Package 'RLT'

January 25, 2022

Version 3.2.4 **Date** 2022-01-24

Title Reinforcement Learning Trees		
Author Ruoqing Zhu <teazrq@gmail.com></teazrq@gmail.com>		
Maintainer Ruoqing Zhu <teazrq@gmail.com></teazrq@gmail.com>		
Suggests randomForest, survival		
Description Random forest with a variety of additional features for regression, classification and survival analysis. The features include: parallel computing with OpenMP, embedded model for selecting the splitting variable (based on Zhu, Zeng & Kosorok, 2015), subject weight, variable weight, tracking subjects used in each tree, etc.		
License GPL (>= 2)		
<pre>URL https://cran.r-project.org/package=RLT</pre>		
NeedsCompilation yes		
Repository CRAN		
Encoding UTF-8		
RoxygenNote 7.1.2		
Date/Publication 2022-01-25 10:12:42 UTC		
R topics documented:		
MuteRate 2 predict.RLT 2		
predict.RLT 2 print.RLT 3		
RLT		
Index 8		

2 predict.RLT

MuteRate

Muting rate

Description

Get the muting rate based on sample size N and dimension P. This is an experimental feature. When P is too small, this is not recommended.

Usage

```
MuteRate(N, P, speed = NULL, info = FALSE)
```

Arguments

N sample size
P dimension

speed Muting speed: moderate or aggressive info Whether to output detailed information

Value

A suggested muting rate

Examples

```
MuteRate(500, 100, speed = "aggressive")
```

predict.RLT

Prediction function for reinforcement learning trees

Description

Predict future subjects with a fitted RLT model

Usage

```
## S3 method for class 'RLT'
predict(object, testx, ...)
```

Arguments

object A fitted RLT object

testx Testing data

print.RLT 3

Value

The predicted values. For survival model, it returns the fitted survival functions

Examples

```
x = matrix(rnorm(100), ncol = 10)
y = rowMeans(x)
fit = RLT(x, y, ntrees = 5)
predict(fit, x)
```

print.RLT

Print a RLT object

Description

Print a RLT object

Usage

```
## S3 method for class 'RLT'
print(x, ...)
```

Arguments

```
x A fitted RLT object
```

Examples

```
x = matrix(rnorm(100), ncol = 10)
y = rowMeans(x)
fit = RLT(x, y, ntrees = 5)
fit
```

RLT

Main function of reinforcement learning trees

Description

Fit models for regression, classification and survival analysis using reinforced splitting rules

Usage

```
RLT(
  Х,
 у,
  censor = NULL,
  model = "regression",
  print.summary = 0,
  use.cores = 1,
  ntrees = if (reinforcement) 100 else 500,
 mtry = max(1, as.integer(ncol(x)/3)),
  nmin = max(1, as.integer(log(nrow(x)))),
  alpha = 0.4,
  split.gen = "random",
  nsplit = 1,
  resample.prob = 0.9,
  replacement = TRUE,
  npermute = 1,
  select.method = "var",
  subject.weight = NULL,
  variable.weight = NULL,
  track.obs = FALSE,
  importance = TRUE,
  reinforcement = FALSE,
 muting = -1,
 muting.percent = if (reinforcement) MuteRate(nrow(x), ncol(x), speed = "aggressive",
    info = FALSE) else 0,
  protect = as.integer(log(ncol(x))),
  combsplit = 1,
  combsplit.th = 0.25,
  random.select = 0,
  embed.n.th = 4 * nmin,
  embed.ntrees = \max(1, -atan(0.01 * (ncol(x) - 500))/pi * 100 + 50),
  embed.resample.prob = 0.8,
  embed.mtry = 1/2,
  embed.nmin = as.integer(nrow(x)^{(1/3)}),
  embed.split.gen = "random",
  embed.nsplit = 1
)
```

Arguments

```
x A matrix or data.frame for features
y Response variable, a numeric/factor vector or a Surv object
censor The censoring indicator if survival model is used
model The model type: regression, classification or survival
print.summary Whether summary should be printed
use.cores Number of cores
```

ntrees	Number of trees, ntrees = 100 if use reinforcement, ntrees = 1000 otherwise
mtry	Number of variables used at each internal node, only for reinforcement = \ensuremath{FALSE}
nmin	Minimum number of observations reqired in an internal node to perform a split. Set this to twice of the desired terminal node size.
alpha	Minimum number of observations required for each child node as a portion of the parent node. Must be within $(0,0.5]$.
split.gen	How the cutting points are generated
nsplit	Number of random cutting points to compare for each variable at an internal node
resample.prob	Proportion of in-bag samples
replacement	Whether the in-bag samples are sampled with replacement
npermute	Number of imputations (currently not implemented, saved for future use)
select.method	Method to compare different splits
subject.weight	Subject weights
variable.weigh	t Variable weights when randomly sample mtry to select the splitting rule
track.obs	Track which terminal node the observation belongs to
	_
<pre>importance reinforcement</pre>	Should importance measures be calculated If rainforcement enlitting rules should be used. There are default values for all
reinforcement	If reinforcement splitting rules should be used. There are default values for all tuning parameters under this feature.
muting	Muting method, -1 for muting by proportion, positive for muting by count
muting.percent	Only for muting = -1 the proportion of muting
protect	Number of protected variables that will not be muted. These variables are adaptived selected for each tree.
combsplit	Number of variables used in a combination split. combsplit = 1 gives regular binary split; combsplit > 1 produces linear combination splits.
combsplit.th	The minimum threshold (as a relative measurement compared to the best variable) for a variable to be used in the combination split.
random.select	Randomly select a variable from the top variable in the linear combination as the splitting rule.
embed.n.th	Number of observations to stop the embedded model and choose randomly from the current protected variables.
embed.ntrees embed.resample	Number of embedded trees .prob
	Proportion of in-bag samples for embedded trees
embed.mtry	Number of variables used for embedded trees, as proportion
embed.nmin	Terminal node size for embedded trees
embed.split.gen	How the cutting points are generated in the embedded trees
	110 " the cutting points are generated in the ellipedded trees

Number of random cutting points for embedded trees

embed.nsplit

Value

A RLT object; a list consisting of

FittedTrees Fitted tree structure

FittedSurv, timepoints

Terminal node survival estimation and all time points, if survival model is used

AllError All out-of-bag errors, if importance = TRUE

VarImp Variable importance measures, if importance = TRUE

ObsTrack Registration of each observation in each fitted tree

... All the tuning parameters are saved in the fitted RLT object

References

Zhu, R., Zeng, D., & Kosorok, M. R. (2015) "Reinforcement Learning Trees." Journal of the American Statistical Association. 110(512), 1770-1784.

Zhu, R., & Kosorok, M. R. (2012). Recursively imputed survival trees. Journal of the American Statistical Association, 107(497), 331-340.

Examples

```
N = 600
P = 100
X = matrix(runif(N*P), N, P)
Y = rowSums(X[,1:5]) + rnorm(N)
trainx = X[1:200,]
trainy = Y[1:200]
testx = X[-c(1:200),]
testy = Y[-c(1:200)]
# Regular ensemble trees (Extremely Randomized Trees, Geurts, et. al., 2006)
RLT.fit = RLT(trainx, trainy, model = "regression", use.cores = 6)
barplot(RLT.fit$VarImp)
RLT.pred = predict(RLT.fit, testx)
mean((RLT.pred$Prediction - testy)^2)
# Reinforcement Learning Trees, using an embedded model to find the splitting rule
## Not run:
Mark0 = proc.time()
RLT.fit = RLT(trainx, trainy, model = "regression", use.cores = 6, ntrees = 100,
              importance = TRUE, reinforcement = TRUE, combsplit = 3, embed.ntrees = 25)
proc.time() - Mark0
barplot(RLT.fit$VarImp)
RLT.pred = predict(RLT.fit, testx)
mean((RLT.pred$Prediction - testy)^2)
```

End(Not run)

Index

```
MuteRate, 2
predict.RLT, 2
print.RLT, 3
RLT, 3
```