate20=rate10, rate30=rate31, rate $40=$ rate 20 , rate $50=$ rate 20 , ratec $0=r a t e c 1$, tchange $=c(0,1)$, type $1=1$, type $0=1$, rp21=0.5, rp20=0.5, eps $=1.0 \mathrm{e}-2$, veps $=1.0 \mathrm{e}-2$, beta $=0$, beta $0=0$)

Arguments

tfix
tfix0
taur
u
ut
pi1
rate11
rate21
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
rate50 Hazard after crossover for the control group for complex case
ratec0 Hazard for time to censoring for the control group
tchange A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1 Type of crossover in the treatment group
type0 Type of crossover in the control group
rp21 re-randomization prob in the treatment group
rp20 re-randomization prob in the control group
eps A small number representing the error tolerance when calculating the utility function

$$
\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}
$$

with $l=0,1,2$.
veps A small number representing the error tolerance when calculating the Fisher information.
beta The value at which the covaraince is computed, upper bound
beta0 The value at which the covaraince is computed, lower bound
The upper point where the overall covariance is computed.
The lower point where the overall covariance is computed.
Recruitment time
Piecewise constant recuitment rate
Recruitment intervals
Allocation probability for the treatment group
Hazard before crossover for the treatment group
Hazard after crossover for the treatment group

都

Value

covbeta1 The first part of the covariance
EA1
The first score function

Note
Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
getcov1<-overallcovp1(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=r11,rate21=r21,rate31=r31,
    rate41=r41,rate51=r51,ratec1=rc1,
    rate10=r10,rate20=r20,rate30=r30,
    rate40=r40,rate50=r50, ratec0=rc0,
    tchange=c(0,1), type1=1, type0=1,
    eps=1.0e-2,veps=1.0e-2,beta=0, beta0=0)
getcov1$covbeta1
```

overallcovp2 calculate the other parts of the overall covariance

Description

This will calculate the other parts of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallcovp2(tfix=2.0,tfix 0=1.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                    rate11=c(1,0.5),rate21=rate11, rate31=c(0.7,0.4),
    rate41=rate21,rate51=rate51,ratec1=c(0.5,0.6),
    rate10=rate11,rate20=rate10,rate30=rate31,
    rate40=rate20,rate50=rate20,ratec0=ratec1,
    tchange=c(0, ) , type 1=1, type 0=1,
    rp21=0.5,rp20=0.5,
    eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
```


Arguments

tfix
tfix0
taur
u
ut Recruitment intervals
pi1
rate11
rate21
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
rate50 Hazard after crossover for the control group for complex case
ratec $0 \quad$ Hazard for time to censoring for the control group
tchange A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.

type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function
$\qquad \Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}$	
veps	with $l=0,1,2$. A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate $11, \ldots$, rate51, ratec 1, rate $10, \ldots$, rate50, ratec 0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange.

Value

cov234	The other part of the covariance
covbeta2	The second part of the covariance
covbeta3	The third part of the covariance
covbeta4	The fourth part of the covariance
EA2	The second score function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
getcov2<-overallcovp2(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=r11,rate21=r21,rate31=r31,
    rate41=r41,rate51=r51,ratec1=rc1,
    rate10=r10,rate20=r20,rate30=r30,
    rate40=r40,rate50=r50, ratec 0=rc0,
    tchange=c (0, 1), type1=1, type 0=1,
    eps=1.0e-2, veps=1.0e-2, beta=0, beta0=0)
getcov2
```

overallvar
calculate the overall variance

Description

This will calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallvar(tfix=2.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur), pi1=0.5,
                        rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                        rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                        rate10=rate11,rate20=rate10,rate30=rate31,
                        rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
                        tchange=c(0, 1), type 1=1, type 0=1,
                        rp21=0.5,rp20=0.5,
    eps=1.0e-2,veps=1.0e-2,beta=0)
```


Arguments

tfix	The time point where the overall variance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals

pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group rp21
re-randomization prob in the treatment group	
r20	re-randomization prob in the control group

with $l=0,1,2$.
veps A small number representing the error tolerance when calculating the Fisher information.
beta The value at which the varaince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,..,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of the rates and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. Note that all the rates must have the same tchange.

Value

vbeta	The variance of the overall \log hazard ratio at the specified beta
vs	The variance of the score function at the specified beta
xdenom	Fisher information at the specified beta
EA	value of the score function
EA2	The first part of the variance
AB	Half of the second part of the variance

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
###variance with beta=0, calculate log-rank variance under the alternative
vbeta0<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
    rate10=r10,rate20=r20,rate 30=r30, rate 40=r40, rate 50=r 50, ratec 0=rc0,
    tchange=c(0, ), type 1=1, type 0=1, eps=1.0e-2, veps=1.0e-2, beta=0)
###variance with beta=0, calculate log-rank variance under the alternative
###Estimate the overall beta
getbeta<-ovbeta(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
    rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
    rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50, ratec0=rc0,
    tchange=c (0, 1), type 1=1, type 0=1, eps=1.0e-2, veps=1.0e-2, beta0=0,
    epsbeta=1.0e-4,iterbeta=25)
vbeta<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut, pi1=0.5,
            rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
            rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50, ratec0=rc0,
        tchange=c(0, 1), type1=1, type0=1, eps=1.0e-2,veps=1.0e-2, beta=getbeta$b1)
cbind(vbeta0$vs,vbeta$vs)
```

Piecewise exponential distribution: hazard, cumulative hazard, density, distribution, survival

Description

This will provide the related functions of the specified piecewise exponential distribution.

Usage

pwe $(t=\operatorname{seq}(0,5$, by $=0.5)$, rate $=c(0,5,0.8)$, tchange $=c(0,3))$

Arguments

t
rate
tchange

A vector of time points.
A vector of event rates
A strictly increasing sequence of time points at which the event rate changes. The first element of tchange must be zero. It must have the same length as rate.

Details

Let $\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)$ be the hazard function, where $\lambda_{1}, \ldots, \lambda_{m}$ are the corresponding elements of rate and t_{0}, \ldots, t_{m-1} are the corresponding elements of tchange, $t_{m}=\infty$. The cumulative hazard function

$$
\Lambda(t)=\sum_{j=1}^{m} \lambda_{j}\left(t \wedge t_{j}-t \wedge t_{j-1}\right)
$$

the survival function $S(t)=\exp \{-\Lambda(t)\}$, the distribution function $F(t)=1-S(t)$ and the density function $f(t)=\lambda(t) S(t)$.

Value

hazard	Hazard function
cumhazard	Cumulative hazard function
density	Density function
dist	Distribution function
surv	Survival function

Note
Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

rpwe,qpwe

Examples

```
t<-seq(0, 3,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pwefun<-pwe(t=t,rate=rate,tchange=tchange)
pwefun
```

pwecx Various function for piecewise exponential distribution with crossover effect

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

pwecx $(t=\operatorname{seq}(0,10, b y=0.5)$, rate $1=c(1,0.5)$, rate $2=$ rate 1 , rate $3=c(0.7,0.4)$, rate $4=$ rate 2 , rate $5=$ rate 2, tchange $=c(0,1)$, type $=1, r p 2=0.5, e p s=1.0 \mathrm{e}-2)$

Arguments

t
rate1
rate2 piecewise constant event rate after crossover
rate3 piecewise constant event rate for crossover
rate4 additional piecewise constant event rate for more complex crossover
rate5 additional piecewise constant event rate for more complex crossover
tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate 1 to rate 5 and tchange must have the same length.
type type of crossover, i.e. 1: markov, 2: semi-markov, 3: hybrid case 1(as indicated in the reference), 4: hybrid case 2,5 : hybrid case 3 .
rp2 re-randomization prob
eps
a vector of time points
piecewise constant event rate before crossover
tolerance

Details

More details

Value	
hazard	Hazard function
cumhazard	Cumulative hazard function
density	Density function
dist	Distribution function
surv	Survival function

Note
This provides a random number generator of the piecewise exponetial distribution with crossover

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

$r 1<-c(0.6,0.3)$
$r 2<-c(0.6,0.6)$
r3<-c(0.1,0.2)
$r 4<-c(0.5,0.4)$
$r 5<-c(0.4,0.5)$
pwecxfun<-pwecx(t=seq(0,10,by=0.5), rate1=r1,rate2=r2, rate3=r3, rate4=r4, rate $5=r 5$, tchange $=c(0,1)$, type $=1, e p s=1.0 \mathrm{e}-2)$
pwecxfun\$surv

```
pwecxcens Integration of the density of piecewise exponential distribution with
``` crossover effect and the censoring function

\section*{Description}

This will calculate the functions according to the piecewise exponential distribution with crossover

\section*{Usage}
```

pwecxcens(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1,
rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.2,0.3),
tchange=c(0,1), type=1,rp2=0.5,eps=1.0e-2)

```

\section*{Arguments}
\(t \quad a\) vector of time points
rate1 piecewise constant event rate before crossover
rate2 piecewise constant event rate after crossover
rate3 piecewise constant event rate for crossover
rate4 additional piecewise constant event rate for more complex crossover
rate5 additional piecewise constant event rate for more complex crossover
ratec censoring piecewise constant event rate
tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.
type type of crossover, i.e. markov, semi-markov and hybrid
rp2 re-randomization prob
eps tolerance

\section*{Details}

This is to calculate the function (and its derivative)
\[
\xi(t)=\int_{0}^{t} \widetilde{f}(s) S_{C}(s) d s
\]
where \(S_{C}\) is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \(\widetilde{f}\) is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

\section*{Value}
\begin{tabular}{ll}
du & the function \\
duprime & its derivative \\
s & the survival function of \(\tilde{f}\) \\
sc & the survival function \(S_{C}\)
\end{tabular}

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
rpwe

\section*{Examples}
```

r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4<-c(0.5,0.4)
r5<-c(0.4,0.5)
rc<-c(0.5,0.6)
exu<-pwecxcens(t=seq(0,10,by=0.5),rate1=r1, rate2=r2,
rate3=r3,rate4=r4,rate5=r5,ratec=rc,
tchange=c(0,1), type=1,eps=1.0e-2)
c(exu$du,exu$duprime)

```

Integration of the density of piecewise exponential distribution with crossover effect, censoring and recruitment function

\section*{Description}

This will calculate the functions according to the piecewise exponential distribution with crossover

\section*{Usage}
```

pwecxpwu(t=seq(0,10,by=0.5), taur=5,
u=c(1/taur,1/taur),ut=c(taur/2, taur),
rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
tchange=c(0,1), type=1,rp2=0.5,eps=1.0e-2)

```

\section*{Arguments}
t
taur
u
ut recruitment interval, must have the same length as \(u\)
rate1 piecewise constant event rate before crossover
rate2 piecewise constant event rate after crossover
rate3 piecewise constant event rate for crossover
rate4 additional piecewise constant event rate for more complex crossover
rate5 additional piecewise constant event rate for more complex crossover
ratec censoring piecewise constant event rate
tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate 1 to ratec and tchange must have the same length.
type type of crossover, i.e. markov, semi-markov and hybrid
rp2 re-randomization prob
eps tolerance

\section*{Details}

This is to calculate the function (and its derivative)
\[
\xi(t)=\int_{0}^{t} G_{E}(t-s) \widetilde{f}(s) S_{C}(s) d s
\]
where \(G_{E}\) is the accrual function defined by taur, u and \(\mathrm{ut}, S_{C}\) is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \(\widetilde{f}\) is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

\section*{Value}
\begin{tabular}{ll}
du & the function \\
duprime & its derivative
\end{tabular}

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}

\section*{rpwe}

\section*{Examples}
```

taur<-2
u<-c(0.6,0.4)
ut<-c(1,2)
r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4<-c(0.5,0.4)
r5<-c(0.4,0.5)
rc<-c(0.5,0.6)
exu<-pwecxpwu(t=seq(0,10,by=0.5),taur=taur,u=u,ut=ut,
rate1=r1,rate2=r2,rate3=r3, rate4=r4, rate5=r5, ratec=rc,
tchange=c(0,1), type=1,eps=1.0e-2)
c(exu$du,exu$duprime)

```

\section*{Description}

This will calculate the timeline from study inception accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
pwecxpwufindt (target \(=400\), ntotal \(=1000\), taur \(=5, \mathrm{u}=\mathrm{c}(1 /\) taur, \(1 /\) taur \()\), ut=c (taur \(/ 2\), taur), pi1=0.5, rate \(11=c(1,0.5)\), rate \(21=c(0.8,0.9)\), rate \(31=c(0.7,0.4)\), rate \(41=\) rate 21, rate \(51=\) rate 21, ratec \(1=c(0.5,0.6)\),
rate \(10=c(1,0.7)\), rate \(20=c(0.9,0.7)\), rate \(30=c(0.4,0.6)\), rate \(40=\) rate 20 , rate \(50=\) rate 20 , ratec \(0=c(0.3,0.3)\), tchange=c (0,1), type1=1, type \(0=1\), \(r p 21=0.5, r p 20=0.5\), eps \(=1.0 \mathrm{e}-2\), init=taur,epsilon=0.000001, maxiter=100)

\section*{Arguments}
target target number of events
ntotal total number of subjects
taur recruitment time
u
ut Recruitment intervals
pi1 Allocation probability for the treatment group
rate11 Hazard before crossover for the treatment group
rate21 Hazard after crossover for the treatment group
rate31 Hazard for time to crossover for the treatment group
\begin{tabular}{|c|c|}
\hline rate41 & Hazard after crossover for the treatment group for complex case \\
\hline rate51 & Hazard after crossover for the treatment group for complex case \\
\hline ratec1 & Hazard for time to censoring for the treatment group \\
\hline rate10 & Hazard before crossover for the control group \\
\hline rate20 & Hazard after crossover for the control group \\
\hline rate30 & Hazard for time to crossover for the control group \\
\hline rate40 & Hazard after crossover for the control group for complex case \\
\hline rate50 & Hazard after crossover for the control group for complex case \\
\hline ratec0 & Hazard for time to censoring for the control group \\
\hline tchange & A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc. \\
\hline type 1 & Type of crossover in the treatment group \\
\hline type0 & Type of crossover in the control group \\
\hline rp21 & re-randomization prob in the treatment group \\
\hline rp20 & re-randomization prob in the control group \\
\hline eps & A small number representing the error tolerance when calculating the utility function
\[
\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}
\] \\
\hline & with \(l=0,1,2\). \\
\hline init & initital value of the timeline estimate \\
\hline epsilon & A small number representing the error tolerance when calculating the timeline. \\
\hline maxiter & Maximum number of iterations when calculating the timeline \\
\hline
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate \(11, \ldots\), rate 51, ratec 1, rate \(10, \ldots\), rate 50, ratec 0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
\begin{tabular}{ll}
t1 & the calculated timeline \\
tvar & the true variance of the timeline estimator \\
eps & final tolerance \\
iter & Number of iterations performed
\end{tabular}

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{See Also}
pwe,rpwe,qpwe,instudyfindt

\section*{Examples}
```

target<-400
ntotal<-2000
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
gettimeline<-pwecxpwufindt(target=target,ntotal=ntotal,
taur=5,u=c(1/taur,1/taur),ut=c(taur/2, taur), pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50, ratec0=rc0,
tchange=c(0,1), type1=1, type0=1,eps=1.0e-2, init=taur, epsilon=0.000001,maxiter=100)
gettimeline\$t1

```
pwecxpwuforvar calculate the utility function used for varaince calculation

\section*{Description}

This is a utility function to calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
pwecxpwuforvar (tfix=10, t=seq \((0,10, \mathrm{by}=0.5)\), taur \(=5, \mathrm{u}=\mathrm{c}(1 /\) taur, \(1 /\) taur \(), \mathrm{ut}=\mathrm{c}(\mathrm{tan} / 2\), taur), rate \(1=c(1,0.5)\), rate \(2=\) rate 1, rate \(3=c(0.7,0.4)\), rate \(4=\) rate 2 , rate \(=\) rate 2, ratec \(=c(0.5,0.6)\), tchange \(=c(0,1)\), type \(=1, r p 2=0.5, e p s=1.0 e-2)\)

\section*{Arguments}
\begin{tabular}{ll}
tfix & The upper point where the integral is computed. \\
t & A vector of lower bounds where the integral is computed. \\
taur & Recruitment time \\
u & Piecewise constant recuitment rate \\
ut & Recruitment intervals \\
rate1 & Hazard before crossover \\
rate2 & Hazard after crossover \\
rate3 & \begin{tabular}{l}
Hazard for time to crossover \\
rate4
\end{tabular} \\
rate5 & \begin{tabular}{l}
Hazard after crossover for complex case
\end{tabular} \\
ratec & \begin{tabular}{l}
Hazard for time to censoring \\
tchange
\end{tabular} \\
& \begin{tabular}{l}
The first element of tchange must be zero. It must have the same length as \\
rate1, rate2, rate3, etc.
\end{tabular} \\
type & \begin{tabular}{l}
Type of crossover \\
re-randomization prob
\end{tabular} \\
eps & \begin{tabular}{l}
A small number representing the error tolerance when calculating the utility
\end{tabular} \\
function
\end{tabular}
with \(l=0,1,2\).

\section*{Details}

This is to calculate the function
\[
B_{l}(t, s)=\int_{0}^{s} x^{l} G_{E}(t-x) \tilde{f}(x) S_{C}(x) d x
\]
where \(G_{E}\) is the accrual function defined by taur, u and \(\mathrm{ut}, S_{C}\) is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \(\widetilde{f}\) is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type. This function is useful when calculating the overall varaince and covariance.

\section*{Value}
\[
\begin{array}{ll}
\mathrm{f} 0 & \text { the integral when } l=0 \\
\mathrm{f} 1 & \text { the integral when } l=1
\end{array}
\]

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
pwe,rpwe,qpwe,ovbeta,innervar

\section*{Examples}
```

taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
getf<-pwecxpwuforvar(tfix=3,t=seq(0, 3,by=1), taur=taur,u=u,ut=ut,
rate1=r11,rate2=r21,rate3=r31,rate4=r41,rate5=r51,ratec=rc1,
tchange=c(0,1), type=1,eps=1.0e-2)
getf

```
 pwefv2 A utility function

\section*{Description}

This will \$int_0^t \(\mathrm{s}^{\wedge} \mathrm{k}\) lambda_1(s)S_2(s)ds\$ where \(\mathrm{k}=0,1,2\) and rate1=lambda_1 and \(\mathrm{S} _2\) has hazard rate2

\section*{Usage}
```

pwefv2(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),
rate2=rate1, tchange =c (0,3),eps=1.0e-2)

```

\section*{Arguments}
t
rate1 piecewise constant event rate
rate2 piecewise constant event rate
tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and
eps
tchange must have the same length.
A vector of time points tolerance

\section*{Details}

Let \(h_{1}, h_{2}\) correspond to rate1, rate2, and \(H_{1}, H_{2}\) be the corresponding survival functions. This function will calculate
\[
\int_{0}^{t} s^{k} h_{1}(s) H_{2}(s) d s, \quad k=0,1,2
\]

\section*{Value}
f0
f1
values when \(k=0\)
values when \(k=1\)
f2 \(\quad\) values when \(k=2\)

Note
This will provide the number of events.

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{See Also}
rpwe

\section*{Examples}
```

r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
tchange<-c(0,1.75)
pwefun<-pwefv2(t=seq(0,5,by=0.5),rate1=r1,rate2=r2,
tchange=tchange,eps=1.0e-2)
pwefun

```
pwefvplus
A utility functon

\section*{Description}

This will calculate the more complex integration accounting for crossover

\section*{Usage}
```

pwefvplus(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,
rate3=c(0.1,0.2),rate4=rate2,rate5=rate2,
rate6=c(0.5,0.3),tchange=c(0,3), type=1,
rp2=0.5,eps=1.0e-2)

```

\section*{Arguments}
t
rate1
rate2
rate3 piecewise constant event rate
rate4 additional piecewise constant
rate5 additional piecewise constant
rp2 re-randomization prob
eps tolerance
rate6 piecewise constant event rate for censoring
tchange a strictly increasing sequence of time points starting from zero at which event a strictly increasing sequence of time points starting from zero at which event
rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.
type type of the crossover, markov, semi-markov and hybrid
A vector of time points
piecewise constant event rate piecewise constant event rate

\section*{Details}

Let \(h_{1}, \ldots, h_{6}\) correspond to rate \(1, \ldots\), rate 6 , and \(H_{1}, \ldots, H_{6}\) be the corresponding survival functions. Also let \(\pi_{2}=r p 2\). when type \(=1\), we calculate
\[
\int_{0}^{t} s^{k} h_{2}(s) H_{2}(s) H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) / H_{2}(u) d u d s
\]
when type \(=2\), we calculate
\[
\int_{0}^{t} s^{k} H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) h_{2}(s-u) H_{2}(s-u) d u d s
\]
when type \(=3\), we calculate the sum of
\[
\pi_{2} \int_{0}^{t} s^{k} H_{4}^{1-\pi_{2}}(s) H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) h_{2}(s-u) H_{2}^{\pi_{2}}(s-u) / H_{4}^{1-\pi_{2}}(u) d u d s
\]
and
\[
\left(1-\pi_{2}\right) \int_{0}^{t} s^{k} h_{4}(s) H_{4}^{1-\pi_{2}}(s) H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) H_{2}^{\pi_{2}}(s-u) / H_{4}^{1-\pi_{2}}(u) d u d s
\]
when type=4, we calculate the sum of
\[
\pi_{2} \int_{0}^{t} s^{k} H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) h_{2}(s-u) H_{2}(s-u) d u d s
\]
and
\[
\left(1-\pi_{2}\right) \int_{0}^{t} s^{k} h_{4}(s) H_{4}(s) H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) / H_{4}(u) d u d s
\]
when type=5, we calculate the sum of
\[
\pi_{2} \int_{0}^{t} s^{k} H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) h_{2}(s-u) H_{2}(s-u) d u d s
\]
and
\[
\left(1-\pi_{2}\right) \int_{0}^{t} s^{k} H_{6}(s) \int_{0}^{s} h_{3}(u) H_{1}(u) H_{3}(u) h_{4}(s-u) H_{4}(s-u) d u d s
\]

\section*{Value}
f0 \(\quad\) values when \(k=0\)
f1 \(\quad\) values when \(k=1\)
f2 \(\quad\) values when \(k=2\)

\section*{Note}

This provides the result of the complex integration

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{See Also}
rpwe

\section*{Examples}
```

r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4<-c(0.5,0.4)
r5<-c(0.4,0.5)
r6<-c(0.4,0.5)
tchange<-c(0,1.75)
pwefun<-pwefvplus(t=seq(0,5,by=0.5),rate1=r1,rate2=r2, rate3=r3,
rate4=r4,rate5=r5, rate6=r6,
tchange=c(0,3), type=1,eps=1.0e-2)
pwefun

```

Calculating the powers of various the test statistics for superiority trials

\section*{Description}

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
pwepower \((t=\operatorname{seq}(0.1,3, b y=0.5)\), alpha=0.05, twosided=1, taur=1.2, \(\mathrm{u}=\mathrm{c}(1 /\) taur, \(1 /\) taur \(), \mathrm{ut}=\mathrm{c}(\) taur \(/ 2\), taur \(), \mathrm{pi} 1=0.5\), rate11=c(1, 0.5), rate21=rate11, rate31=c(0.7,0.4), rate41=rate21, rate51=rate21, ratec1=c(0.5,0.6), rate10=rate11, rate20=rate10, rate30=rate31, rate \(40=\) rate 20 , rate \(50=\) rate 20 , ratec \(0=c(0.6,0.5)\), tchange \(=c(0,1)\), type \(1=1\), type \(0=1, r p 21=0.5, r p 20=0.5\), eps \(=1.0 \mathrm{e}-2\), veps \(=1.0 \mathrm{e}-2\), epsbeta \(=1.0 \mathrm{e}-4\), iterbeta \(=25\), \(\mathrm{n}=1000\))

\section*{Arguments}
\(t \quad a\) vector of time points at which power is calculated, \(t\) must be positive
alpha type-1 error rate
twosided twosided test or not
taur Recruitment time
u Piecewise constant recuitment rate
ut Recruitment intervals
pi1 Allocation probability for the treatment group
rate11 Hazard before crossover for the treatment group
rate21 Hazard after crossover for the treatment group
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
rate50 Hazard after crossover for the control group for complex case
\begin{tabular}{ll}
ratec0 & Hazard for time to censoring for the control group \\
tchange & \begin{tabular}{l}
A strictly increasing sequence of time points at which the event rates changes. \\
The first element of tchange must be zero. It must have the same length as \\
rate11, rate21, rate31, etc.
\end{tabular} \\
type1 & \begin{tabular}{l}
Type of crossover in the treatment group \\
type0
\end{tabular} \\
rp21 & Type of crossover in the control group \\
rp20 & re-randomization prob for the treatment group \\
eps & error tolerence \\
veps & error tolenrence for calculating variance \\
epsbeta & error tolerance for calculating overall log HR \\
iterbeta & maximum number of iterations for calculating overall log HR \\
\(n\) & total number of subjects
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate11,..,rate51, ratec1, rate10,..,rate50,ratec0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
power powers for various test statistics. Columns 2-6 are for log-rank and columns 12-16 are for cox model. Column 2 is the exact power based on log-rank/score test; column 3 uses variance approximated by Fisher information, i.e. Lakatos's method; column 4 uses approximated Fisher info by number of events i.e. 4/D(t); column 5 uses approximated Fisher info by assuming exp dist. 1/D1(t)+1/D0(t); column 6 uses Fisher information at beta. Column 12 is the exact power based on Wald test; column 13 uses variance approximated by Fisher information; column 14 uses approximated Fisher info by number of events i.e. 4/D(t); column 15 uses approximated Fisher info by assuming exp dist. 1/D1(t)+1/D0(t); column 16 uses Fisher information at beta=0.

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
```

pwe,rpwe,qpwe,ovbeta,innervar, pwepowerni,pwepowereq

```

\section*{Examples}
```

t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1, taur=taur,u=u,ut=ut,pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
tchange=c(0,1), type 1=1, type0=1,n=1000)
\#\#\#powers at each time point
cbind(t,getpower\$power[,c(2:4,12:14)])

```
pwepowereq

Calculating the powers of various the test statistics for equivalence trials

\section*{Description}

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
```

pwepowereq(t=seq(0.1,3,by=0.5),uppermargin=1.3,lowermargin=1/uppermargin,
alpha=0.05, taur=1.2,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
rate10=rate11,rate20=rate10, rate30=rate31,
rate40=rate20,rate50=rate20,ratec 0=c(0.6,0.5),
tchange=c(0,1), type1=1, type0=1,
rp21=0.5,rp20=0.5, eps=1.0e-2,veps=1.0e-2,
epsbeta=1.0e-4,iterbeta=25,n=1000)

```

\section*{Arguments}
t
uppermargin
lowermargin
alpha

\section*{taur}
u
ut
pi 1
rate11
rate21
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec \(1 \quad\) Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
rate50 Hazard after crossover for the control group for complex case
ratec0 Hazard for time to censoring for the control group
tchange A strictly increasing sequence of time points at which the event rates changes.
A strictly increasing sequence of time points at which the event rates changes.
The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1 Type of crossover in the treatment group
type0 Type of crossover in the control group
rp21 re-randomization prob in the treatment group
rp20 re-randomization prob in the control group
eps error tolerence
veps error tolenrence for calculating variance
epsbeta error tolerance for calculating overall log HR
iterbeta maximum number of iterations for calculating overall \(\log \mathrm{HR}\)
n
a vector of time points at which power is calculated, \(t\) must be positive the upper margin for the hazard ratio
the lower margin for the hazard ratio
type-1 error rate
Recruitment time
Piecewise constant recuitment rate
Recruitment intervals
Allocation probability for the treatment group
Hazard before crossover for the treatment group
Hazard after crossover for the treatment group

\section*{Details}

The hazard functions corresponding to rate \(11, \ldots\), rate 51, ratec 1 , rate \(10, \ldots\), rate 50 , ratec 0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
power powers for cox model. First column is the more accurate power, second column is the power assuming the Fisher information equal to the varaince of beta

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
```

pwe,rpwe,qpwe,ovbeta,innervar, pwepower,pwepowerni

```

\section*{Examples}
```

t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpowereq<-pwepowereq(t=t,uppermargin=1.3,lowermargin=0.8,alpha=0.05,taur=taur,
u=u,ut=ut, pi1=0.5,rate11=r11,rate21=r21,rate31=r31,
rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
tchange=c(0,1), type 1=1, type 0=1, n=1000)
\#\#\#powers at each time point
cbind(t,getpowereq\$power[,1:3])

```
pwepowerfindt
Calculating the timepoint where a certain power of the specified test statistics is obtained

\section*{Description}

This will calculate the timepoint where a certain power of the specified test statistics is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}

\section*{Arguments}
power the desired power
alpha type-1 error
twosided twoside test or not
tupp an upper time point where the power should be larger than power
tlow a lower time point where the power should be smaller than power
taur recruitment time
u
ut Recruitment intervals
pi1 Allocation probability for the treatment group
rate11 Hazard before crossover for the treatment group
rate21 Hazard after crossover for the treatment group
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
\begin{tabular}{ll}
rate40 & Hazard after crossover for the control group for complex case \\
rate50 & Hazard after crossover for the control group for complex case \\
ratec0 & Hazard for time to censoring for the control group \\
tchange & \begin{tabular}{l}
A strictly increasing sequence of time points at which the event rates changes. \\
The first element of tchange must be zero. It must have the same length as \\
rate11, rate21, rate31, etc.
\end{tabular} \\
& Type of crossover in the treatment group \\
type1 & Type of crossover in the control group \\
type0 & re-randomization prob in the treatment group \\
rp21 & re-randomization prob in the control group \\
rp20 & error tolerence \\
eps & error tolenrence for calculating variance \\
veps & error tolerance for calculating overall log HR \\
epsbeta & maximum number of iterations for calculating overall log HR \\
iterbeta & total number of subjects \\
\(n\) & test statistics, =1 log-rank;=2 Cox model; =3 log-rank with robust variance \\
testtype & maximum number of bi-section iterations \\
maxiter & error tolerance of power
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate11,...,rate51, ratec1, rate10,..,rate50,ratec0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.
Value
\begin{tabular}{ll}
testtype & type of statistic, \(=1\) log-rank \(;=2\) Cox model; \(=3\) log-rank with robust variance \\
time & time calculated when the iterations stop \\
power & the power at time \\
err & distance from the desired power \\
k & number of bi-section iterations performed
\end{tabular}

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
pwe,rpwe,qpwe,ovbeta,innervar

\section*{Examples}
```

t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20, rate30=r30, rate 40=r40,rate50=r50,ratec 0=rc0,
tchange=c(0,1), type1=1, type0=1, n=1000)
\#\#\#powers at each time point
cbind(t,getpower\$power[,1:3])
\#\#\#90% power should be in (3,3.5)
getpwtime<-pwepowerfindt(power=0.9,alpha=0.05,twosided=1,tupp=3.5,tlow=3, taur=taur,
u=u,ut=ut, pi1=0.5,rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,rate 40=r40,rate50=r50,ratec0=rc0,
tchange=c(0, 1), type 1=1, type 0=1, n=1000, test type=1, maxiter=30)
getpwtime

```

Calculating the powers of various the test statistics for non-inferiority trials

\section*{Description}

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
```

pwepowerni(t=seq(0.1,3,by=0.5),nimargin=1.3,alpha=0.05,twosided=0,taur=1.2,
u=c(1/taur,1/taur),ut=c(taur/2, taur), pi1=0.5,
rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
rate10=rate11,rate20=rate10,rate30=rate31,
rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
tchange=c(0, 1), type 1=1, type0=1,
rp21=0.5,rp20=0.5, eps=1.0e-2,veps=1.0e-2,
epsbeta=1.0e-4,iterbeta=25,n=1000)

```

\section*{Arguments}
t
nimargin

\section*{alpha}
twosided

\section*{taur}
u
ut
pi 1
rate11
rate21 Hazard after crossover for the treatment group
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
rate50 Hazard after crossover for the control group for complex case
ratec0 Hazard for time to censoring for the control group
tchange A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1 Type of crossover in the treatment group
type0 Type of crossover in the control group
rp21 re-randomization prob in the treatment group
rp20 re-randomization prob in the control group
```

eps error tolerence
veps error tolenrence for calculating variance
epsbeta error tolerance for calculating overall log HR
iterbeta maximum number of iterations for calculating overall log HR
n
total number of subjects

```

\section*{Details}

The hazard functions corresponding to rate \(11, \ldots\), rate 51, ratec 1 , rate \(10, \ldots\), rate50, ratec 0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
power powers for cox model. First column is the more accurate power, second column is the power assuming the Fisher information equal to the varaince of beta

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
pwe,rpwe,qpwe,ovbeta,innervar, pwepower,pwepowereq

\section*{Examples}
```

t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)

```
```

getpowerni<-pwepowerni(t=t,nimargin=1.3,alpha=0.05,twosided=1, taur=taur,u=u,ut=ut,pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
tchange=c(0, 1), type1=1, type0=1,n=1000)
\#\#\#powers at each time point
cbind(t,getpowerni\$power[,1:3])

```
pwesim simulating the test statistics

\section*{Description}

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
\[
\begin{aligned}
& \text { pwesim }(t=\operatorname{seq}(1,2, \text { by }=0.1), \operatorname{taur}=1.2, u=c(1 / \text { taur }, 1 / \text { taur }), \text { ut }=c(\text { taur } / 2, \text { taur }), \text { pi } 1=0.5, \\
& \text { rate } 11=c(1,0.5), \text { rate } 21=\text { rate } 11, \text { rate } 31=c(0.7,0.4), \\
& \text { rate } 41=\text { rate } 21, \text { rate } 51=\text { rate } 21, \text { ratec } 1=c(0.5,0.6), \\
& \text { rate10=rate } 11, \text { rate } 20=\text { rate } 10, \text { rate } 30=r a t e 31, \\
& \text { rate } 40=\text { rate20, rate } 50=\text { rate } 20, \text { ratec } 0=c(0.6,0.5), \\
& \text { tchange }=c(0,1), \text { type } 1=1, \text { type } 0=1, \\
& \text { rp21=0.5,rp20=0.5, } \\
&n=1000, r n=200, \text { testtype }=c(1,2,3,4))
\end{aligned}
\]

\section*{Arguments}
t
taur Recruitment time
u
ut
pi1 Allocation probability for the treatment group
rate11 Hazard before crossover for the treatment group
rate21 Hazard after crossover for the treatment group
rate31 Hazard for time to crossover for the treatment group
rate41 Hazard after crossover for the treatment group for complex case
rate51 Hazard after crossover for the treatment group for complex case
ratec1 Hazard for time to censoring for the treatment group
rate10 Hazard before crossover for the control group
rate20 Hazard after crossover for the control group
rate30 Hazard for time to crossover for the control group
rate40 Hazard after crossover for the control group for complex case
\begin{tabular}{ll}
rate50 & Hazard after crossover for the control group for complex case \\
ratec0 & Hazard for time to censoring for the control group \\
tchange & \begin{tabular}{l}
A strictly increasing sequence of time points at which the event rates changes. \\
The first element of tchange must be zero. It must have the same length as \\
rate11, rate21, rate31, etc.
\end{tabular} \\
type1 & \begin{tabular}{l}
Type of crossover in the treatment group \\
type0 \\
rp21
\end{tabular} \\
rp20 & \begin{tabular}{l}
Type of crossover in the control group
\end{tabular} \\
\(n\) & re-randomization prob in the treatment group \\
rn & \begin{tabular}{l}
number of subjects in the control group
\end{tabular} \\
testtype & \begin{tabular}{l}
number of simulations \\
types of test statistics.
\end{tabular}
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate11,..., rate51, ratec1, rate10,..., rate50, ratec0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
outr test statistics at each time point and each simulation run

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
pwe,rpwe,qpwe,ovbeta,innervar

\section*{Examples}
```

taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)

```
```

r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
ar<-pwesim(t=seq(1,2,by=0.1),taur=taur,u=u,ut=ut,pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
tchange=c(0,1), type1=1, type0=1,
n=300,rn=10)

```
pwu

Piecewise uniform distribution: distribution

\section*{Description}

This will calculate the distribution function of the piecewise uniform distribution

\section*{Usage}
pwu \((t=s e q(0,1, b y=0.1), u=c(0,5,0.5), u t=c(1,2))\)

\section*{Arguments}
t
u
ut a strictly increasing sequence of time points defining the pieces. The first element must be strictly greater than zero. \(u\) and \(u t\) must have the same length.

\section*{Details}

Let \(f(t)=\sum_{j=1}^{m} u_{j} I\left(t_{j-1}<t \leq t_{j}\right)\) be the density function, where \(u_{1}, \ldots, u_{m}\) are the corresponding elements of \(u\) and \(t_{1}, \ldots, t_{m}\) are the corresponding elements of \(u t\) and \(t_{0}=0\). The distribution function
\[
F(t)=\sum_{j=1}^{m} u_{j}\left(t \wedge t_{j}-t \wedge t_{j-1}\right)
\]

User must make sure that \(\sum_{j=1}^{m} u_{j}\left(t_{j}-t_{j-1}\right)=1\) before using this function.
Value
dist distribution

\section*{Note}

This provides distribution of the piecewise uniform distribution

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
pwe

\section*{Examples}
\(t<-\operatorname{seq}(-1,3, b y=0.5)\)
\(u<-c(0.6,0.4)\)
ut<-c \((1,2)\)
pwud<-pwu(t=t,u=u, ut=ut)

> pwud
qpwe
Piecewise exponential distribution: quantile function

\section*{Description}

This will provide the quantile function of the specified piecewise exponential distribution

\section*{Usage}
qpwe \((p=\operatorname{seq}(0,1, b y=0.1)\), rate \(=c(0,5,0.8)\), tchange \(=c(0,3))\)

\section*{Arguments}
p
rate
tchange time points at which event rate changes. This must be an strictly increasing sequence starting from zero. rate and tchange must have the same length.

\section*{Details}

More details

Value
\(q \quad\) quantiles

\section*{Note}

This provides the quantile function related to the piecewise exponetial distribution

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
piecewise exponential

\section*{Examples}
```

p<-seq(0,1,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pweq<-qpwe (p=p,rate=rate, tchange=tchange)
pweq

```
qpwu

Piecewise uniform distribution: quantile function

\section*{Description}

This will provide the quantile function of the specified piecewise uniform distribution

\section*{Usage}
qpwu(\(p=\operatorname{seq}(0,1, b y=0.1), u=c(0,5,0.5), u t=c(1,2))\)

\section*{Arguments}
\(p \quad\) a vector of probabilities
u piecewise constant density
ut time points at which event rate changes. This must be an strictly increasing sequence. ut and \(u\) must have the same length.

\section*{Details}

Let \(f(t)=\sum_{j=1}^{m} u_{j} I\left(t_{j-1}<t \leq t_{j}\right)\) be the density function, where \(u_{1}, \ldots, u_{m}\) are the corresponding elements of \(u\) and \(t_{1}, \ldots, t_{m}\) are the corresponding elements of \(u t\) and \(t_{0}=0\). The distribution function
\[
F(t)=\sum_{j=1}^{m} u_{j}\left(t \wedge t_{j}-t \wedge t_{j-1}\right)
\]

User must make sure that \(\sum_{j=1}^{m} u_{j}\left(t_{j}-t_{j-1}\right)=1\) before using this function.

\section*{Value}
q quantiles

\section*{Note}

This provides the quantile function related to the piecewise uniform distribution

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
piecewise uniform

\section*{Examples}
```

p<-seq(0,1,by=0.1)
u<-c(0.6,0.4)
ut<-c(1, 2)
pwuq<-qpwu(p=p,u=u,ut=ut)
pwuq

```
```

rmstcov

```

Calculation of the variance and covariance of estimated restricted mean survival time

\section*{Description}

A function to calculate the variance and covariance of estimated restricted mean survival time using data from different cut-off points accounting for delayed treatment, discontinued treatment and non-uniform entry

\section*{Usage}
```

rmstcov(t1cut=2.0,t1study=2.5,t2cut=3.0,t2study=3.5,taur=5,
u=c(1/taur, 1/taur),ut=c(taur/2, taur),
rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
tchange=c(0, 1), type=1,rp2=0.5,
eps=1.0e-2,veps=1.0e-2)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline t1cut & time point at which rmst is calculated \\
\hline t1study & the study time point from first patient in, it must be larger than t 1 cut . This will be used for study monitoring. \\
\hline t2cut & time point at which rmst is calculated. t2cut must be not smaller than t1cut. \\
\hline t2study & the study time point from first patient in, it must be larger than t2cut. This will be used for study monitoring. \\
\hline taur & Recruitment time \\
\hline u & Piecewise constant recuitment rate \\
\hline ut & Recruitment intervals \\
\hline rate1 & piecewise constant event rate before crossover \\
\hline rate2 & piecewise constant event rate after crossover \\
\hline rate3 & piecewise constant event rate for crossover \\
\hline rate4 & additional piecewise constant event rate for more complex crossover \\
\hline rate5 & additional piecewise constant event rate for more complex crossover \\
\hline ratec & Hazard for time to censoring \\
\hline tchange & a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length. \\
\hline type & type of crossover, 1=markov, 2=semi-markov, 3=hybrid \\
\hline rp2 & re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be pi \(2 * \mathrm{r} 2(\mathrm{t}-\mathrm{s})+(1-\) \(\mathrm{pi} 2) * \mathrm{r} 4(\mathrm{t})\), where r 2 is the hazard for the semi-markov rescue treatment and r 4 is hazard for the markov rescue treatment. \\
\hline eps & A small number representing the error tolerance when calculating the utility function
\[
\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}
\] \\
\hline
\end{tabular}
with \(l=0,1,2\).
A small number representing the error tolerance when calculating the variance.

\section*{Details}

More details

\section*{Value}
t1cut
t1study
time point at which rmst is calculated
the study time point from first patient in, it must be larger than t1cut. This will be used for study monitoring.
t2cut time point at which rmst is calculated. t2cut must be not smaller than t1cut.
rmsth
\begin{tabular}{|c|c|}
\hline t2study & the study time point from first patient in, it must be larger than t2cut. This will be used for study monitoring. \\
\hline rmst & rmst at cut-point t1 cut with study time t1 study \\
\hline rmst1 & rmst at cut-point t2cut with study time t2study \\
\hline rmstx & rmst at cut-point t1cut with study time t2study, which should be the same as rmst. \\
\hline v & the variance of rmst \\
\hline v1 & the variance of rmst1 \\
\hline cov & the covariance of rmst and rmst1 \\
\hline cov1 & another covariance of rmst and rmst1, should be the same as cov \\
\hline
\end{tabular}

\section*{Note}

This calculates the "true" variance and covariance of restricted mean survival times

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{Examples}
```

r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4<-c(0.5,0.4)
r5<-c(0.4,0.5)
rc<-c(0.1,0.1)
rmcov<-rmstcov(t1cut=2.0,t1study=2.5,t2cut=3.0,t2study=3.5,taur=5,
rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,ratec=rc,
tchange=c(0,1),type=1)
rmcov

```
rmsth

Estimate the restricted mean survival time (RMST) and its variance from data

\section*{Description}

A function to estimate the restricted mean survival time (RMST) and its variance from data

\section*{Usage}
rmsth \((y=c(1,2,3), d=c(1,1,0)\), tcut=2.0,eps=1.0e-08)

\section*{Arguments}
y observed times
d non-censoring indicators
tcut time point at which rmst is calculated
eps A small number representing the error tolerance when comparing the event times

\section*{Details}

More details

\section*{Value}
tcut time point at which rmst is calculated
rmst estimated RMST
var estimated variance of rmst
vadd estimated variance-covariance term of rmst

\section*{Note}

This estimates the restricted mean survival time and its asymptotic variance

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{Examples}
```

lamt<-0.8
lamc<-0.4
n<-3000
tcut<-2.0
truermst<-(1-exp(-lamt*tcut))/lamt
tt<-rexp(n)/lamt
cc<-rexp(n)/lamc
yy<-pmin(tt,cc)
dd<-rep(1,n)
dd[tt>cc]<-0
aest<-rmsth(y=yy,d=dd,tcut=tcut)
aest

```
```

rmstpower

```

Calculate powers at different cut-points based on difference of restricted mean survival times (RMST)

\section*{Description}

A function to calculate powers at different cut-points based on difference of restricted mean survival times (RMST) account for delayed treatment, discontinued treatment and non-uniform entry

\section*{Usage}
```

rmstpower(tcut=2,tstudy=seq(tcut,tcut+2,by=0.5),alpha=0.05,twosided=1,
taur=1.2,u=c(1/taur,1/taur),ut=c(taur/2, taur),pi1=0.5,
rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
rate10=rate11,rate20=rate10,rate30=rate31,
rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
tchange=c (0,1), type 1=1, type0=1,rp21=0.5, rp20=0.5,
eps=1.0e-2,veps=1.0e-2,n=1000)

```

\section*{Arguments}
\begin{tabular}{ll}
tcut \\
tstudy \\
alpha & timepoint at which rmst is calculated \\
twosided & a vector of study time points, which must be not smaller than tcut \\
taur & type-1 error rate \\
u twosided test=1 or not \\
ut & Recruitment time \\
pi1 & Piecewise constant recuitment rate \\
rate11 & Recruitment intervals \\
rate21 & Allocation probability for the treatment group \\
rate31 & Hazard before crossover for the treatment group \\
rate41 & Hazard after crossover for the treatment group \\
rate51 & Hazard after crossover for the treatment group for complex case \\
ratec1 & Hazard after crossover for the treatment group for complex case \\
rate10 & Hazard for time to censoring for the treatment group \\
rate20 & Hazard before crossover for the control group \\
rate30 & Hazard after crossover for the control group \\
rate40 & Hazard for time to crossover for the control group \\
rate50 & Hazard after crossover for the control group for complex case
\end{tabular}
\begin{tabular}{ll}
ratec0 & Hazard for time to censoring for the control group \\
tchange & \begin{tabular}{l}
A strictly increasing sequence of time points at which the event rates changes. \\
The first element of tchange must be zero. It must have the same length as \\
rate11, rate21, rate31, etc.
\end{tabular} \\
type1 & Type of crossover in the treatment group \\
type0 & Type of crossover in the control group \\
rp21 & re-randomization prob for the treatment group \\
rp20 & re-randomization prob for the control group \\
eps & error tolerence \\
veps & error tolenrence for calculating variance \\
\(n\) & total number of subjects, both groups combined
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate \(11, \ldots\), rate 51, ratec 1, rate \(10, \ldots\), rate50, ratec 0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
\begin{tabular}{ll}
power & power \\
rmst1 & rmst in the treatment group \\
se1 & standard error of the rmst in the treatment group \\
rmst0 & rmst in the control group \\
se0 & standard error of the rmst in the control group \\
drmst & rmst1-rmst0 \\
sed & standard error of the mean difference
\end{tabular}

Note
This calculates the restricted mean survival times between the treatment and control groups and their standard errors

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{Examples}
```

tcut<-3.0
tstudy<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,
taur=taur,u=u,ut=ut, pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
tchange=c(0,1), type 1=1, type 0=1,rp21=0.5,rp20=0.5, n=1000)
\#\#\#powers at each time point
cbind(tstudy,getrmst\$power)

```
rmstpowerfindt Calculating the timepoint where a certain power of mean difference of RMSTs is obtained

\section*{Description}

This will calculate the timepoint where a certain power of the mean difference of RMSTs is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
```

rmstpowerfindt(power=0.9, alpha=0.05,twosided=1,tcut=2,tupp=5,tlow=3.0,taur=1.2,
u=c(1/taur,1/taur),ut=c(taur/2, taur), pi1=0.5,
rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
rate10=rate11,rate20=rate10,rate30=rate31,
rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
tchange=c(0, 1), type 1=1, type0=1,
rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
n=1000,maxiter=20,itereps=0.001)

```

\section*{Arguments}
power the desired power
\begin{tabular}{|c|c|}
\hline alpha & type-1 error \\
\hline twosided & twoside test or not \\
\hline tcut & time point at which rmst is calculated \\
\hline tupp & an upper study time point where the power should be larger than power \\
\hline tlow & a lower study time point where the power should be smaller than power, tlow must be not smaller than tcut \\
\hline taur & recruitment time \\
\hline u & Piecewise constant recuitment rate \\
\hline ut & Recruitment intervals \\
\hline pi1 & Allocation probability for the treatment group \\
\hline rate11 & Hazard before crossover for the treatment group \\
\hline rate21 & Hazard after crossover for the treatment group \\
\hline rate31 & Hazard for time to crossover for the treatment group \\
\hline rate41 & Hazard after crossover for the treatment group for complex case \\
\hline rate51 & Hazard after crossover for the treatment group for complex case \\
\hline ratec1 & Hazard for time to censoring for the treatment group \\
\hline rate10 & Hazard before crossover for the control group \\
\hline rate20 & Hazard after crossover for the control group \\
\hline rate30 & Hazard for time to crossover for the control group \\
\hline rate40 & Hazard after crossover for the control group for complex case \\
\hline rate50 & Hazard after crossover for the control group for complex case \\
\hline ratec0 & Hazard for time to censoring for the control group \\
\hline tchange & A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc. \\
\hline type1 & Type of crossover in the treatment group \\
\hline type0 & Type of crossover in the control group \\
\hline rp21 & re-randomization prob in the treatment group \\
\hline rp20 & re-randomization prob in the control group \\
\hline eps & error tolerence \\
\hline veps & error tolenrence for calculating variance \\
\hline n & total number of subjects \\
\hline maxiter & maximum number of bi-section iterations \\
\hline itereps & error tolerance of power \\
\hline
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
\begin{tabular}{ll}
time & time calculated when the iterations stop \\
power & the power at time \\
err & distance from the desired power \\
k & number of bi-section iterations performed
\end{tabular}

Note
Version 1.0 (8/8/2017)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
pwe,rpwe,qpwe,ovbeta,innervar

\section*{Examples}
```

tcut<-3.0
tstudy<-seq(3,6,by=0.2)
taur<-2
u<-c(0.3,0.7)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.05,0.04)
r10<-c(0.22,0.22)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.04,0.05)
ntotal<-1200
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,
taur=taur,u=u,ut=ut,pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50, ratec0=rc0,
tchange=c(0,1), type1=1, type0=1,rp21=0.5,rp20=0.5,n=ntotal)
\#\#\#powers at each time point
cbind(tstudy,getrmst\$power)
\#\#\#90 percent power should be in (3,4)
gettime<-rmstpowerfindt(power=0.9,alpha=0.05,twosided=1,tcut=tcut,tupp=4,tlow=3.0,taur=taur,

```
```

        u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
        tchange=c (0, 1), type1=1, type0=1,rp21=0.5,rp20=0.5, eps=1.0e-2, veps=1.0e-2,
        n=ntotal,maxiter=20,itereps=0.0001)
    gettime

```
rmstsim simulating the restricted mean survival times

\section*{Description}

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

\section*{Usage}
```

rmstsim(tcut=c(1, 2),tstudy=tcut+0.2,taur=1.2,
u=c(1/taur,1/taur),ut=c(taur/2, taur), pi1=0.5,
rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
rate10=rate11,rate20=rate10,rate30=rate31,
rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
tchange=c(0,1), type1=1, type 0=1,rp21=0.5,rp20=0.5,
n=1000,rn=200,eps=1.0E-08)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline tcut & a vector of time points at which rmst are calculated \\
\hline tstudy & a vector of study time points, should be the same length as tcut and should be not less than tcut element-wise \\
\hline taur & Recruitment time \\
\hline u & Piecewise constant recuitment rate \\
\hline ut & Recruitment intervals \\
\hline pi1 & Allocation probability for the treatment group \\
\hline rate11 & Hazard before crossover for the treatment group \\
\hline rate21 & Hazard after crossover for the treatment group \\
\hline rate31 & Hazard for time to crossover for the treatment group \\
\hline rate41 & Hazard after crossover for the treatment group for complex case \\
\hline rate51 & Hazard after crossover for the treatment group for complex case \\
\hline ratec1 & Hazard for time to censoring for the treatment group \\
\hline rate10 & Hazard before crossover for the control group \\
\hline rate20 & Hazard after crossover for the control group \\
\hline rate30 & Hazard for time to crossover for the control group \\
\hline
\end{tabular}
\begin{tabular}{ll}
rate40 & Hazard after crossover for the control group for complex case \\
rate50 & Hazard after crossover for the control group for complex case \\
ratec0 & Hazard for time to censoring for the control group \\
tchange & \begin{tabular}{l}
A strictly increasing sequence of time points at which the event rates changes. \\
The first element of tchange must be zero. It must have the same length as \\
rate11, rate21, rate31, etc.
\end{tabular} \\
type1 & \begin{tabular}{l}
Type of crossover in the treatment group
\end{tabular} \\
type0 & Type of crossover in the control group \\
rp21 & re-randomization prob in the treatment group \\
rp20 & re-randomization prob in the control group \\
\(n\) & number of subjects \\
\(r n\) & number of simulations \\
eps & tolerence for comparing event times
\end{tabular}

\section*{Details}

The hazard functions corresponding to rate \(11, \ldots\), rate51, ratec 1, rate \(10, \ldots\), rate50, ratec 0 are all piecewise constant function taking the form \(\lambda(t)=\sum_{j=1}^{m} \lambda_{j} I\left(t_{j-1} \leq t<t_{j}\right)\), where \(\lambda_{1}, \ldots, \lambda_{m}\) are the corresponding elements of the rates and \(t_{0}, \ldots, t_{m-1}\) are the corresponding elements of tchange, \(t_{m}=\infty\). Note that all the rates must have the same tchange.

\section*{Value}
outr test statistics at each pair of tcut and tstudy in column and each simulation run in row

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{See Also}
pwe,rpwe,qpwe,ovbeta

\section*{Examples}
```

tcuta<-c(2,3)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2, taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1.5,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
ar<-rmstsim(tcut=tcuta,tstudy=tcuta+0.1, taur=taur,u=u,ut=ut,pi1=0.5,
rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
rate10=r10,rate20=r20,rate30=r30, rate 40=r40,rate50=r50, ratec0=rc0,
tchange=c(0,1), type1=1, type 0=1,
n=300,rn=200)
\#\#Empirical power
apply(ar\$outr>1.96,2,mean)

```
```

rmstutil

```

A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry

\section*{Description}

A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry

\section*{Usage}
```

rmstutil(tcut=2.0,tstudy=5.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),
rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
tchange=c(0, 1), type=1,rp2=0.5,
eps=1.0e-2,veps=1.0e-2)

```

\section*{Arguments}
\begin{tabular}{ll}
tcut & time point at which rmst is calculated \\
tstudy & the study time point from first patient in, it must be not smaller than tcut. \\
taur & Recruitment time \\
\(u\) & Piecewise constant recuitment rate
\end{tabular}
\begin{tabular}{|c|c|}
\hline ut & Recruitment intervals \\
\hline rate1 & piecewise constant event rate before crossover \\
\hline rate2 & piecewise constant event rate after crossover \\
\hline rate3 & piecewise constant event rate for crossover \\
\hline rate4 & additional piecewise constant event rate for more complex crossover \\
\hline rate5 & additional piecewise constant event rate for more complex crossover \\
\hline ratec & Hazard for time to censoring \\
\hline tchange & a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length. \\
\hline type & type of crossover, 1=markov, 2=semi-markov, \(3=\) hybrid \\
\hline rp2 & re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be \(\mathrm{rp} 2 * \mathrm{r} 2(\mathrm{t}-\mathrm{s})+(1-\) \(\mathrm{rp} 2) * \mathrm{r} 4(\mathrm{t})\), where r 2 is the hazard for the semi-markov rescue treatment and r 4 is hazard for the markov rescue treatment. \\
\hline eps & A small number representing the error tolerance when calculating the utility function
\[
\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}
\] \\
\hline & with \(l=0,1,2\). \\
\hline veps & A small number representing the error tolerance when calculating the variance. \\
\hline
\end{tabular}

\section*{Details}

More details

\section*{Value}
\begin{tabular}{ll}
tcut & time point at which rmst is calculated \\
tstudy & the study time point from first patient in, it must be not smaller than tcut \\
rmst & rmst at cut-point tcut \\
var & the variance of rmst \\
vadd & the additional variance term of rmst
\end{tabular}

Note
This calculates the "true" variance of restricted mean survival times

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{Examples}
```

    r1<-c(0.6,0.3)
    r2<-c(0.6,0.6)
    r3<-c(0.1,0.2)
    r4<-c(0.5,0.4)
    r5<-c(0.4,0.5)
    rc<-c(0.1,0.1)
    rmt<-rmstutil(tcut=2.0,tstudy=5.0, taur=5,
        rate1=r1,rate2=r2,rate3=r3,
        rate4=r4,rate5=r5,ratec=rc,
        tchange=c(0,1), type=1,rp2=0.5,
        eps=1.0e-2,veps=1.0e-2)
    rmt
    ```
 rpwe Piecewise exponential distribution: random number generation

\section*{Description}

This will generate random numbers according to the specified piecewise exponential distribution

\section*{Usage}
rpwe \((n r=10\), rate \(=c(0,5,0.8)\), tchange \(=c(0,3))\)

\section*{Arguments}
\(\mathrm{nr} \quad\) number of random numbers to be generated
rate piecewise constant event rate
tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. rate and tchange must have the same length.

\section*{Details}

More details

\section*{Value}
\(r\) random numbers

\section*{Note}

This provides a random number generator of the piecewise exponetial distribution

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
piecewise exponential

\section*{Examples}
\(n r<-10\)
rate<-c(0.6,0.3)
tchange<-c \((0,1.75)\)
pwer<-rpwe (nr=nr, rate=rate, tchange=tchange)
pwer
```

rpwecx

```

Piecewise exponential distribution with crossover effect: random number generation

\section*{Description}

This will generate random numbers according to the piecewise exponential distribution with crossover

\section*{Usage}
rpwecx \((n r=1, r a t e 1=c(1,0.5)\), rate2=rate1, rate3=c(0.7,0.4),
rate4=rate2, rate5=rate2, tchange \(=c(0,1)\), type \(=1, r p 2=0.5)\)

\section*{Arguments}
\(\mathrm{nr} \quad\) number of random numbers to be generated
rate1 piecewise constant event rate before crossover
rate2 piecewise constant event rate after crossover
rate3 piecewise constant event rate for crossover
rate \(4 \quad\) additional piecewise constant event rate for more complex crossover
rate5 additional piecewise constant event rate for more complex crossover
tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate 1 to rate6 and tchange must have the same length.
type type of crossover, \(1=\) markov, \(2=\) semi-markov, \(3=\) hybrid
rp2 re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be pi \(2 * \mathrm{r} 2(\mathrm{t}-\mathrm{s})+(1-\) pi2)*r4(t), where \(r 2\) is the hazard for the semi-markov rescue treatment and \(r 4\) is hazard for the markov rescue treatment.

\section*{Details}

More details

\section*{Value}
\(r\) random numbers for the event time
\(r x \quad\) random numbers for the crossover time
cxind indicators for the crossover, the first column indicates whether crossover occurs, i.e. \(r x<r\). When type=3,4,5, the second column of cxind indicates whether it crosses to the arm with rate 2

\section*{Note}

This provides a random number generator of the piecewise exponetial distribution with crossover

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

\section*{See Also}
rpwe

\section*{Examples}
\(r 1<-c(0.6,0.3)\)
\(r 2<-c(0.6,0.6)\)
\(r 3<-c(0.1,0.2)\)
\(r 4<-c(0.5,0.4)\)
\(r 5<-c(0.4,0.5)\)
pwecxr<-rpwecx \((n r=10\), rate1=r1, rate2=r2, rate3=r3, rate4=r4, rate5=r5, tchange=c \((0,1)\), type=1) pwecxr\$r
rpwu
Piecewise uniform distribution: random number generation

\section*{Description}

This will generate random numbers according to the specified piecewise uniform distribution

\section*{Usage}
\(\operatorname{rpwu}(n r=10, u=c(0,6,0.4), u t=c(1,2))\)

\section*{Arguments}
\(\mathrm{nr} \quad\) number of random numbers to be generated
u piecewise constant density
ut a strictly increasing sequence of time points defining the pieces. The first element must be strictly greater than zero. \(u\) and ut must have the same length.

\section*{Details}

Let \(f(t)=\sum_{j=1}^{m} u_{j} I\left(t_{j-1}<t \leq t_{j}\right)\) be the density function, where \(u_{1}, \ldots, u_{m}\) are the corresponding elements of \(u\) and \(t_{1}, \ldots, t_{m}\) are the corresponding elements of ut and \(t_{0}=0\). The distribution function
\[
F(t)=\sum_{j=1}^{m} u_{j}\left(t \wedge t_{j}-t \wedge t_{j-1}\right)
\]

User must make sure that \(\sum_{j=1}^{m} u_{j}\left(t_{j}-t_{j-1}\right)=1\) before using this function.

\section*{Value}
\(r\) random numbers

\section*{Note}

This provides a random number generator of the piecewise uniform distribution

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{See Also}
rpwe

\section*{Examples}
\(\mathrm{nr}<-10\)
\(u<-c(0.6,0.4)\)
ut<-c \((1,2)\)
pwur<-rpwu(nr=nr, u=u,ut=ut)
pwur
```

spf A utility function

```

\section*{Description}

A utility function to calculate a ratio.

\section*{Usage}
\[
\operatorname{spf}(x=\operatorname{seq}(-1,1, b y=0.2), e p s=1.0 e-3)
\]

\section*{Arguments}
x
A vector
eps
tolerance

\section*{Details}

This is to calculate
\[
\Phi_{l}(x)=\frac{\int_{0}^{x} s^{l} e^{-s} d s}{x^{l+1}}, \quad l=0,1,2
\]

This function is well defined even when \(x=0\). However, it is numerical chanllenging to calculate it when x is small. So when \(|x| \leq e p s\) we approximate this function and the absolute error is eps \({ }^{5}\).

\section*{Value}
fx1 \(\quad\) when \(l=0\);
fx2 \(\quad\) when \(l=1\);
fx3 \(\quad\) when \(l=2\).

\section*{Note}

Version 1.0 (7/19/2016)

\section*{Author(s)}

Xiaodong Luo

\section*{References}

Luo, et al. (2017)

\section*{Examples}
```

fun<-spf(x=seq(-1,1,by=0.2),eps=1.0e-3)
fun

```
```

wlrcal

```

A utility function to calculate the weighted log-rank statistics and their varainces given the weights

\section*{Description}

A utility function to calculate the weighted log-rank statistics and their varainces given the weights

\section*{Usage}
wlrcal (\(n=10, \operatorname{te}=c(1,2,3), \operatorname{tfix}=2.0, d d 1=c(1,0,1), d d 0=c(0,1,0), r 1=c(1,2,3), r 0=c(1,2,3)\), weights=matrix(1, nrow=length(te), ncol=1),eps=1.0e-08)

\section*{Arguments}
n
te

\section*{tfix}
dd1 number of events from treatment group at each te
dd0 number of events from control group at each te
r1 number of at-risk subjects from treatment group at each te
r0 number of at-risk subjects from control group at each te
weights user specified weights, each column is a set of weights at each te
eps tolerence when comparing event times

\section*{Details}

\section*{More details}

\section*{Value}
test unscaled test statistics
var variances of the unsclaed test statistics
wlr weighted log-rank statistics, i.e. scaled test statsitics
wlcor the correlation matrix of the weighted log-rank statistics

\section*{Author(s)}

Xiaodong Luo

\section*{Examples}
\(\operatorname{lr}<-w l r c a l(n=10, t e=c(1,2,3), t f i x=2.0, d d 1=c(1,0,1), d d 0=c(0,1,0), r 1=c(1,2,3), r 0=c(1,2,3))\)
\(1 r\)
wlrcom \begin{tabular}{l}
A function to calculate the various weighted log-rank statistics and \\
their varainces
\end{tabular}

\section*{Description}

A function to calculate the weighted log-rank statistics and their varainces given the weights including log-rank, gehan, Tarone-Ware, Peto-Peto, mPeto-Peto and Fleming-Harrington

\section*{Usage}
wlrcom(\(y, d, z, t f i x=\max (y), p=c(1), q=c(1), e p s=1.0 e-08)\)

\section*{Arguments}
y
d
Z
tfix
p
q
eps

\section*{Details}

V1:3/21/2018

\section*{Value}
n total number of subjects, combined groups
test unscaled test statistics
var variances of the unsclaed test statistics
wlr weighted log-rank statistics, i.e. scaled test statsitics
pvalue two-sided p-values of wlr

\section*{Author(s)}

Xiaodong Luo

\section*{Examples}
```

n<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
tchange<-c(0,1.873)
tcut<-2
E<-T<-C<-z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
z<-rbinom(n,1,pi1)
n1<-sum(z)
n0<-sum(1-z)
C[z==1]<-rpwe(nr=n1, rate=rc1,tchange=tchange)$r
C[z==0]<-rpwe(nr=n0, rate=rc0, tchange=tchange)$r
T[z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                            rate4=r41,rate5=r51,tchange=tchange,type=1)$r
T[z==0]<-rpwecx (nr=n0,rate1=r10,rate2=r20, rate3=r30,
rate4=r40, rate5=r50, tchange=tchange, type=1)\$r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
d<-rep(0,n);
d[T<=y]<-1
wlr4<-wlrcom(y=y,d=d,z=z,p=c(1,1),q=c(0,1))
wlr4

```
wlrutil

A utility function to calculate some common functions in contructing weights

\section*{Description}

A utility function to calculate some common functions in contructing weights

\section*{Usage}
wlrutil \((y=c(1,2,3), d=c(1,0,1), z=c(1,0,0), t e=c(1,3), e p s=1.0 e-08)\)

\section*{Arguments}
\begin{tabular}{ll}
\(y\) & observed times \\
\(d\) & non-censoring indicators \\
\(z\) & group indicators with \(z=1\) treatment and \(z=0\) control \\
te & (ascendingly) ordered unique event times from both groups \\
eps & tolerence when comparing event times
\end{tabular}

\section*{Details}

More details

\section*{Value}
mfunc various functions in column

\section*{Author(s)}

Xiaodong Luo

\section*{Examples}
ww<-wlrutil \((y=c(1,2,3), d=c(1,0,1), z=c(1,0,0), t e=c(1,3), e p s=1.0 e-08)\)
ww

\section*{Index}
*Topic conditional power
cp, 6
cpboundary, 7
*Topic covariance
rmstcov, 65
*Topic crossover effect
rmstpower, 69
*Topic crossover pwecx, 37
\(*\) Topic delayed treatment effect
innercov, 14
innervar, 16
instudyfindt, 19
ovbeta, 23
overallcov, 26
overallcovp1,28
overallcovp2, 31
overallvar, 33
pwecxpwufindt, 42
pwecxpwuforvar, 44
pwepower, 50
pwepowereq, 52
pwepowerfindt, 55
pwepowerni, 57
pwesim, 60
rmstpower, 69
rmstpowerfindt, 71
rmstsim, 74
*Topic distribution
pwu, 62
*Topic equivalence
pwepowereq, 52
*Topic hazard estimate
hxbeta, 13
*Topic mean difference of RMSTs
rmstpowerfindt, 71
*Topic mean difference
rmstpower, 69
*Topic non-inferiority
pwepowerni, 57
*Topic overall hazard ratio
ovbeta, 23
pwecxpwuforvar, 44
pwepowerfindt, 55
pwesim, 60
rmstsim, 74
*Topic piecewise exponential distribution
rmstpower, 69
\(*\) Topic piecewise exponential
fourhr, 11
innercov, 14
innervar, 16
instudyfindt, 19
ovbeta, 23
overallcov, 26
overallcovp1, 28
overallcovp2, 31
overallvar, 33
PWEALL-package, 3
pwecx, 37
pwecxcens, 39
pwecxpwu, 40
pwecxpwufindt, 42
pwecxpwuforvar, 44
pwefv2, 46
pwefvplus, 47
pwepower, 50
pwepowereq, 52
pwepowerfindt, 55
pwepowerni, 57
pwesim, 60
qpwe, 63
rmstcov, 65
rmstpowerfindt, 71
rmstsim, 74
rmstutil, 76
rpwe, 78
rpwecx, 79
\(*\) Topic piecewise exponetial
pwe, 36
*Topic piecewise uniform
innercov, 14
innervar, 16
instudyfindt, 19
ovbeta, 23
overallcov, 26
overallcovp1, 28
overallcovp2, 31
overallvar, 33
pwecxcens, 39
pwecxpwu, 40
pwecxpwufindt, 42
pwecxpwuforvar, 44
pwepower, 50
pwepowereq, 52
pwepowerfindt, 55
pwepowerni, 57
pwesim, 60
pwu, 62
qpwu, 64
rmstpowerfindt, 71
rmstsim, 74
rpwu, 80
*Topic power
pwepower, 50
pwepowereq, 52
pwepowerni, 57
rmstpowerfindt, 71
*Topic quantiles
qpwe, 63
qpwu, 64
\(*\) Topic random number generator
pwecx, 37
pwecxpwu, 40
rpwe, 78
rpwecx, 79
rpwu, 80
*Topic restricted mean survival times
rmstcov, 65
rmstutil, 76
*Topic restricted mean survival time
rmsth, 67
rmstpower, 69
\(*\) Topic simulation
pwesim, 60
rmstsim, 74
*Topic smoothed estimate hxbeta, 13
*Topic stopping boundary cpboundary, 7
*Topic stopping probability cpstop, 9
*Topic timeline for certain power pwepowerfindt, 55
rmstpowerfindt, 71
*Topic timeline
instudyfindt, 19
pwecxpwufindt, 42
*Topic treatment crossover
fourhr, 11
innercov, 14
innervar, 16
instudyfindt, 19
ovbeta, 23
overallcov, 26
overallcovp1, 28
overallcovp2, 31
overallvar, 33
pwecxcens, 39
pwecxpwu, 40
pwecxpwufindt, 42
pwecxpwuforvar, 44
pwefvplus, 47
pwepower, 50
pwepowereq, 52
pwepowerfindt, 55
pwepowerni, 57
pwesim, 60
rmstcov, 65
rmstpowerfindt, 71
rmstsim, 74
rmstutil, 76
rpwecx, 79
\(*\) Topic utility function
spf, 82
\(*\) Topic variance
rmsth, 67
rmstpower, 69
rmstutil, 76
*Topic various functions
PWEALL-package, 3
*Topic weighted log-rank
wlrcal, 83
wlrcom, 84
wlrutil, 85
cp, 6, 8, 9
cpboundary, 7, 7, 9
cpstop, 7, 8, 9
fourhr, 11
hxbeta, 13
innercov, 14
innervar, 16, 16, 18, 28, 30, 32, 35, 46, 52, 54, 57, 59, 61, 73
instudyfindt, 19, 44
ovbeta, \(16,18,23,28,30,32,35,46,52,54\), \(57,59,61,73,75\)
overallcov, 26
overallcovp1, 28
overallcovp2, 31
overallvar, 33
pwe, \(16,18,22,25,28,30,32,35,36,44,46\), 52, 54, 57, 59, 61, 63, 73, 75
PWEALL (PWEALL-package), 3
PWEALL-package, 3
pwecx, 16, 18, 37
pwecxcens, 39
pwecxpwu, 40
pwecxpwufindt, 22, 42
pwecxpwuforvar, 44
pwefv2, 46
pwefvplus, 47
pwepower, 50, 54, 59
pwepowereq, 52, 52, 59
pwepowerfindt, 55
pwepowerni, 52, 54, 57
pwesim, 60
pwu, 62
qpwe, \(16,18,22,25,28,30,32,35,37,44,46\), \(52,54,57,59,61,63,73,75\)
qpwu, 64
rmstcov, 65
rmsth, 67
rmstpower, 69
rmstpowerfindt, 71
rmstsim, 74
rmstutil, 76
rpwe, 12, 16, 18, 22, 25, 28, 30, 32, 35, 37, 38, \(40,41,44,46,47,49,52,54,57,59\), \(61,73,75,78,80,81\)
rpwecx, 79
rpwu, 80
spf, 82
wlrcal, 83
wlrcom, 84
wlrutil, 85```

