
Sample Size Calculation in Single-stage Sampling

Richard Valliant, Jill A. Dever, and Frauke Kreuter

2020-07-28

A basic issue in sample design is how many units should be selected at each stage in order to efficiently
estimate population values. If strata are used, the number of units to allocate to each stratum must be
determined. In this vignette, we review some basic techniques for sample size determination in single-stage
samples using the package PracTools (Valliant, Dever, and Kreuter 2019) that contains specialized routines
to facilitate the calculations, most of which are not found in other packages. We briefly summarize some of
selection methods and associated formulas used in designing single-stage samples and describe the capabilities
of PracTools. Technical background is in Valliant, Dever, and Kreuter (2018), ch. 3. First, the package must
be loaded with

library(PracTools)

Alternatively, require(PracTools) can be used.

Complex samples can involve any or all of stratification, clustering, multistage sampling, and sampling
with varying probabilities. Many texts cover these topics, including Cochran (1977), Lohr (1999), Särndal,
Swensson, and Wretman (1992), and Valliant, Dever, and Kreuter (2018). Here we discuss single-stage
designs with and without stratification and formulas that are needed for determining sample allocations. The
PracTools package will not select samples, but the R sampling package (Tillé and Matei 2016) will select
almost all the types used in practice.

Simple Random Sampling

Simple random sampling without replacement (srswor) is a method of probability sampling in which all
samples of a given size n have the same probability of selection. The function sample in R base (R Core Team
2020) will select simple random samples either with or without replacement. One way of determining an
srswor sample size is to specify that a population value θ be estimated with a certain coefficient of variation
(CV) which is defined as the ratio of the standard error of the estimator, θ̂, to the value of the parameter:

CV (θ̂) =

√

V ar(θ̂)/θ. For example, suppose that yk is a value associated with element k, U denotes the set
of all elements in the universe, N is the number of elements in the population, and the population parameter
to be estimated is the mean, ȳU =

∑

k∈U yk/N . With a simple random sample, this can be estimated by the
sample mean, ȳs =

∑

k∈s yk/n, where s is the set of sample elements and n is the sample size. Setting the
required CV of ȳs to some desired value CV0 in an srswor leads to a sample size of

n =

S2

U

ȳ2

U

CV 2
0 +

S2

U

Nȳ2

U

The R function, nCont, will compute a sample size using either a target CV0 or a target variance, V0, of ȳs

as input. The parameters used by the function are shown below and are described in the help page for the
function:

nCont(CV0=NULL, V0=NULL, S2=NULL, ybarU=NULL, N=Inf, CVpop=NULL)

1

• Example 1: Sample size for a target CV. Suppose that we estimate from a previous survey that
the population CV of some variable is 2.0. If the population is extremely large and CV0 (the target CV)
is set to 0.05, then the call to the R function is nCont(CV0 = 0.05, CVpop = 2). The resulting sample
size is 1,600. If the population size is N = 500, then nCont(CV0 = 0.05,CVpop = 2, N = 500) results
in a sample size of 381 after rounding. The finite population correction (fpc) factor has a substantial
effect in the latter case.

The function nProp will perform the same computation for estimated proportions.

• Example 2: Sample sizes for a vector of target CVs. Often it will be useful to show a client the
sample sizes for a series of precision targets. This will be especially true when the budget is uncertain
and a researcher would like to think about options. We can ask for the sample sizes for a vector of
values of CV0 from 0.01 to 0.21 in increments of 0.02 with:

ceiling(nCont(CV0 = seq(0.01, 0.21, 0.02), CVpop=2))

[1] 40000 4445 1600 817 494 331 237 178 139 111 91

ncont returns unrounded sample sizes having quite a few decimal places; ceiling rounds to the next highest
integer.

Using a margin of error to find sample sizes

Many investigators prefer to think of setting a tolerance for how close the estimate should be to the population
value. If the tolerance, sometimes called the margin of error (MOE), is e and the goal is to be within e of
the population mean with probability 1 − α, this translates to

P r (|ȳs − ȳU | ≤ e) = 1 − α. (1)

This is equivalent to setting the half-width of a 100 (1 − α) two-sided confidence interval (CI) to e =
z1−α/2

√

V (ȳs), assuming that ȳs can be treated as being normally distributed. The term z1−α/2 is the
100 (1 − α /2) percentile of the standard normal distribution, i.e., the point with 1 − α /2 of the area to its
left. On the other hand, if we require

P r

(∣

∣

∣

∣

ȳs − ȳU

ȳU

∣

∣

∣

∣

≤ e

)

= 1 − α, (2)

this corresponds to setting e = z1−α/2 CV (ȳs). If we set the MOE in (1) to e0, then the above equation can
be manipulated to give the required sample size as

n =
z2

1−α/2 S2
U

e2
0 + z2

1−α/2
S2

U /N
. (3)

Similarly, if the MOE in (2) is set to e0, we obtain

n =
z2

1−α/2 S2
U

/

ȳ2
U

e2
0 + z2

1−α/2
S2

U /(Nȳ2
U)

(4)

The functions nContMoe and nPropMoe will make the sample size calculations based on MOEs for continuous
variables and for proportions.

• Example 3: Sample sizes for proportions based on an MOE. Suppose that we want to estimate
a proportion for a characteristic where an advance estimate is pU = 0.5. The MOE is to be e when
α = 0.05. In other words, the sample should be large enough that a normal-approximation 95%
confidence interval should be 0.50 ± e as implied by (1). For example, if e = 0.03 and the estimated
proportion were actually 0.5, we want the confidence interval to be 0.50 ± 0.03 = [0.47, 0.53]. The
sample size is highly dependent on the width of the confidence interval as seen in the following table.
Sample sizes are evaluated using the formula given in (3) with S2

U = NpU (1 − pU)/(N − 1), pU = 0.5
and z0.975 = 1.96. The command to generate the sample sizes listed in the table below is

2

ceiling(nPropMoe(moe.sw=1, e=seq(0.01,0.08,0.01), alpha=0.05, pU=0.5))

#> [1] 9604 2401 1068 601 385 267 196 151

e n e n

0.01 9,604 0.05 385
0.02 2,401 0.06 267
0.03 1,068 0.07 196
0.04 601 0.08 151

The parameter moe.sw=1 says to compute the sample size based on (3). moe.sw=2 would use the MOE
relative to ȳU in (4).

Stratified Simple Random Sampling

Simple random samples are rare in practice for several reasons. Most surveys have multiple variables and
domains for which estimates are desired. Selecting a simple random sample runs the risk that one or more
important domains will be poorly represented or omitted entirely. In addition, variances of survey estimates
often can be reduced by using a design that is not srswor.

A design that remedies some of the problems noted for an srswor is referred to as stratified simple random
sampling (without replacement) or stsrswor. As the name indicates, an srswor design is administered within
each design stratum. Strata are defined with one or more variables known for all units and partition the
entire population into mutually exclusive groups of units. We might, for example, divide a population of
business establishments into retail trade, wholesale trade, services, manufacturing, and other sectors. A
household population could be divided into geographic regions—north, south, east, and west. For an stsrswor,
we define the following terms:

Nh = the known number of units in the population in stratum h (h = 1, 2, . . . , H)

nh = the size of the srswor selected in stratum h

yhi = the value of the y variable for unit i in stratum h

S2
Uh =

∑Nh

i=1 (yhi − ȳUh
)
2

/(Nh − 1) , the population variance in stratum h

Uh = set of all units in the population from stratum h

sh = set of nh sample units from stratum h

ch = cost per sample unit in stratum h

The population mean of y is ȳU =
∑H

h=1 WhȳUh
, where Wh = Nh /N and ȳUh

is the population mean in
stratum h. The sample estimator of ȳU based on an stsrswor is

ȳst =

H
∑

h=1

Whȳsh
,

where ȳsh
=

∑

i∈sh
yhi /nh . The population sampling variance of the stratified estimator of the mean is

V ar (ȳst) =

H
∑

h=1

W 2
h

1 − fh

nh

S2
Uh,

where fh = nh /Nh . The total cost of the sample is

C =

H
∑

h=1

chnh.

3

There are various ways of allocating the sample to the strata, including:

1. Proportional to the Nh population counts

2. Equal allocation (all nh the same)

3. Cost-constrained optimal in which the allocation minimizes the variance of ȳst subject to a fixed budget

4. Variance-constrained optimal in which the allocation minimizes the total cost subject to a fixed variance
target for ȳst

5. Neyman allocation, which minimizes the variance of the estimated mean disregarding the ch costs

The R function, strAlloc, will compute the proportional, Neyman, cost-constrained, and variance-constrained
allocations. The parameters accepted by the function are shown below.

n.tot = fixed total sample size

Nh = vector of pop stratum sizes or pop stratum proportions (required parameter)

Sh = stratum unit standard deviations, required unless alloc = "prop"

cost = total variable cost

ch = vector of costs per unit in strata

V0 = fixed variance target for estimated mean

CV0 = fixed CV target for estimated mean

ybarU = pop mean of y

alloc = type of allocation, must be one of "prop", "neyman", "totcost", "totvar"

If the stratum standard deviations are unknown (as would usually be the case), estimates can be used.

The parameters can only be used in certain combinations, which are checked at the beginning of the function.
Basically, given an allocation, only the parameters required for the allocation are allowed and no more.
For example, the Neyman allocation requires Nh, Sh, and n.tot. The function returns a list with three
components—the allocation type, the vector of sample sizes, and the vector of sample proportions allocated
to each stratum. Three examples of allocations are Neyman, cost constrained, and variance constrained (via
a target CV):

Neyman allocation

Nh <- c(215, 65, 252, 50, 149, 144)

Sh <- c(26787207, 10645109, 6909676, 11085034, 9817762, 44553355)

strAlloc(n.tot = 100, Nh = Nh, Sh = Sh, alloc = "neyman")

#>

#>

#>

#> allocation = neyman

#> Nh = 215, 65, 252, 50, 149, 144

#> Sh = 26787207, 10645109, 6909676, 11085034, 9817762, 44553355

#> nh = 34.641683, 4.161947, 10.473487, 3.333804, 8.798970, 38.590108

#> nh/n = 0.34641683, 0.04161947, 0.10473487, 0.03333804, 0.08798970, 0.38590108

#> anticipated SE of estimated mean = 1727173

cost constrained allocation

ch <- c(1400, 200, 300, 600, 450, 1000)

strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch, alloc = "totcost")

#>

#>

#>

#> allocation = totcost

#> Nh = 215, 65, 252, 50, 149, 144

#> Sh = 26787207, 10645109, 6909676, 11085034, 9817762, 44553355

#> nh = 30.605403, 9.728474, 19.989127, 4.499121, 13.711619, 40.340301

4

#> nh/n = 0.2574608, 0.0818385, 0.1681538, 0.0378478, 0.1153458, 0.3393533

#> anticipated SE of estimated mean = 1636053

allocation with CV target of 0.05

strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.05, ch = ch, ybarU = 11664181, alloc = "totvar")

#>

#>

#>

#> allocation = totvar

#> Nh = 215, 65, 252, 50, 149, 144

#> Sh = 26787207, 10645109, 6909676, 11085034, 9817762, 44553355

#> nh = 104.54922, 33.23283, 68.28362, 15.36917, 46.83941, 137.80400

#> nh/n = 0.2574608, 0.0818385, 0.1681538, 0.0378478, 0.1153458, 0.3393533

#> anticipated SE of estimated mean = 583209.1

The output of strAlloc is a list with components: allocation (the type of allocation), Nh, Sh, nh,
nh/n, and anticipated SE of estimated mean. If the results are assigned to an object, e.g., neyman

<- strAlloc(n.tot = 100, Nh = Nh, Sh = Sh, alloc = "neyman"), the components in the list can be
accessed with syntax like neyman$nh.

There are many variations on how to allocate a sample to strata. In most practical applications, there are
multiple variables for which estimates are needed. This complicates the allocation problem because each
variable may have a different optimal allocation. This type of multicriteria problem can be solved using
mathematical programming as discussed in Valliant, Dever, and Kreuter (2018), ch. 5.

Probability Proportional to Size Sampling

Probability proportional to size (pps), single-stage sampling is used in situations where an auxiliary variable
(i.e., a covariate) is available on the frame that is related to the variable(s) to be collected in a survey. For
example, the number of employees in a business establishment one year ago is probably related to the number
of employees the establishment has in the current time period.

The variance formula for an estimated mean in a pps sample selected without replacement is too complex to
be useful in determining a sample size. Thus, a standard workaround is to use the with-replacement (ppswr)
variance formula to calculate a sample size. The result may be somewhat larger than needed to hit a precision
target, but if the sample is reduced by nonresponse, beginning with a larger sample is prudent anyway.
The simplest estimator of the mean that is usually studied with ppswr sampling is called “p-expanded with
replacement” or pwr (see Särndal, Swensson, and Wretman (1992), ch.2) and is defined as

ˆ̄ypwr =
1

Nn

∑

i∈s

yi

pi

where pi is the probability that unit i would be selected in a sample of size 1. The variance of ˆ̄ypwr in ppswr

sampling is

V ar
(

ˆ̄ypwr

)

=
1

N2n

∑

U

pi

(

yi

pi

− tU

)2

≡
V1

N2n
(5)

where tU is the population total of y.

If the desired coefficient of variation is CV0, (5) can be solved to give the sample size as

n =
V1

N2

1

ȳ2
U CV 2

0

. (6)

5

Figure 1: Figure 1. Plot of expenditures vs. beds in hospital population

6

• Example 4: Sample size in a pps sample. We use smho.N874, which is one of the example
populations in the PracTools package, to illustrate a pps sample size calculation. Figure 1 plots
annual expenditures per hospital versus number of beds for the 670 hospitals that have inpatient beds.
Although the relationship is fairly diffuse, the correlation of beds and expenditures is 0.70 so that pps

sampling with beds as a measure of size could be efficient. The code below evaluates (6) giving a pps

sample of n = 57, which will produce an anticipated CV of 0.149. In contrast, an srs of n = 82 would
be necessary to obtain the same size CV.

require(PracTools)

data("smho.N874")

y <- smho.N874[,"EXPTOTAL"]

x <- smho.N874[, "BEDS"]

y <- y[x>0]

x <- x[x>0]

ybarU <- mean(y)

(N <- length(x))

#> [1] 670

CV0 <- 0.15

calculate V1 based on pp(x) sample

pik <- x/sum(x)

T <- sum(y)

(V1 <- sum(pik*(y/pik - T)^2))

#> [1] 9.53703e+19

n <- V1 / (N*ybarU*CV0)^2

(n <- ceiling(n))

#> [1] 57

Anticipated SE for the pps sample

(cv.pps <- sqrt(V1/(N^2*n)) / ybarU)

#> [1] 0.1495183

sample size for an srs to produce the same SE

ceiling(nCont(CV0 = cv.pps, S2 = var(y), ybarU = ybarU, N = N))

#> [1] 82

The PracTools package includes a variety of other functions relevant to the design of single-stage samples
that are not discussed in this vignette:

Function Description

gammaFit Iteratively computes estimate of γ in a model with
EM (y) = x

T β and σ2
x

γ . This is useful in determining a
measure of size for pps sampling.

nDep2sam Compute a simple random sample size for estimating
the difference in means when samples overlap

nDomain Compute a simple random sample size using either a
target coefficient of variation or target variance for an
estimated mean or total for a domain

nLogOdds Calculate the simple random sample size for estimating
a proportion using the log-odds transformation

7

Function Description

nProp Compute the simple random sample size for estimating
a proportion based on different precision requirements

nProp2sam Compute a simple random sample size for estimating
the difference in proportions when samples overlap

nWilson Calculate a simple random sample size for estimating a
proportion using the Wilson method

References

Cochran, W. G. 1977. Sampling Techniques. New York: John Wiley & Sons, Inc.

Lohr, S. L. 1999. Sampling: Design and Analysis. Pacific Grove CA: Duxbury Press.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. http://www.R-project.org/.

Särndal, C.-E., B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling. New York: Springer-
Verlag.

Tillé, Y., and A. Matei. 2016. sampling: Survey Sampling, Version 2.8. http://CRAN.R-project.org/packag
e=sampling.

Valliant, R., J. A. Dever, and F. Kreuter. 2018. Practical Tools for Designing and Weighting Survey Samples.
2nd ed. New York: Springer-Verlag.

Valliant, Richard, Jill A. Dever, and Frauke Kreuter. 2019. PracTools: Tools for Designing and Weighting

Survey Samples, Version 1.2.1. https://CRAN.R-project.org/package=PracTools.

8

http://www.R-project.org/
http://CRAN.R-project.org/package=sampling
http://CRAN.R-project.org/package=sampling
https://CRAN.R-project.org/package=PracTools

	Simple Random Sampling
	Using a margin of error to find sample sizes

	Stratified Simple Random Sampling
	Probability Proportional to Size Sampling
	References

