
Using AD Model Builder and R together: getting

started with the R2admb package

Ben Bolker

March 9, 2020

1 Introduction

AD Model Builder (ADMB: http://admb-project.org) is a standalone
program, developed by Dave Fournier continuously since the 1980s and re-
leased as an open source project in 2007, that takes as input an objective
function (typically a negative log-likelihood function) and outputs the co-
efficients that minimize the objective function, along with various auxiliary
information. AD Model Builder uses automatic differentiation (that’s what
“AD” stands for), a powerful algorithm for computing the derivatives of a
specified objective function efficiently and without the typical errors due
to finite differencing. Because of this algorithm, and because the objective
function is compiled into machine code before optimization, ADMB can solve
large, difficult likelihood problems efficiently. ADMB also has the capability
to fit random-effects models (typically via Laplace approximation).

To the average R user, however, ADMB represents a challenge. The first
(unavoidable) challenge is that the objective function needs to be written in
a superset of C++; the second is learning the particular sequence of steps
that need to be followed in order to output data in a suitable format for
ADMB; compile and run the ADMB model; and read the data into R for
analysis. The R2admb package aims to eliminate the second challenge by
automating the R–ADMB interface as much as possible.

2 Installation

The R2admb package can be installed in R in the standard way (with install.packages()

or via a Packages menu, depending on your platform.
However, you’ll also need to install ADMB: see one of the following links:

1

http://admb-project.org

• http://admb-project.org/

• http://admb-project.org/downloads

You may also need to install a C++ compiler (in particular, the MacOS
installation instructions will probably ask you to install gcc/g++ from the
Xcode package). You will need to have the scripts admb, adcomp, and adlink

in the bin directory of your ADMB installation (I hope this Just Works once
you have installed ADMB, but there’s a chance that things will have to be
tweaked).

3 Quick start (for the impatient)

3.1 For non-ADMB users

1. Write the function that computes your negative log-likelihood function
(see the ADMB manual, or below, for examples) and save it in a
file with extension .tpl (hereafter “the TPL file”) in your working
directory.

2. run setup admb() to set up your ADMB environment appropriately.

3. run do admb(fn,data,params), where fn is the base name (without
extension) of your TPL file, data is a list of the input data, and params

is a list of the starting parameter values; if you want R to generate the
PARAMETERS and DATA section of your TPL file automatically,
use

fitted.model <- do_admb(fn,data,params,

run.opts=run.control(checkparam="write",

checkdata="write"))

4. use the standard R model accessor methods (coef, summary, vcov,
logLik, AIC (etc.)) to explore the results stored as fitted.model.

3.2 For ADMB users

If you are already familiar with ADMB (e.g. you already have your TPL
files written with appropriate PARAMETERS and DATA sections), or if
you prefer a more granular approach to controlling ADMB (for example, if
you are going to compile a TPL file once and then run it for lots of different
sets of input parameters), you can instead use R2admb as follows:

2

http://admb-project.org/
http://admb-project.org/downloads

1. Write your TPL file, set up your input and data files.

2. setup admb() as above.

3. compile admb(fn) to compile your TPL file, specifying re=TRUE if the
model has random effects (or do this outside R)

4. run admb(fn) to run the executable

5. results <- read admb(fn) to read (and save) the results

6. clean admb(fn) to clean up the files that have been generated

7. as before, use the standard R model accessor methods to explore the
results.

There are more steps this way, but you have a bit more control of the process.

4 Basics

Here’s a very simple example that can easily be done completely within R;
we show how to do it with R2admb as well.

library("R2admb")

library("ggplot2") ## for pictures

theme_set(theme_bw()) ## cosmetic

zmargin <- theme(panel.spacing=grid::unit(0,"lines"))

library("bbmle")

The data are from Vonesh and Bolker (2005), describing the numbers of
reed frog (Hyperolius spinigularis) tadpoles killed by predators as a function
of size (TBL is total body length, Kill is the number killed out of 10 tadpoles
exposed to predation). Figure 1 shows the data.

So if p(kill) = c((S/d) exp(1 − (S/d)))g (a function for which the peak
occurs at S = d, peak height=c) then a reasonable starting set of estimates
would be c = 0.45, d = 13.

ReedfrogSizepred <-

data.frame(TBL = rep(c(9,12,21,25,37),each=3),

Kill = c(0,2,1,3,4,5,0,0,0,0,1,0,0,0,0L))

Here is the code to fit a binomial model with mle2 using these starting
points:

3

m0 <- mle2(Kill~dbinom(c*((TBL/d)*exp(1-TBL/d))^g,size=10),

start=list(c=0.45,d=13,g=1),data=ReedfrogSizepred,

method="L-BFGS-B",

lower=c(c=0.003,d=10,g=0),

upper=c(c=0.8,d=20,g=60),

control=list(parscale=c(c=0.5,d=10,g=1)))

Generate predicted values:

TBLvec = seq(9.5,36,length=100)

predfr <-

data.frame(TBL=TBLvec,

Kill=predict(m0,newdata=data.frame(TBL=TBLvec)))

Here is a minimal TPL (AD Model Builder definition) file:

1 PARAMETER_SECTION

2 vector prob(1,nobs) // per capita mort prob

3

4 PROCEDURE_SECTION

5

6 dvariable fpen=0.0; // penalty variable

7 // power-Ricker

8 prob = c*pow(elem_prod(TBL/d,exp(1-TBL/d)),g);

9 // penalties: constrain 0.001 <= prob <= 0.999

10 prob = posfun(prob,0.001,fpen);

11 f += 1000*fpen;

12 prob = 1-posfun(1-prob,0.001,fpen);

13 f += 1000*fpen;

14 // binomial negative log-likelihood

15 f -= sum(log_comb(nexposed,Kill)+

16 elem_prod(Kill,log(prob))+

17 elem_prod(nexposed-Kill,log(1-prob)));

• Comments are written in C++ format: everything on a line after //

is ignored.

• lines 1–4 are the PARAMETER section; most of the parameters will get
filled in automatically by R2admb based on the input parameters you
specify, but you should include this section if you need to define any
additional utility variables. In this case we define prob as a vector
indexed from 1 to nobs (we will specify nobs, the number of observa-
tions, in our data list).

4

0.0

0.2

0.4

10 20 30
Size (total body length

P
ro

po
rt

io
n

ki
lle

d

n

1.0

1.5

2.0

2.5

3.0

Figure 1: Proportions of reed frogs killed by predators, as a function of total
body length in mm. Red: starting estimate.

5

• most of the complexity of the PROCEDURE section (lines 7 and 11–
14) has to do with making sure that the mortality probabilities do
not exceed the range (0,1), which is not otherwise guaranteed by this
model specification. Line 7 defines a utility variable fpen; lines 11–14
use the built-in ADMB function posfun to adjust low probabilities up
to 0.001 (line 11) and high probabilities down to 0.999 (line 13), and
add appropriate penalties to the negative log-likelihood to push the
optimization away from these boundaries (lines 12 and 14).

• the rest of the PROCEDURE section simply computes the mortality prob-
abilities as c((S/d) exp(1 − (S/d)))g as specified above (line 9) and
computes the binomial log-likelihood on the basis of these probabil-
ities (lines 16-18). Because this is a log-likelihood and we want to
compute a negative log-likelihood, we subtract it from any penalty
terms that have already accrued. The code is written in C++ syntax,
using = rather than <- for assignment, += to increment a variable and
-= to decrement one. The power operator is pow(x,y) rather than
x^y; elementwise multiplication of two vectors uses elem prod rather
than *.

To run this model, we save it in a text file called ReedfrogSizepred0.tpl;
run setup_admb() to tell R where the AD Model Builder binaries and li-
braries are located on our system; and run do_admb with appropriate argu-
ments.

setup_admb()

rfs_params <- list(c=0.45,d=13,g=1) ## starting parameters

rfs_bounds <- list(c=c(0,1),d=c(0,50),g=c(-1,25)) ## bounds

rfs_dat <- c(list(nobs=nrow(ReedfrogSizepred),

nexposed=rep(10,nrow(ReedfrogSizepred))),

ReedfrogSizepred)

m1 <- do_admb("ReedfrogSizepred0",

data=rfs_dat,

params=rfs_params,

bounds=rfs_bounds,

run.opts=run.control(checkparam="write",

6

checkdata="write",clean=FALSE))

unlink(c("reedfrogsizepred0.tpl",

"reedfrogsizepred0_gen.tpl",

"reedfrogsizepred0")) ## clean up leftovers

The data, params, and bounds (parameter bounds) arguments should be
reasonably self-explanatory. When checkparam="write" and checkdata="write"

are specified, R2admb attempts to write appropriate DATA and PARAME-
TER sections into a modified TPL file, leaving the results with the suffix
gen.tpl at the end of the run.

Here’s the augmented file:

1 DATA_SECTION

2

3 init_int nobs

4 init_vector nexposed(1,15)

5 init_vector TBL(1,15)

6 init_vector Kill(1,15)

7

8 PARAMETER_SECTION

9

10 objective_function_value f

11 init_bounded_number c(0,1)

12 init_bounded_number d(0,50)

13 init_bounded_number g(-1,25)

14 vector prob(1,nobs) // per capita mort prob

15 PROCEDURE_SECTION

16

17 dvariable fpen=0.0; // penalty variable

18 // power-Ricker

19 prob = c*pow(elem_prod(TBL/d,exp(1-TBL/d)),g);

20 // penalties: constrain 0.001 <= prob <= 0.999

21 prob = posfun(prob,0.001,fpen);

22 f += 1000*fpen;

23 prob = 1-posfun(1-prob,0.001,fpen);

24 f += 1000*fpen;

25 // binomial negative log-likelihood

26 f -= sum(log_comb(nexposed,Kill)+

27 elem_prod(Kill,log(prob))+

28 elem_prod(nexposed-Kill,log(1-prob)));

Lines 1–7, 10–13 are new and should (I hope) be reasonably self-explanatory.

7

If we were very lucky/had really good guesses about the initial parame-
ters we could get away with a simplified version of the TPL file that didn’t
use posfun to constrain the probabilities:

1 PARAMETER_SECTION

2 vector prob(1,nobs) // per capita mort prob

3

4 PROCEDURE_SECTION

5

6 // power-Ricker

7 prob = c*pow(elem_prod(TBL/d,exp(1-TBL/d)),g);

8 // binomial negative log-likelihood

9 f -= sum(log_comb(nexposed,Kill)+

10 elem_prod(Kill,log(prob))+

11 elem_prod(nexposed-Kill,log(1-prob)));

But I found that if I started with g = 1 I got a poor fit and warning
messages: I had to tweak the starting value of g to get a proper fit.

rfs_params$g <- 2

m2 <- do_admb("ReedfrogSizepred1",

data=rfs_dat,

params=rfs_params,

bounds=rfs_bounds,

run.opts=run.control(checkparam="write",

checkdata="write"))

Now that we have fitted the model, here are some of the things we can
do with it:

• Get basic information about the fit and coefficient estimates:

m1

Model file: ReedfrogSizepred0_gen

Negative log-likelihood: 12.8938

Coefficients:

c d g

0.4138327 13.3508231 18.2478388

8

• Get vector of coefficients only:

coef(m1)

c d g

0.4138327 13.3508231 18.2478388

• Get a coefficient table including standard errors and p values. (The p
values provided are from a Wald test, which is based on an assumption
that the log-likelihood surface is quadratic. Use them with caution.)

summary(m1)

Model file: ReedfrogSizepred0_gen

Negative log-likelihood: 12.9 AIC: 31.8

Coefficients:

Estimate Std. Error z value Pr(>|z|)

c 0.4138 0.1257 3.292 0.000996 ***

d 13.3508 0.8111 16.461 < 2e-16 ***

g 18.2478 6.0331 3.025 0.002489 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(you can use coef(summary(m1)) to extract just the table).

• Variance-covariance matrix of the parameters:

vcov(m1)

c d g

c 0.01580552 0.0578055 0.5043901

d 0.05780550 0.6578345 2.2464986

g 0.50439009 2.2464986 36.3982956

Log-likelihood, deviance, AIC:

9

c(logLik(m1),deviance(m1),AIC(m1))

[1] -12.8938 25.7876 31.7876

4.1 Profiling

You can also ask ADMB to compute likelihood profiles for a model. If
you code it yourself in the TPL file you need to add variables of type
likeprof number to keep track of the values: R2admb handles these de-
tails for you. You just need to specify profile=TRUE and give a list of the
parameters you want profiled.

m1P <- do_admb("ReedfrogSizepred0",

data=c(list(nobs=nrow(ReedfrogSizepred),

nexposed=rep(10,nrow(ReedfrogSizepred))),

ReedfrogSizepred),

params=rfs_params,

bounds=rfs_bounds,

run.opts=run.control(checkparam="write",

checkdata="write"),

profile=TRUE,

workdir=".",

profile.opts=list(pars=c("c","d","g")))

The profile information is stored in a list m1P$prof with entries for each
variable to be profiled. Each entry in turn contains a list with elements
prof (a 2-column matrix containing the parameter value and profile log-
likelihood), ci (confidence intervals derived from the profile), prof norm

(a profile based on the normal approximation), and ci norm (confidence
intervals, ditto).

Let’s compare ADMB’s profiles to those generated from R:

m0prof <- profile(m0)

(A little bit of magic [hidden] gets everything into the same data frame
and expressed in the same scale that R uses for profiles, which is the square
root of the change in deviance (−2L) between the best fit and the profile:
this scale provides a quick graphical assessment of the profile shape, because
quadratic profiles will be V-shaped on this scale.)

10

c d g

0.0 0.5 1.0 7.5 10.0 12.5 15.0 0 20 40 60

0

1

2

3
∆(

−
2L

)

method

ADMB

ADMB_norm

Wald

mle2

Notice that R evaluates the profile at a smaller number of locations,
using spline interpolation to compute confidence intervals.

4.2 MCMC

Another one of ADMB’s features is that it can use Markov chain Monte
Carlo (starting at the maximum likelihood estimate and using a candidate
distribution based on the approximate sampling distribution of the param-
eters) to get more information about the uncertainty in the estimates. This
procedure is especially helpful for complex models (high-dimensional or con-
taining random effects) where likelihood profiling becomes problematic.

To use MCMC, just add mcmc=TRUE and specify the parameters for which
you want histograms [see below] via mcmcpars (you must specify at least
one).

m1MC <- do_admb("ReedfrogSizepred0",

data=rfs_dat,

params=rfs_params,

bounds=rfs_bounds,

run.opts=run.control(checkparam="write",

checkdata="write"),

mcmc=TRUE,

mcmc.opts=mcmc.control(mcmcpars=c("c","d","g")))

clean up leftovers:

unlink(c("reedfrogsizepred0.tpl",

"reedfrogsizepred0_gen.tpl",

"reedfrogsizepred0"))

The output of MCMC is stored in two ways.

11

(1) ADMB internally computes a histogram of the MCMC sampled den-
sities, for sdreport parameters only (if you don’t know what these are,
that’s OK — appropriate parameters are auto-generated when you specify
mcmcpars). This information is stored in a list element called $hist, as an
object of class admb hist.

It has its own plot method:

plot(m1MC$hist)

X1

X
2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.5 1.0

r_c

0.
0

0.
2

0.
4

0.
6

10 12 14

r_d

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0 50 100

r_g

(2) In addition the full set of samples, sampled as frequently as specified
in mcsave (by default, the values are sampled at a frequency that gives a
total of 1000 samples for the full run) is stored as a data frame in list element
$mcmc. If you load the coda package, you can convert this into an object

12

of class mcmc, and then use the various methods implemented in coda to
analyze it.

library("coda")

mmc <- as.mcmc(m1MC$mcmc)

Trace plots give a graphical diagnostic of the behavior of the MCMC
chain. In this case the diagnostics are not good — you should be looking
for traces that essentially look like white noise.

library("lattice")

xyplot(mmc)

Iteration number

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0 200 400 600 800 1000

c

11
12

13
14

15

d

50
10

0

g

13

(for larger sets of parameters you may want to specify a layout other
than the default 1-row-by-n-columns, e.g. xyplot(mmc,layout=c(2,2))).

If you want a numerical summary of the chain behavior you can use
raftery.diag or geweke.diag (the most common diagnostic, the Gelman-
Rubin statistic (gelman.diag) doesn’t work here because it requires multiple
chains and ADMB only runs a single chain):

raftery.diag(mmc)

##

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

##

You need a sample size of at least 3746 with these values of q, r and s

geweke.diag(mmc)

##

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

##

c d g

-2.615 3.451 -9.293

geweke.diag returns Z scores for the equality of (by default) the first
10% and the last 50% of the chain. For example, the value of -2.615 here is
slightly high: pnorm(abs(v),lower.tail=FALSE)*2 computes a two-tailed
Z-test (with p value 0.009 in this case).

You can also compute the effective size of the sample, i.e. corrected for
autocorrelation:

effectiveSize(mmc)

c d g

3.422748 10.410276 1.625109

This value should be at least 100, and probably greater than 200, for
reasonable estimation of confidence intervals.

Highest posterior density (i.e. Bayesian credible) intervals:

14

HPDinterval(mmc)

lower upper

c 0.2951616 1.207657

d 10.5075438 14.326579

g 14.9532063 135.715670

attr(,"Probability")

[1] 0.95

Density plots show you the estimated posterior density of the variables:

densityplot(mmc)

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0 1.5

c

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

10 12 14 16

d

0.
00

0
0.

00
5

0.
01

0

0 50 100 150

g

15

See the documentation for the coda package for more information about
these methods. (You don’t need to use print to see these plots in an inter-
active session — it’s just required for generating documents.)

5 Incorporating random effects

One of ADMB’s big advantages is the capability to fit flexible random-
effects models — they need not fit within the generalized linear mixed model
(GLMM) framework, they can use non-standard distributions, and so forth.

Here, however, we show a very basic example, one of the GLMM exam-
ples used in the lme4 package.

Here’s the lme4 code to fit the model:

library(lme4)

if (as.numeric(R.version$major)<3) {
FIXME

gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

family = binomial, data = cbpp)

}

To adapt this for ADMB, we first construct design matrices for the fixed
and random effects:

X <- model.matrix(~period,data=cbpp)

Zherd <- model.matrix(~herd-1,data=cbpp)

Include these design matrices in the list of data to pass to ADMB:

tmpdat <- list(X=X,Zherd=Zherd,

incidence=cbpp$incidence,size=cbpp$size,

nobs=nrow(cbpp))

Here is the bare-bones TPL file:

16

1 PARAMETER_SECTION

2

3 vector herdvec(1,nobs)

4 vector eta(1,nobs)

5 vector mu(1,nobs)

6

7 PROCEDURE_SECTION

8

9 herdvec = sigma_herd*(Zherd*u_herd);

10 eta = X*beta; // form linear predictor

11 eta += herdvec; // augment with random effects

12 mu = pow(1.0+exp(-eta),-1.0); // logistic transform

13 // binomial log-likelihood (unnormalized)

14 f -= sum(elem_prod(incidence,log(mu))+

15 elem_prod(size-incidence,log(1.0-mu)));

16

17 f+=0.5*norm2(u_herd); // log-prior (standard normal)

Only a few new things to note here:

• in the appropriate (matrix × vector) context, * denotes matrix multi-
plication (rather than elementwise multiplication as in R)

• the random effects vector u_herd is unnormalized, i.e. drawn from a
standard normal N(0, 1). Line 9 constructs the vector of herd effects
by (1) multiplying by the random-effects design matrix Zherd and (2)
scaling by sigma herd. (This approach is not very efficient, especially
when the design matrix is sparse, but it’s easy to code.)

• line 17 accounts for the random effects in the likelihood.

See the ADMB-RE manual (http://admb-project.googlecode.com/
files/admb-re.pdf) for more detail.

The only changes in the do admb call are that we have to use the re

argument to specify the names and lengths of each of the random effects
vectors — only one (u herd) in this case.

d1 <- do_admb("toy1",

data=tmpdat,

params=list(beta=rep(0,ncol(X)),sigma_herd=0.1),

bounds=list(sigma_herd=c(0.0001,20)),

re=list(u_herd=ncol(Zherd)),

17

http://admb-project.googlecode.com/files/admb-re.pdf
http://admb-project.googlecode.com/files/admb-re.pdf

run.opts=run.control(checkdata="write",checkparam="write"),

mcmc=TRUE,

mcmc.opts=mcmc.control(mcmc=20,mcmcpars=c("beta","sigma_herd")))

Comparing glmer and R2admb results:

FIXME

coef(summary(gm1))

coef(summary(d1))[1:5,]

Estimate Std. Error z value Pr(>|z|)

beta.1 -1.3985300 0.2324720 -6.015907 1.788820e-09

beta.2 -0.9923330 0.3066425 -3.236123 1.211650e-03

beta.3 -1.1286700 0.3266378 -3.455417 5.494422e-04

beta.4 -1.5803100 0.4274366 -3.697180 2.180078e-04

sigma_herd 0.6422615 0.1785622 3.596851 3.220932e-04

(The full table would include the estimates of the random effects as well.)
Confirm that the random effects estimates are the same (note that the

ADMB estimates are not scaled by the estimated standard deviation, so we
do that by hand).

FIXME

plot(ranef(gm1)£herd[,1],coef(d1)[6:20]*coef(d1)["sigma_herd"],

xlab="glmer estimate",ylab="ADMB estimate")

abline(a=0,b=1)

We can get confidence (credible) intervals based on the MCMC run:

detach("package:lme4") ## HPDinterval definition gets in the way

HPDinterval(as.mcmc(d1$mcmc[,6:20]))

lower upper

u_herd.01 0.4030794 1.32280471

u_herd.02 -0.8923417 0.03020591

u_herd.03 0.1370912 1.16627996

u_herd.04 -0.3810990 0.41821079

u_herd.05 -0.6751068 0.24350385

18

u_herd.06 -1.1412244 -0.19554920

u_herd.07 0.6899157 1.82748862

u_herd.08 0.3321788 1.43631142

u_herd.09 -0.7040196 -0.02216315

u_herd.10 -1.3531048 -0.37954150

u_herd.11 -0.6582827 0.33901399

u_herd.12 -0.4540199 0.26698377

u_herd.13 -1.5615132 -0.60208524

u_herd.14 0.8275051 1.91193350

u_herd.15 -1.1669328 -0.26514705

attr(,"Probability")

[1] 0.95

That’s all for now.

References

Vonesh, J. R. and B. M. Bolker. 2005. Compensatory larval responses shift
tradeoffs associated with predator-induced hatching plasticity. Ecology
86:1580–1591.

19

	Introduction
	Installation
	Quick start (for the impatient)
	For non-ADMB users
	For ADMB users

	Basics
	Profiling
	MCMC

	Incorporating random effects

