Package ‘ROptEst’

April 25, 2019
Version 1.2.1

Date 2019-04-07

Title Optimally Robust Estimation

Description Optimally robust estimation in general smoothly parameterized models using S4
classes and methods.

Depends R(>= 3.4), methods, distr(>= 2.8.0), distrEx(>= 2.8.0),
distrMod(>= 2.8.1), RandVar(>= 1.2.0), RobAStBase(>= 1.2.0)

Imports startupmsg, MASS, stats, graphics, utils, grDevices
Suggests RobLox
ByteCompile yes
License LGPL-3

URL http://robast.r-forge.r-project.org/
Encoding latinl

LastChangedDate {$LastChangedDate: 2019-04-07 12:38:45 +0200 (So, 07.
Apr 2019) $}

LastChangedRevision {$LastChangedRevision: 1220 $}
VCS/SVNRevision 1219
NeedsCompilation no

Author Matthias Kohl [cre, cph],
Mykhailo Pupashenko [ctb] (contributed wrapper functions for diagnostic
plots),
Gerald Kroisandt [ctb] (contributed testing routines),
Peter Ruckdeschel [aut, cph]

Maintainer Matthias Kohl <Matthias.Kohl@stamats.de>
Repository CRAN
Date/Publication 2019-04-25 05:20:29 UTC

http://robast.r-forge.r-project.org/

2 R topics documented:

R topics documented:

ROptEst-package e 3
asANSCOmMbE e e e e e 4
asAnscombe-Class e 5
asLl . o . e 6
asLl-class 7
asLA . . e 8
asLAd-class e 9
checkIC-methods 10
cniperCont e e 11
CniperPointPlot 16
comparePlot-methods 17
get.asGRisk.fct-methods L 18
getAsRisk Lo 19
getBiasIC L 23
getFixClip e 25
getFixRobIC 26
getlneffDiff e 27
getInfCent e 29
getInfClip e e 31
getInfGamma 34
getlnfLM L 36
getinfRad e 38
getInfRobIC e 41
getInfStand L e 45
getInfVo o . e 47
getLInormL2derivo 48
getL2normL2deriv Lo e 49
getMaxIneff L 50
getModifyIC 51
getRadius e e 53
getReq e e 54
getRiskFctBV-methods L 56
getRiskIC L e 56
getStartIC-methods 58
INPUEGENETAtOrS o v it e e e e e 60
leastFavorableRadius 62
lowerCaseRadius 64
minmaxBias 65
optIC . . e 67
optRisk L 70
ORobEstimate-class e 72
plot-methods e e e 74
radiusMinimaxIC oL 74
RMXEOMSEMBREOBRE 77
TODESE . . . o e e 82

(0] 017 87

ROptEst-package 3

updateNorm-methods 94
Index 96
ROptEst-package Optimally robust estimation
Description

Optimally robust estimation in general smoothly parameterized models using S4 classes and meth-

ods.
Details
Package: ROptEst
Version: 1.2.1
Date: 2019-04-07
Depends: R(>= 3.4), methods, distr(>= 2.8.0), distrEx(>= 2.8.0), distrMod(>= 2.8.1),RandVar(>= 1.2.0), RobASt
Suggests: RobLox
Imports: startupmsg, MASS, stats, graphics, utils, grDevices
ByteCompile: yes
Encoding: latinl
License: LGPL-3
URL: http://robast.r-forge.r-project.org/

VCS/SVNReyvision: 1219

Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual
development, but rather are chosen for the RobAStXXX family as a whole in order to ease updating
"depends" information.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>
Maintainer: Matthias Kohl <matthias.kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. M. Kohl, P. Ruckdeschel, H. Rieder (2010). Infinitesimally Robust Esti-
mation in General Smoothly Parametrized Models. Statistical Methods and Application 19(3):333-
354.

4 asAnscombe

See Also

distr-package, distreEx-package, distrMod-package, RandVar-package, RobAStBase-package

Examples

don't test to reduce check time on CRAN

library(ROptEst)

Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)

x <- c(rep(@, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532),
rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27),
rep(10, 10), rep(11, 4), rep(12, @), rep(13, 1), rep(14, 1))

ML-estimate from package distrMod

MLest <- MLEstimator(x, PoisFamily())

MLest

confidence interval based on CLT

confint(MLest)

compute optimally (w.r.t to MSE) robust estimator (unknown contamination)

robEst <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)

estimate(robEst)

check influence curve

pIC(robEst)

checkIC(pIC(robEst))

plot influence curve

plot(pIC(robEst))

confidence interval based on LAN - neglecting bias
confint(robEst)

confidence interval based on LAN - including bias
confint(robEst, method = symmetricBias())

asAnscombe Generating function for asAnscombe-class

Description

Generates an object of class "asAnscombe”.

Usage

asAnscombe (eff = .95, biastype = symmetricBias(), normtype = NormType())

Arguments
eff value in (0,1]: ARE in the ideal model
biastype a bias type of class BiasType

normtype a norm type of class NormType

asAnscombe-class 5

Value

Object of class asAnscombe

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@fraunhofer.itwm.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-

sertation.
See Also

asAnscombe-class

Examples
asAnscombe ()
The function is currently defined as

function(eff = .95, biastype = symmetricBias(), normtype = NormType()){
new("asAnscombe”, eff = eff, biastype = biastype, normtype = normtype) }

asAnscombe-class Asymptotic Anscombe risk

Description

Class of asymptotic Anscombe risk which is the ARE (asymptotic relative efficiency) in the ideal
model obtained by an optimal bias robust IC .

Objects from the Class

Objects can be created by calls of the form new("”asAnscombe”, ...). More frequently they are
created via the generating function asAnscombe.

Slots
type Object of class "character”: “optimal bias robust IC (OBRI) for given ARE (asymptotic
relative efficiency)”.

eff Object of class "numeric”: given ARE (asymptotic relative efficiency) to be attained in the
ideal model.

biastype Object of class "BiasType": symmetric, one-sided or asymmetric

6 asL1

Extends

Class "asRiskwithBias", directly.
Class "asRisk”, by class "asRiskwithBias". Class "RiskType"”, by class "asRisk".

Methods
eff signature(object = "asAnscombe"): accessor function for slot eff.
show signature(object = "asAnscombe")

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@fraunhofer.itwm.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

asRisk-class, asAnscombe

Examples

new("asAnscombe")

aslL1 Generating function for asMSE-class

Description

Generates an object of class "asMSE".

Usage

asL1(biastype = symmetricBias(), normtype = NormType())

Arguments

biastype a bias type of class BiasType

normtype a norm type of class NormType

aslL1-class 7

Value

Object of class "asMSE"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

See Also

asL1-class, asMSE, asL4

Examples
asL1()
The function is currently defined as

function(biastype = symmetricBias(), normtype = NormType()){
new("asL1", biastype = biastype, normtype = normtype) }

asL1-class Asymptotic mean absolute error

Description

Class of asymptotic mean absolute error.

Objects from the Class

Objects can be created by calls of the form new("asL1"”, ...). More frequently they are created
via the generating function asL1.

Slots

(T3

type Object of class "character”: “asymptotic mean square error”.
biastype Object of class "BiasType": symmetric, one-sided or asymmetric

normtype Object of class "NormType”: norm in which a multivariate parameter is considered

Extends

Class "asGRisk", directly.

Class "asRiskwithBias"”, by class "asGRisk".
Class "asRisk", by class "asRiskwithBias".
Class "RiskType", by class "asGRisk".

8 aslL4

Methods

No methods defined with class "asL.1" in the signature.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

See Also

asGRisk-class, asMSE, asMSE-class, asL4-class, aslL1

Examples

new("asMSE")

asL4 Generating function for asL4-class

Description

Generates an object of class "asL4".

Usage
asL4(biastype = symmetricBias(), normtype = NormType())

Arguments
biastype a bias type of class BiasType
normtype a norm type of class NormType
Value

Object of class "asL4"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

aslL4-class 9

See Also

aslL4-class, asMSE, asL1

Examples
asL4()
The function is currently defined as

function(biastype = symmetricBias(), normtype = NormType()){
new("asL4", biastype = biastype, normtype = normtype) }

asL4-class Asymptotic mean power 4 error

Description

Class of asymptotic mean power 4 error.

Objects from the Class
Objects can be created by calls of the form new("asL4", ...). More frequently they are created

via the generating function asL4.

Slots

",

type Object of class "character”: “asymptotic mean square error”.
biastype Object of class "BiasType”: symmetric, one-sided or asymmetric

normtype Object of class "NormType”: norm in which a multivariate parameter is considered

Extends

Class "asGRisk", directly.

Class "asRiskwithBias"”, by class "asGRisk".

Class "asRisk”, by class "asRiskwithBias".

Class "RiskType", by class "asGRisk".
Methods

No methods defined with class "asL4" in the signature.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

10 checkIC-methods

See Also

asGRisk-class, asMSE, asMSE-class, asL1-class, asL4

Examples

new("asMSE")

checkIC-methods Methods for Checking and Making ICs

Description

Particular methods for checking centering and Fisher consistency of ICs, resp. making an IC out of
an IC possibly violating the conditions so far.

Usage

S4 method for signature 'ContIC,L2ParamFamily’
checkIC(IC, L2Fam, out = TRUE,
forceContICMethod = FALSE, ..., diagnostic = FALSE)
S4 method for signature 'ContIC,L2ParamFamily'’
makeIC(IC, L2Fam,
forceContICMethod = FALSE, ..., diagnostic = FALSE)

Arguments

IC object of class "IC"
L2Fam L2-differentiable family of probability measures.

out logical: Should the values of the checks be printed out?

forceContICMethod
logical: Should we force to use the method for signature ContIC,L2ParamFamily
in any case (even if it is not indicated by symmetry arguments)? Otherwise it
uses internal method . getComp to compute the number of integrals to be com-
puted, taking care of symmetries as indicated through the symmetry slots of
the model L2Fam. Only if this number is smaller than the number of integrals
to be computed in the range of the pIC the present method is used, otherwise it
switches back to the IC,L2ParamFamily method. — The ContIC,L2ParamFamily
up to skipped entries due to further symmetry arguments is $ (k+1)k/2+k+1=(k+1) (k+2) /2
for k the length of the unknown parameter / length of slot L2deriv of L2Fam,
while the number of integrals on the pIC scale underlying the more general
method for signature ContIC,L2ParamFamily is p (k+1) where p is the length
of the pIC / the length of the parameter of interest as indicated in the number of
rows in the trafo slot of the underlying slot param of L2Fam.

additional parameters to be passed on to expectation E.

diagnostic logical; if TRUE (and in case checkIC if argument out==TRUE), diagnostic infor-
mation on the integration is printed and returned as attribute diagnostic of the
return value.

cniperCont 11

Details

In checkIC, the precisions of the centering and the Fisher consistency are computed. makeIC
affinely transforms a given IC (not necessarily satisfying the centering and Fisher consistency con-
dition so far) such that after this transformation it becomes an IC (satisfying the conditions). Here
particular methods for ICs of class ContIC are provided using the particular structure of this class
which allows for speed up in certain cases.

Value

The maximum deviation from the IC properties is returned.

Author(s)

Peter Ruckdeschel <Peter.Ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

L2ParamFamily-class, IC-class

Examples

IC1 <- new("IC")

checkIC(IC1)
cniperCont Functions for Computation and Plot of Cniper Contamination and
Cniper Points.
Description

These functions and their methods can be used to determine cniper contamination as well as cniper
points. That is, under which (Dirac) contamination is the risk of one procedure larger than the risk
of some other procedure.

12 cniperCont

Usage

cniperCont(IC1, IC2, data = NULL, ...,
neighbor, risk, lower=getdistrOption("DistrResolution”),
upper=1-getdistrOption("DistrResolution”), n = 101,
with.automatic.grid = TRUE, scaleX = FALSE, scaleX.fct,
scaleX.inv, scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=gnorm,
scaleN = 9, x.ticks = NULL, y.ticks = NULL, cex.pts = 1,
cex.pts.fun = NULL, col.pts = par(”"col”), pch.pts = 19,
cex.npts = 0.6, cex.npts.fun = NULL, col.npts = "red”, pch.npts = 20,
jit.fac = 1, jit.tol = .Machine$double.eps, with.lab = FALSE,
lab.pts = NULL, lab.font = NULL, alpha.trsp = NA, which.lbs = NULL,
which.Order = NULL, which.nonlbs = NULL, attr.pre = FALSE,
return.Order = FALSE, withSubst = TRUE)

cniperPoint(L2Fam, neighbor, risk, lower, upper)

cniperPointPlot(L2Fam, data=NULL, ..., neighbor, risk= asMSE(),
lower=getdistrOption("DistrResolution”),
upper=1-getdistrOption("DistrResolution”), n = 101,
withMaxRisk = TRUE, with.automatic.grid = TRUE,
scaleX = FALSE, scaleX.fct, scaleX.inv,
scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=gnorm,
scaleN = 9, x.ticks = NULL, y.ticks = NULL,
cex.pts = 1, cex.pts.fun = NULL, col.pts = par("”col"),

pch.pts = 19,
cex.npts = 1, cex.npts.fun = NULL, col.npts = par(”col"”),
pch.npts = 19,

jit.fac = 1, jit.tol = .Machine$double.eps,
with.lab = FALSE,
lab.pts = NULL, lab.font = NULL, alpha.trsp = NA,
which.lbs = NULL, which.nonlbs = NULL,

which.Order = NULL, attr.pre = FALSE, return.Order = FALSE,
withSubst = TRUE, withMakeIC = FALSE)

Arguments
IC1 object of class IC
IC2 object of class IC
L2Fam object of class L2ParamFamily
neighbor object of class Neighborhood
risk object of class RiskType
additional parameters (in particular to be passed on to plot).
data data to be plotted in

lower, upper the lower and upper end points of the contamination interval (in prob-scale).

n number of points between lower and upper

cniperCont 13

withMaxRisk logical; if TRUE, for risk comparison uses the maximal risk of the classically
optimal IC ¢ in all situations with contamination in Dirac points 'no larger’
than the respective evaluation point and the optimally-robust IC 7 at its least
favorable contamination situation ("over all real Dirac contamination points’).
This is the default and was the behavior prior to package version 0.9). If FALSE
it uses exactly the situation with Dirac contamination in the evaluation point for
both ICs 1) and n which amounts to calling cniperCont with IC1=psi, IC2=eta.

with.automatic.grid
logical; should a grid be plotted alongside with the ticks of the axes, automati-
cally? If TRUE a respective call to grid in argument panel.first is ignored.

scaleX logical; shall X-axis be rescaled (by default according to the cdf of the underly-
ing distribution)?

scaleY logical; shall Y-axis be rescaled (by default according to a probit scale)?

scaleX.fct an isotone, vectorized function mapping the domain of the IC(s) to [0,1]; if

scaleX is TRUE and scaleX. fct is missing, the cdf of the underlying observa-
tion distribution.

scaleX.inv the inverse function to scale. fct, i.e., an isotone, vectorized function mapping
[0,1] to the domain of the IC(s) such that for any x in the domain, scaleX.inv(scaleX. fct(x))==x;
if scaleX is TRUE and scaleX.inv is missing, the quantile function of the un-
derlying observation distribution.

scaleY.fct an isotone, vectorized function mapping for each coordinate the range of the
respective coordinate of the IC(s) to [0,1]; defaulting to the cdf of A/(0, 1).

scaleY.inv an isotone, vectorized function mapping for each coordinate the range [0,1] into
the range of the respective coordinate of the IC(s); defaulting to the quantile
function of (0, 1).

scaleN integer; defaults to 9; on rescaled axes, number of x and y ticks if drawn auto-
matically;
x.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,

user-given x-ticks (on original scale);

y.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given y-ticks (on original scale);

cex.pts size of the points of the second argument plotted (vectorized);

cex.pts.fun rescaling function for the size of the points to be plotted; either NULL (default),

then log(1+abs(x)) is used for the rescaling, or a function which is then used
for the rescaling.

col.pts color of the points of the second argument plotted (vectorized);

pch.pts symbol of the points of the second argument plotted (vectorized);

col.npts color of the non-labelled points of the data argument plotted (vectorized);
pch.npts symbol of the non-labelled points of the data argument plotted (vectorized);
cex.npts size of the non-labelled points of the data argument plotted (vectorized);

cex.npts.fun rescaling function for the size of the non-labelled points to be plotted; either
NULL (default), then log(1+abs(x)) is used for each of the rescalings, or a
function which is then used for each of the rescalings.

14 cniperCont

with.lab logical; shall labels be plotted to the observations?

lab.pts character or NULL; labels to be plotted to the observations; if NULL observation
indices;

lab.font font to be used for labels

alpha.trsp alpha transparency to be added ex post to colors col.pch and col. 1bl; if one-

dim and NA all colors are left unchanged. Otherwise, with usual recycling rules
alpha. trsp gets shorted/prolongated to length the data-symbols to be plotted.
Coordinates of this vector alpha.trsp with NA are left unchanged, while for
the remaining ones, the alpha channel in rgb space is set to the respective coor-
dinate value of alpha. trsp. The non-NA entries must be integers in [0,255] (0
invisible, 255 opaque).

jit.fac jittering factor used in case of a DiscreteDistribution for plotting points of
the second argument in a jittered fashion.

jit.tol jittering tolerance used in case of a DiscreteDistribution for plotting points
of the second argument in a jittered fashion.

which.1lbs either an integer vector with the indices of the observations to be plotted into
graph or NULL — then no observation is excluded

which.nonlbs indices of the observations which should be plotted but not labelled; either an
integer vector with the indices of the observations to be plotted into graph or
NULL — then all non-labelled observations are plotted.

which.Order we order the observations (descending) according to the norm given by normtype (object);
then which.Order either is an integer vector with the indices of the ordered ob-
servations (remaining after a possible reduction by argument which.1bs) to be
plotted into graph or NULL — then no (further) observation is excluded.

attr.pre logical; do graphical attributes for plotted data refer to indices prior (TRUE) or
posterior to selection via arguments which.1lbs, which.Order, which.nonlbs
(FALSE)?

return.Order logical; if TRUE, an order vector is returned; more specifically, the order of
the (remaining) observations given by their original index is returned (remain-
ing means: after a possible reduction by argument which.1lbs, and ordering
is according to the norm given by normtype(object)); otherwise we return
invisible() as usual.

withSubst logical; if TRUE (default) pattern substitution for titles and lables is used; other-
wise no substitution is used.
withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.
Details

In case of cniperCont the difference between the risks of two ICs is plotted.

The function cniperPoint can be used to determine cniper points. That is, points such that the
optimally robust estimator has smaller minimax risk than the classical optimal estimator under
contamination with Dirac measures at the cniper points.

As such points might be difficult to find, we provide the function cniperPointPlot which can be
used to obtain a plot of the risk difference; in this function the usual arguments for plot can be

cniperCont 15

used. For arguments col, 1wd, vectors can be used; then the first coordinate is taken for the curve,
the second one for the balancing line. For argument 1ty, a list can be used; its first component is
then taken for the curve, the second one for the balancing line.

If argument withSubst is TRUE, in all title and axis lable arguments of cniperCont and cniperPointPlot,
the following patterns are substituted:

"%C" class of argument L2Fam (for cniperPointPlot)

"%A" deparsed argument L2Fam (for cniperPointPlot)

"%C1" class of argument IC1 (for cniperCont)

"%A1" deparsed argument IC1 (for cniperCont)

"%C2" class of argument IC2 (for cniperCont)

"%A2" deparsed argument IC2 (for cniperCont)

"%D" time/date-string when the plot was generated

For more details about cniper contamination and cniper points we refer to Section~3.5 of Kohl et
al. (2008) as well as Ruckdeschel (2004) and the Introduction of Kohl (2005).

Value

The cniper point is returned by cniperPoint. In case of cniperPointPlot, we return an S3 object
of class c("plotInfo”, "DiagnInfo”),i.e., a list containing the information needed to produce the
respective plot, which at a later stage could be used by different graphic engines (like, e.g. ggplot)
to produce the plot in a different framework. A more detailed description will follow in a subsequent
version.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Kohl, M. and Ruckdeschel, H. and Rieder, H. (2008). Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Unpublished Manuscript.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. (2004). Higher Order Asymptotics for the MSE of M-Estimators on Shrinking
Neighborhoods. Unpublished Manuscript.

Examples

cniper contamination
P <- PoisFamily(lambda = 4)
RobP1 <- InfRobModel(center = P, neighbor = ContNeighborhood(radius = 0.1))
IC1 <- optIC(model=RobP1, risk=asMSE())
RobP2 <- InfRobModel(center = P, neighbor = ContNeighborhood(radius = 1))
IC2 <- optIC(model=RobP2, risk=asMSE())
cniperCont(IC1 = IC1, IC2 = IC2,
neighbor = ContNeighborhood(radius = 0.5),

16 CniperPointPlot

risk = asMSE(),
lower = @, upper = 8, n = 101)

cniper point plot
cniperPointPlot (P, neighbor = ContNeighborhood(radius = 0.5),
risk = asMSE(), lower = @, upper = 10)

Don't run to reduce check time on CRAN

cniper point

cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5),
risk = asMSE(), lower = @, upper = 4)
cniperPoint (P, neighbor = ContNeighborhood(radius = 0.5),
risk = asMSE(), lower = 4, upper = 8)
CniperPointPlot Wrapper function for cniperPointPlot - Computation and Plot of

Cniper Contamination and Cniper Points

Description

The wrapper CniperPointPlot (capital C!) takes most of arguments to the cniperPointPlot
(lower case c!) function by default and gives a user possibility to run the function with low number
of arguments.

Usage

CniperPointPlot(fam, ...,
lower = getdistrOption("DistrResolution”),
upper = 1 - getdistrOption("DistrResolution”),
with.legend = TRUE, rescale = FALSE, withCall = TRUE)

Arguments
fam object of class L2ParamFamily
additional parameters (in particular to be passed on to plot)
lower the lower end point of the contamination interval
upper the upper end point of the contamination interval

with.legend the flag for showing the legend of the plot

rescale the flag for rescaling the axes for better view of the plot
withCall the flag for the call output
Value

invisible(NULL)

comparePlot-methods 17

Details

Calls cniperPointPlot with suitably chosen defaults; if withCall == TRUE, the call to cniperPointPlot
is returned.

Examples

L2fam <- NormLocationScaleFamily()
CniperPointPlot(fam=L2fam, main = "Normal location and scale”,
lower = 0@, upper = 2.5, withCall = FALSE)

comparePlot-methods Compare - Plots

Description

Plots 2-4 influence curves to the same model.

Details

S4-Method comparePlot for signature IC, IC has been enhanced compared to its original definition
in RobAStBase so that if argument MBRB is NA, it is filled automatically by a call to optIC which
computes the MBR-IC on the fly. To this end, there is an additional argument n.MBR defaulting to
10000 to determine the number of evaluation points.

Examples

N@ <- NormLocationScaleFamily(mean=0, sd=1)
N@.Rob1 <- InfRobModel(center = NO,
neighbor = ContNeighborhood(radius = 0.5))

Don't run to reduce check time on CRAN

Not run:

IC1 <- optIC(model = N@, risk = asCov())

IC2 <- optIC(model = N@.Rob1, risk = asMSE())

comparePlot(IC1,IC2, withMBR=TRUE)

End(Not run)

18 get.asGRisk.fct-methods

get.asGRisk.fct-methods
Methods for Function get.asGRisk.fct in Package ‘ROptEst’

Description

get.asGRisk.fct-methods to produce a function in r,s,b for computing a particular asGRisk

Usage

get.asGRisk. fct(Risk)
S4 method for signature 'asMSE'
get.asGRisk. fct(Risk)
S4 method for signature 'asL1'
get.asGRisk. fct(Risk)
S4 method for signature 'aslL4'
get.asGRisk. fct(Risk)

Arguments

Risk arisk of class "asGRisk"”

Details

get.asGRisk. fct is used internally in functions getAsRisk and getReq.

Value

get.asGRisk.fct
a function with arguments r (radius), s (square root of (trace of) variance), b
bias to compute the respective risk of an IC with this bias and variance at the
respective radius.

Methods

get.asGRisk.fct signature(Risk = "asMSE"): method for asymptotic mean squared error.

get.asGRisk.fct signature(Risk = "asL1"): method for asymptotic mean absolute error.
get.asGRisk.fct signature(Risk = "asL4"): method for asymptotic mean power 4 error.
Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

getAsRisk 19

getAsRisk Generic Function for Computation of Asymptotic Risks

Description

Generic function for the computation of asymptotic risks. This function is rarely called directly. It
is used by other functions.

Usage

getAsRisk(risk, L2deriv, neighbor, biastype, ...)

S4 method for signature 'asMSE,UnivariateDistribution,Neighborhood,ANY'
getAsRisk(risk,
L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand, trafo, ...)

S4 method for signature 'aslL1,UnivariateDistribution,Neighborhood, ANY'
getAsRisk(risk,
L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand, trafo, ...)

S4 method for signature 'aslL4,UnivariateDistribution,Neighborhood, ANY'
getAsRisk(risk,

L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand, trafo, ...)
S4 method for signature 'asMSE,EuclRandVariable,Neighborhood, ANY'
getAsRisk(risk,
L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,

stand, trafo, ...)

S4 method for signature 'asBias,UnivariateDistribution,ContNeighborhood, ANY'
getAsRisk(risk,
L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand = NULL, trafo, ...)

S4 method for signature
'asBias,UnivariateDistribution,ContNeighborhood,onesidedBias'
getAsRisk(

risk, L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand = NULL, trafo, ...)

S4 method for signature

'asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias'

getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,

20

getAsRisk
stand = NULL, trafo, ...)
S4 method for signature
'asBias,UnivariateDistribution,TotalVarNeighborhood, ANY'
getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand = NULL, trafo, ...)

S4 method for signature 'asBias,RealRandVariable,ContNeighborhood, ANY'
getAsRisk(
risk,L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent = NULL,
stand = NULL, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, Finfo, trafo, z.start, A.start, maxiter, tol,

warn, verbose = NULL, ...)
S4 method for signature 'asBias,RealRandVariable,TotalVarNeighborhood, ANY'
getAsRisk(

risk, L2deriv, neighbor, biastype, normtype = NULL,

clip = NULL, cent = NULL, stand = NULL, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, Finfo, trafo, z.start, A.start, maxiter, tol,

warn, verbose = NULL, ...)

S4 method for signature 'asCov,UnivariateDistribution,ContNeighborhood, ANY'
getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip, cent, stand,
trafo = NULL, ...)

S4 method for signature
'asCov,UnivariateDistribution,TotalVarNeighborhood, ANY'

getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip, cent, stand,
trafo = NULL, ...)

S4 method for signature 'asCov,RealRandVariable,ContNeighborhood, ANY'
getAsRisk(risk,
L2deriv, neighbor, biastype, normtype = NULL, clip = NULL, cent, stand,
Distr, trafo = NULL, V.comp = matrix(TRUE, ncol = nrow(stand),
nrow = nrow(stand)), w, ...)

S4 method for signature
'trAsCov,UnivariateDistribution,UncondNeighborhood, ANY'

getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip, cent, stand,
trafo = NULL, ...)

S4 method for signature 'trAsCov,RealRandVariable,ContNeighborhood, ANY'
getAsRisk(risk,

L2deriv, neighbor, biastype, normtype, clip, cent, stand, Distr,

trafo = NULL, V.comp = matrix(TRUE, ncol = nrow(stand),

getAsRisk 21

nrow = nrow(stand)), w, ...)

S4 method for signature
'asAnscombe,UnivariateDistribution,UncondNeighborhood, ANY'

getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip, cent, stand,
trafo = NULL, FI, ...)

S4 method for signature 'asAnscombe,RealRandVariable,ContNeighborhood, ANY'
getAsRisk(risk,
L2deriv, neighbor, biastype, normtype, clip, cent, stand, Distr, trafo = NULL,
V.comp = matrix(TRUE, ncol = nrow(stand), nrow = nrow(stand)),
FI, w, ...)

S4 method for signature

'asUnOvShoot,UnivariateDistribution,UncondNeighborhood, ANY'

getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip, cent, stand,
trafo, ...)

S4 method for signature
'asSemivar,UnivariateDistribution,Neighborhood,onesidedBias'
getAsRisk(
risk, L2deriv, neighbor, biastype, normtype = NULL, clip, cent, stand,

trafo, ...)
Arguments
risk object of class "asRisk".
L2deriv L2-derivative of some L2-differentiable family of probability distributions.
neighbor object of class "Neighborhood”.
biastype object of class "ANY".
additional parameters; often used to enable flexible calls.
clip optimal clipping bound.
cent optimal centering constant.
stand standardizing matrix.
Finfo matrix: the Fisher Information of the parameter.
trafo matrix: transformation of the parameter.
Distr object of class "Distribution”.
DistrSymm object of class "DistributionSymmetry".
L2derivSymm object of class "FunSymmList".
L2derivDistrSymm

object of class "DistrSymmList"”.

z.start initial value for the centering constant.

22 getAsRisk

A.start initial value for the standardizing matrix.

maxiter the maximum number of iterations

tol the desired accuracy (convergence tolerance).

warn logical: print warnings.

normtype object of class "NormType".

V. comp matrix: indication which components of the standardizing matrix have to be

computed.

w object of class RobWeight; current weight

FI trace of the respective Fisher Information

verbose logical: if TRUE some diagnostics are printed out.
Details

This function is rarely called directly. It is used by other functions/methods.

Value

The asymptotic risk is computed.

Methods

risk = "asMSE'"', L2deriv = ""UnivariateDistribution'', neighbor = '"Neighborhood', biastype = "ANY"':
computes asymptotic mean square error in methods for function getInfRobIC.

risk = "asL1", L2deriv = ""UnivariateDistribution'', neighbor = ''Neighborhood", biastype = "ANY"":
computes asymptotic mean absolute error in methods for function getInfRobIC.

risk = "asL4", L2deriv = ""UnivariateDistribution'', neighbor = ''Neighborhood", biastype = "ANY"":
computes asymptotic mean power 4 error in methods for function getInfRobIC.

risk = "asMSE'"', L2deriv = ""EuclRand Variable'', neighbor = ''Neighborhood'', biastype = ""ANY"":
computes asymptotic mean square error in methods for function getInfRobIC.

risk = "asBias'', L2deriv = ""UnivariateDistribution'', neighbor = '""ContNeighborhood", biastype = ""ANY"'":
computes standardized asymptotic bias in methods for function getInfRobIC.

risk = "asBias"', L2deriv = ""UnivariateDistribution', neighbor = ""ContNeighborhood", biastype = '"onesidedBias'':
computes standardized asymptotic bias in methods for function getInfRobIC.

risk = ""asBias'', L2deriv = '"UnivariateDistribution'', neighbor = ''ContNeighborhood'', biastype = '"asymmetricBias
computes standardized asymptotic bias in methods for function getInfRobIC.

risk = ""asBias'', L2deriv = ""UnivariateDistribution'', neighbor = '"Total VarNeighborhood', biastype = "ANY"'":
computes standardized asymptotic bias in methods for function getInfRobIC.

risk = ""asBias"', L2deriv = '""RealRandVariable'', neighbor = '""ContNeighborhood", biastype = ""ANY"'":
computes standardized asymptotic bias in methods for function getInfRobIC.

risk = "asCov", L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood', biastype = "ANY"':
computes asymptotic covariance in methods for function getInfRobIC.

risk = "asCov", L2deriv = ""UnivariateDistribution'', neighbor = '"Total VarNeighborhood', biastype = "ANY"':
computes asymptotic covariance in methods for function getInfRobIC.

getBiasIC 23

risk = "asCov", L2deriv = '""RealRandVariable'', neighbor = '""ContNeighborhood", biastype = "ANY"':
computes asymptotic covariance in methods for function getInfRobIC.

risk = "trAsCov"', L2deriv = '"UnivariateDistribution'’, neighbor = '""UncondNeighborhood", biastype = ""ANY"'":
computes trace of asymptotic covariance in methods for function getInfRobIC.

risk = "trAsCov'"', L2deriv = '"RealRand Variable'', neighbor = "'ContNeighborhood'', biastype = ""ANY"":
computes trace of asymptotic covariance in methods for function getInfRobIC.

risk = ""asAnscombe'', L2deriv = ''UnivariateDistribution'', neighbor = '"UncondNeighborhood", biastype = "ANY"':
computes the ARE in the ideal model in methods for function getInfRobIC.

risk = "asAnscombe'', L2deriv = ''RealRand Variable'', neighbor = ""ContNeighborhood', biastype = "ANY"':
computes the ARE in the ideal model in methods for function getInfRobIC.

risk = ""asUnOvShoot", L2deriv = ''UnivariateDistribution', neighbor = ""UncondNeighborhood'', biastype = ""ANY'
computes asymptotic under-/overshoot risk in methods for function getInfRobIC.

risk = "asSemivar'', L2deriv = ''UnivariateDistribution', neighbor = ''Neighborhood', biastype = '"onesidedBias'':
computes asymptotic semivariance in methods for function getInfRobIC.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 7/4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

asRisk-class

getBiasIC Generic function for the computation of the asymptotic bias for an IC

Description

Generic function for the computation of the asymptotic bias for an IC.

Usage

getBiasIC(IC, neighbor, ...)

S4 method for signature 'HampIC,UncondNeighborhood'
getBiasIC(IC, neighbor, L2Fam, ...)

24 getBiasIC

Arguments
IC object of class "InfluenceCurve”
neighbor object of class "Neighborhood”.
L2Fam object of class "L2ParamFamily"”.
additional parameters
Details

This function is rarely called directly. It is used by other functions/methods.

Value

The bias of the IC is computed.

Methods

IC = "HampIC", neighbor = ""UncondNeighborhood'" reads off the as. bias from the risks-slot
of the IC.

IC = "TotalVarIC", neighbor = '"UncondNeighborhood'' reads off the as. bias from the risks-
slot of the IC, resp. if this is NULL from the corresponding Lagrange Multipliers.

Note

This generic function is still under construction.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269—
278.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias of M-estimators on
Neighborhoods.

See Also

getRiskIC-methods, InfRobModel-class

getFixClip 25

getFixClip Generic Function for the Computation of the Optimal Clipping Bound

Description

Generic function for the computation of the optimal clipping bound in case of robust models with

fixed neighborhoods. This function is rarely called directly. It is used to compute optimally robust
ICs.

Usage

getFixClip(clip, Distr, risk, neighbor, ...)

S4 method for signature 'numeric,Norm,fiUnOvShoot,ContNeighborhood'
getFixClip(clip, Distr, risk, neighbor)

S4 method for signature 'numeric,Norm,fiUnOvShoot,TotalVarNeighborhood'
getFixClip(clip, Distr, risk, neighbor)

Arguments
clip positive real: clipping bound
Distr object of class "Distribution”.
risk object of class "RiskType".
neighbor object of class "Neighborhood”.
additional parameters.
Value

The optimal clipping bound is computed.

Methods

clip = "numeric", Distr = ""Norm"', risk = "fiUnOvShoot", neighbor = ''ContNeighborhood"
optimal clipping bound for finite-sample under-/overshoot risk.

clip = "numeric", Distr = ""Norm"', risk = "fiUnOvShoot", neighbor = '"TotalVarNeighborhood"'
optimal clipping bound for finite-sample under-/overshoot risk.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269—
278.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

26 getFixRobIC

See Also

ContIC-class, TotalVarIC-class

getFixRobIC Generic Function for the Computation of Optimally Robust ICs

Description

Generic function for the computation of optimally robust ICs in case of robust models with fixed
neighborhoods. This function is rarely called directly.

Usage
getFixRobIC(Distr, risk, neighbor, ...)
S4 method for signature 'Norm,fiUnOvShoot,UncondNeighborhood'

getFixRobIC(Distr, risk, neighbor,
sampleSize, upper, lower, maxiter, tol, warn, Algo, cont)

Arguments
Distr object of class "Distribution”.
risk object of class "RiskType".
neighbor object of class "Neighborhood”.
additional parameters.
sampleSize integer: sample size.
upper upper bound for the optimal clipping bound.
lower lower bound for the optimal clipping bound.
maxiter the maximum number of iterations.
tol the desired accuracy (convergence tolerance).
warn logical: print warnings.
Algo "A" or "B".
cont "left" or "right".
Details

Computation of the optimally robust IC in sense of Huber (1968) which is also treated in Kohl
(2005). The Algorithm used to compute the exact finite sample risk is introduced and explained in
Kohl (2005). It is based on FFT.

Value

The optimally robust IC is computed.

getlneftDiff 27

Methods

Distr = ""Norm'', risk = ""fiUnOvShoot'', neighbor = ""UncondNeighborhood'' computes the op-
timally robust influence curve for one-dimensional normal location and finite-sample under-
/overshoot risk.

Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269—
278.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106-115.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

FixRobModel-class

getIneffDiff Generic Function for the Computation of Inefficiency Differences

Description

Generic function for the computation of inefficiency differencies. This function is rarely called
directly. It is used to compute the radius minimax IC and the least favorable radius.

Usage

getIneffDiff(radius, L2Fam, neighbor, risk, ...)

S4 method for signature 'numeric,L2ParamFamily,UncondNeighborhood,asMSE'
getIneffDiff(
radius, L2Fam, neighbor, risk, loRad, upRad, loRisk, upRisk,
z.start = NULL, A.start = NULL, upper.b = NULL, lower.b = NULL,
OptOrIter = "iterate"”, MaxIter, eps, warn, loNorm = NULL, upNorm = NULL,

verbose = NULL, ..., withRetIneff = FALSE)
Arguments
radius neighborhood radius.
L2Fam L2-differentiable family of probability measures.
neighbor object of class "Neighborhood”.

risk object of class "RiskType".

28

loRad
upRad
loRisk
upRisk
z.start
A.start
upper.b
lower.b
OptOrlter

MaxIter
eps
warn

1oNorm

upNorm

verbose

withRetIneff

Value

getlneffDiff

the lower end point of the interval to be searched.
the upper end point of the interval to be searched.
the risk at the lower end point of the interval.

the risk at the upper end point of the interval.
initial value for the centering constant.

initial value for the standardizing matrix.

upper bound for the optimal clipping bound.
lower bound for the optimal clipping bound.

character; which method to be used for determining Lagrange multipliers A and

a: if (partially) matched to "optimize”, getLagrangeMultByOptim is used;

otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getLagrangeMultByIter isused. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”

we use only one (inner) iteration, if matched to "doubleiterate” we use up to

Maxiter (inner) iterations.

the maximum number of iterations
the desired accuracy (convergence tolerance).
logical: print warnings.

object of class "NormType"; used in selfstandardization to evaluate the bias of
the current IC in the norm of the lower bound

object of class "NormType"; used in selfstandardization to evaluate the bias of
the current IC in the norm of the upper bound

logical: if TRUE, some messages are printed
further arguments to be passed on to getInfRobIC

logical: if TRUE, getIneffDiff returns the vector of lower and upper ineffi-
ciency (components named "lo" and "up"), otherwise (default) the difference.
The latter was used in radiusMinimaxIC up to version 0.8 for a call to uniroot
directly. In order to speed up things (i.e., not to call the expensive getInfRobIC
once again at the zero, up to version 0.8 we had some awkward assign-sys. frame
construction to modify the caller writing the upper inefficiency already com-
puted to the caller environment; having capsulated this into try from version
0.9 on, this became even more awkward, so from version 0.9 onwards, we in-
stead use the TRUE-alternative when calling it from radiusMinimaxIC.

The inefficieny difference between the left and the right margin of a given radius interval is com-

puted.

Methods

radius = "numeric'', L2ZFam = "L2ParamFamily", neighbor = ""UncondNeighborhood'', risk = '""asMSE"':
computes difference of asymptotic MSE—inefficiency for the boundaries of a given radius in-

terval.

getInfCent 29

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications, /7(1) 13-40.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Submitted.
Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Pro-
cesses), Humboldt University, Berlin; also available under www.uni-bayreuth.de/departments/
math/org/mathe7/RIEDER/pubs/RR. pdf

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

radiusMinimaxIC, leastFavorableRadius

getInfCent Generic Function for the Computation of the Optimal Centering Con-
stant/Lower Clipping Bound

Description

Generic function for the computation of the optimal centering constant (contamination neighbor-
hoods) respectively, of the optimal lower clipping bound (total variation neighborhood). This func-
tion is rarely called directly. It is used to compute optimally robust ICs.

Usage

getInfCent(L2deriv, neighbor, biastype, ...)

S4 method for signature 'UnivariateDistribution,ContNeighborhood,BiasType'
getInfCent(L2deriv,
neighbor, biastype, clip, cent, tol.z, symm, trafo)

S4 method for signature
'UnivariateDistribution,TotalVarNeighborhood,BiasType'
getInfCent(L2deriv,

neighbor, biastype, clip, cent, tol.z, symm, trafo)

S4 method for signature 'RealRandVariable,ContNeighborhood,BiasType'
getInfCent(L2deriv,

neighbor, biastype, Distr, z.comp, w, tol.z = .Machine$double.eps*.5, ...)

S4 method for signature 'RealRandVariable,TotalVarNeighborhood,BiasType'

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

30 getInfCent

getInfCent(L2deriv,
neighbor, biastype, Distr, z.comp, w, tol.z = .Machine$double.eps”.5,...)

S4 method for signature
'UnivariateDistribution,ContNeighborhood,onesidedBias'
getInfCent(L2deriv,

neighbor, biastype, clip, cent, tol.z, symm, trafo)

S4 method for signature
'UnivariateDistribution,ContNeighborhood,asymmetricBias
getInfCent(L2deriv,

neighbor, biastype, clip, cent, tol.z, symm, trafo)

[

Arguments
L2deriv L2-derivative of some L2-differentiable family of probability measures.
neighbor object of class "Neighborhood”.
biastype object of class "BiasType".
additional parameters, in particular for expectation E.
clip optimal clipping bound.
cent optimal centering constant.
tol.z the desired accuracy (convergence tolerance).
symm logical: indicating symmetry of L2deriv.
trafo matrix: transformation of the parameter.
Distr object of class Distribution.
z.comp logical vector: indication which components of the centering constant have to
be computed.
W object of class RobWeight; current weight.
Value

The optimal centering constant is computed.

Methods

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood', biastype = ''BiasType''
computation of optimal centering constant for symmetric bias.

L2deriv = ""UnivariateDistribution", neighbor = '"TotalVarNeighborhood'', biastype = ''BiasType"
computation of optimal lower clipping bound for symmetric bias.

L2deriv = '"RealRand Variable", neighbor = '"TotalVarNeighborhood'', biastype = ''BiasType"
computation of optimal centering constant for symmetric bias.

L2deriv = '"RealRandVariable'", neighbor = "ContNeighborhood", biastype = ''BiasType' computation
of optimal centering constant for symmetric bias.

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood'', biastype = "onesidedBias'
computation of optimal centering constant for onesided bias.

getInfClip 31

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood'', biastype = '"asymmetricBias"
computation of optimal centering constant for asymmetric bias.
Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 7/4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ContIC-class, TotalvVarIC-class

getInfClip Generic Function for the Computation of the Optimal Clipping Bound

Description

Generic function for the computation of the optimal clipping bound in case of infinitesimal robust
models. This function is rarely called directly. It is used to compute optimally robust ICs.

Usage
getInfClip(clip, L2deriv, risk, neighbor, ...)

S4 method for signature
'numeric,UnivariateDistribution,asMSE, ContNeighborhood'
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asMSE,TotalVarNeighborhood'
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asL1,ContNeighborhood'’
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature

32 getInfClip

'numeric,UnivariateDistribution,aslL1,TotalVarNeighborhood'
getInfClip(
clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asL4,ContNeighborhood'
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,aslL4,TotalVarNeighborhood'
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature 'numeric,EuclRandVariable,asMSE,UncondNeighborhood'
getInfClip(
clip, L2deriv, risk, neighbor, biastype, Distr, stand, cent, trafo, ...)

S4 method for signature
'numeric,UnivariateDistribution,asUnOvShoot,UncondNeighborhood'
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asSemivar,ContNeighborhood'
getInfClip(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo,...)
Arguments
clip positive real: clipping bound
L2deriv L2-derivative of some L2-differentiable family of probability measures.
risk object of class "RiskType".
neighbor object of class "Neighborhood”.

additional parameters, in particular for expectation E

biastype object of class "BiasType”

cent optimal centering constant.

stand standardizing matrix.

Distr object of class "Distribution”.

symm logical: indicating symmetry of L2deriv.

trafo matrix: transformation of the parameter.
Value

The optimal clipping bound is computed.

getInfClip 33

Methods

clip = "numeric", L2deriv = ""UnivariateDistribution', risk = '"asMSE'', neighbor = '"ContNeighborhood"
optimal clipping bound for asymtotic mean square error.

clip = "numeric", L2deriv = ""UnivariateDistribution", risk = '""asMSE'', neighbor = ""Total VarNeighborhood"
optimal clipping bound for asymtotic mean square error.

clip = ""numeric", L2deriv = "EuclRandVariable'', risk = '""asMSE'', neighbor = '"UncondNeighborhood"
optimal clipping bound for asymtotic mean square error.

clip = "numeric'', L2deriv = ""UnivariateDistribution", risk = "asL1", neighbor = ''ContNeighborhood"
optimal clipping bound for asymtotic mean absolute error.

clip = ""numeric", L2deriv = ""UnivariateDistribution', risk = ""asL.1'', neighbor = '"Total VarNeighborhood"
optimal clipping bound for asymtotic mean absolute error.

clip = "numeric", L2deriv = ""UnivariateDistribution'’, risk = '"asL.4'', neighbor = '"ContNeighborhood"
optimal clipping bound for asymtotic mean power 4 error.

clip = "numeric'', L2deriv = ""UnivariateDistribution", risk = ""asL4", neighbor = ''"TotalVarNeighborhood"
optimal clipping bound for asymtotic mean power 4 error.

clip = ""numeric", L2deriv = ""UnivariateDistribution", risk = ""asUnOvShoot", neighbor = '""UncondNeighborhood"
optimal clipping bound for asymtotic under-/overshoot risk.

clip = "numeric', L2deriv = '""UnivariateDistribution'’, risk = '"asSemivar'', neighbor = '"'ContNeighborhood"
optimal clipping bound for asymtotic semivariance.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—-115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics /4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ContIC-class, TotalVarIC-class

34 getInfGamma

getInfGamma Generic Function for the Computation of the Optimal Clipping Bound

Description

Generic function for the computation of the optimal clipping bound. This function is rarely called
directly. It is called by getInfClip to compute optimally robust ICs

Usage

getInfGamma(L2deriv, risk, neighbor, biastype, ...)

S4 method for signature
'UnivariateDistribution,asGRisk,ContNeighborhood,BiasType'
getInfGamma(L2deriv,

risk, neighbor, biastype, cent, clip)

S4 method for signature
'UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType'
getInfGamma(L2deriv,

risk, neighbor, biastype, cent, clip)

S4 method for signature 'RealRandVariable,asMSE,ContNeighborhood,BiasType'
getInfGamma(L2deriv,

risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L, ...)
S4 method for signature
'RealRandVariable,asMSE,TotalVarNeighborhood,BiasType'
getInfGamma(L2deriv,

risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L, ...)

S4 method for signature
'UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType'
getInfGamma(L2deriv,

risk, neighbor, biastype, cent, clip)

S4 method for signature
'UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias'
getInfGamma(L2deriv,

risk, neighbor, biastype, cent, clip)

S4 method for signature
'UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias'
getInfGamma(L2deriv,

risk, neighbor, biastype, cent, clip)

getInfGamma 35

Arguments
L2deriv L2-derivative of some L2-differentiable family of probability measures.
risk object of class "RiskType".
neighbor object of class "Neighborhood”.
biastype object of class "BiasType".
additional parameters, in particular for expectation E.
cent optimal centering constant.
clip optimal clipping bound.
stand standardizing matrix.
Distr object of class "Distribution”.
power exponent for the integrand; by default 1, but may also be 2, for optimization in
getlLagrangeMultByOptim.
Details

The function is used in case of asymptotic G-risks; confer Ruckdeschel and Rieder (2004).

Methods
L2deriv = ""UnivariateDistribution", risk = "asGRisk", neighbor = ""ContNeighborhood", biastype = ''BiasType"
used by getInfClip for symmetric bias.

L2deriv = ""UnivariateDistribution'', risk = '""asGRisk", neighbor = '"TotalVarNeighborhood'', biastype = ''BiasType'
used by getInfClip for symmetric bias.

L2deriv = '"RealRandVariable", risk = "asMSE'"', neighbor = ''ContNeighborhood'', biastype = ''BiasType"
used by getInfClip for symmetric bias.

L2deriv = '"RealRand Variable", risk = "asMSE'"", neighbor = '"Total VarNeighborhood'', biastype = ''BiasType"
used by getInfClip for symmetric bias.

L2deriv = ""UnivariateDistribution'', risk = '"asUnOvShoot", neighbor = "ContNeighborhood", biastype = ''BiasTyp
used by getInfClip for symmetric bias.

L2deriv = ""UnivariateDistribution'', risk = ""asMSE'', neighbor = ''ContNeighborhood', biastype = '"onesidedBias"
used by getInfClip for onesided bias.

L2deriv = ""UnivariateDistribution'’, risk = ""asMSE", neighbor = "ContNeighborhood", biastype = '"asymmetricBia
used by getInfClip for asymmetric bias.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

36 getInfLM

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics /4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

asGRisk-class, asMSE-class, asUnOvShoot-class, ContIC-class, TotalVarIC-class

getInflLM Functions to determine Lagrange multipliers

Description

Functions to determine Lagrange multipliers A and a in a Hampel problem or in a(n) (inner) loop in
a MSE problem; can be done either by optimization or by fixed point iteration. These functions are
rarely called directly.

Usage

getlLagrangeMultByIter(b, L2deriv, risk, trafo,
neighbor, biastype, normtype, Distr,
a.start, z.start, A.start, w.start, std, z.comp,
A.comp, maxiter, tol, verbose = NULL,
warnit = TRUE, ...)
getlLagrangeMultByOptim(b, L2deriv, risk, FI, trafo,
neighbor, biastype, normtype, Distr,
a.start, z.start, A.start, w.start, std, z.comp,

A.comp, maxiter, tol, verbose = NULL, ...)
Arguments
b numeric; (> byin; clipping bound for which the Lagrange multipliers are searched
L2deriv L2-derivative of some L2-differentiable family of probability measures.
risk object of class "RiskType".
FI matrix: Fisher information.
trafo matrix: transformation of the parameter.
neighbor object of class "Neighborhood”.
biastype object of class "BiasType" — the bias type with we work.
normtype object of class "NormType" — the norm type with we work.
Distr object of class "Distribution”.
a.start initial value for the centering constant (in p-space).

z.start initial value for the centering constant (in k-space).

getInfLM

A.start
w.start

std

Z.comp

A.comp

maxiter
tol
verbose

warnit

Value

a list with items

A

a

z

w
biastype
normtype
normtype.old
risk

std

iter
prec

b

call

Author(s)

initial value for the standardizing matrix.

initial value for the weight function.

matrix of (or which may coerced to) class PosSemDefSymmMatrix for use of

different (standardizing) norm.

logical vector: indication which components of the centering constant have to

be computed.

matrix: indication which components of the standardizing matrix have to be

computed.
the maximum number of iterations.
the desired accuracy (convergence tolerance).

logical: if TRUE, some messages are printed.

logical: if TRUE warning is issued if maximal number of iterations is reached.

additional parameters for optim and E.

Lagrange multiplier A (standardizing matrix)

Lagrange multiplier a (centering in p-space)

Lagrange multiplier z (centering in k-space)

weight function involving Lagrange multipliers
(possibly modified) bias type biastype from argument
(possibly modified) norm type normtype from argument
(possibly modified) norm type normtype before last (internal) update
(possibly [norm-]modified) risk risk from argument
(possibly modified) argument std

number of iterations needed

precision achieved

used clippng height b

call with which either getlLagrangeMultByIter or getLagrangeMultByOptim

was called

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

38 getInfRad

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106-115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22: 201-223.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 7/4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfRobModel-class

getInfRad Generic Function for the Computation of the Optimal Radius for
Given Clipping Bound

Description

The usual robust optimality problem for given asGRisk searches the optimal clipping height b of a
Hampel-type IC to given radius of the neighborhood. Instead, again for given asGRisk and for given
Hampel-Type IC with given clipping height b we may determine the radius of the neighborhood for
which it is optimal in the sense of the first sentence. This radius is determined by getInfRad. This
function is rarely called directly. It is used withing getRadius.

Usage
getInfRad(clip, L2deriv, risk, neighbor, ...)

S4 method for signature
'numeric,UnivariateDistribution,asMSE,ContNeighborhood'
getInfRad(
clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asMSE,TotalVarNeighborhood'
getInfRad(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asL1,ContNeighborhood'
getInfRad(
clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

getInfRad

S4 method for signature
'numeric,UnivariateDistribution,aslL1,TotalVarNeighborhood'

getInfRad(
clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,aslL4,ContNeighborhood'

getInfRad(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,aslL4,TotalVarNeighborhood'

getInfRad(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

39

S4 method for signature 'numeric,EuclRandVariable,asMSE,UncondNeighborhood'

getInfRad(

clip, L2deriv, risk, neighbor, biastype, Distr, stand, cent, trafo, ..

S4 method for signature
'numeric,UnivariateDistribution,asUnOvShoot,UncondNeighborhood'

getInfRad(

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

S4 method for signature
'numeric,UnivariateDistribution,asSemivar,ContNeighborhood'

getInfRad(

Arguments
clip
L2deriv
risk

neighbor

biastype
cent
stand
Distr
symm

trafo

Value

clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)

positive real: clipping bound

L2-derivative of some L2-differentiable family of probability measures.
object of class "RiskType".

object of class "Neighborhood”.

additional parameters.

object of class "BiasType”

optimal centering constant.

standardizing matrix.

object of class "Distribution”.

logical: indicating symmetry of L2deriv.

matrix: transformation of the parameter.

The optimal clipping bound is computed.

>

40 getInfRad

Methods

clip = "numeric", L2deriv = ""UnivariateDistribution', risk = '"asMSE'', neighbor = '"ContNeighborhood"
optimal clipping bound for asymtotic mean square error.

clip = "numeric", L2deriv = ""UnivariateDistribution", risk = '""asMSE'', neighbor = ""Total VarNeighborhood"
optimal clipping bound for asymtotic mean square error.

clip = ""numeric", L2deriv = "EuclRandVariable'', risk = '""asMSE'', neighbor = '"UncondNeighborhood"
optimal clipping bound for asymtotic mean square error.

clip = "numeric'', L2deriv = ""UnivariateDistribution", risk = "asL1", neighbor = ''ContNeighborhood"
optimal clipping bound for asymtotic mean absolute error.

clip = ""numeric", L2deriv = ""UnivariateDistribution', risk = ""asL.1'', neighbor = '"Total VarNeighborhood"
optimal clipping bound for asymtotic mean absolute error.

clip = "numeric", L2deriv = ""UnivariateDistribution'’, risk = '"asL.4'', neighbor = '"ContNeighborhood"
optimal clipping bound for asymtotic mean power 4 error.

clip = "numeric'', L2deriv = ""UnivariateDistribution", risk = ""asL4", neighbor = ''"TotalVarNeighborhood"
optimal clipping bound for asymtotic mean power 4 error.

clip = ""numeric", L2deriv = ""UnivariateDistribution", risk = ""asUnOvShoot", neighbor = '""UncondNeighborhood"
optimal clipping bound for asymtotic under-/overshoot risk.

clip = "numeric', L2deriv = '""UnivariateDistribution'’, risk = '"asSemivar'', neighbor = '"'ContNeighborhood"
optimal clipping bound for asymtotic semivariance.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics /4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ContIC-class, TotalVarIC-class

getInfRobIC 41

getInfRobIC Generic Function for the Computation of Optimally Robust ICs

Description

Generic function for the computation of optimally robust ICs in case of infinitesimal robust models.
This function is rarely called directly.

Usage
getInfRobIC(L2deriv, risk, neighbor, ...)

S4 method for signature 'UnivariateDistribution,asCov,ContNeighborhood'
getInfRobIC(L2deriv,
risk, neighbor, Finfo, trafo, verbose = NULL)

S4 method for signature 'UnivariateDistribution,asCov,TotalVarNeighborhood'
getInfRobIC(L2deriv,
risk, neighbor, Finfo, trafo, verbose = NULL)

S4 method for signature 'RealRandVariable,asCov,UncondNeighborhood'’
getInfRobIC(L2deriv, risk,
neighbor, Distr, Finfo, trafo, QuadForm = diag(nrow(trafo)),
verbose = NULL)

S4 method for signature 'UnivariateDistribution,asBias,UncondNeighborhood'
getInfRobIC(L2deriv,
risk, neighbor, symm, trafo, maxiter, tol, warn, Finfo,
verbose = NULL, ...)

S4 method for signature 'RealRandVariable,asBias,UncondNeighborhood'
getInfRobIC(L2deriv, risk,
neighbor, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, z.start, A.start, Finfo, trafo,
maxiter, tol, warn, verbose = NULL, ...)

S4 method for signature 'UnivariateDistribution,asHampel,UncondNeighborhood'
getInfRobIC(L2deriv,
risk, neighbor, symm, Finfo, trafo, upper = NULL,
lower=NULL, maxiter, tol, warn, noLow = FALSE,
verbose = NULL, checkBounds = TRUE, ...)

S4 method for signature 'RealRandVariable,asHampel,UncondNeighborhood'
getInfRobIC(L2deriv, risk,
neighbor, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, Finfo, trafo, onesetLM = FALSE,
z.start, A.start, upper = NULL, lower=NULL,

42

getInfRobIC

OptOrIter = "iterate”, maxiter, tol, warn,
verbose = NULL, checkBounds = TRUE, ...,
.withEvalAsVar = TRUE)

S4 method for signature
'UnivariateDistribution,asAnscombe,UncondNeighborhood'
getInfRobIC(
L2deriv, risk, neighbor, symm, Finfo, trafo, upper = NULL,
lower=NULL, maxiter, tol, warn, noLow = FALSE,
verbose = NULL, checkBounds = TRUE, ...)

S4 method for signature 'RealRandVariable,asAnscombe,UncondNeighborhood'
getInfRobIC(L2deriv,
risk, neighbor, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, Finfo, trafo, onesetLM = FALSE,
z.start, A.start, upper = NULL, lower=NULL,
OptOrIter = "iterate”, maxiter, tol, warn,
verbose = NULL, checkBounds = TRUE, ...)

S4 method for signature 'UnivariateDistribution,asGRisk,UncondNeighborhood'
getInfRobIC(L2deriv,
risk, neighbor, symm, Finfo, trafo, upper = NULL,
lower = NULL, maxiter, tol, warn, noLow = FALSE,
verbose = NULL, ...)

S4 method for signature 'RealRandVariable,asGRisk,UncondNeighborhood'
getInfRobIC(L2deriv, risk,
neighbor, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, Finfo, trafo, onesetlLM = FALSE, z.start,
A.start, upper = NULL, lower = NULL, OptOrIter = "iterate”,
maxiter, tol, warn, verbose = NULL, withPICcheck = TRUE,
., .withEvalAsVar = TRUE)

S4 method for signature
'UnivariateDistribution,asUnOvShoot,UncondNeighborhood'

getInfRobIC(

L2deriv, risk, neighbor, symm, Finfo, trafo,

upper, lower, maxiter, tol, warn, verbose = NULL, ...)

Arguments
L2deriv L2-derivative of some L2-differentiable family of probability measures.
risk object of class "RiskType".
neighbor object of class "Neighborhood”.
additional parameters (mainly for optim).

Distr object of class "Distribution”.

symm logical: indicating symmetry of L2deriv.

getInfRobIC

43

DistrSymm object of class "DistributionSymmetry".

L2derivSymm object of class "FunSymmList".

L2derivDistrSymm
object of class "DistrSymmList".

Finfo Fisher information matrix.

z.start initial value for the centering constant.

A.start initial value for the standardizing matrix.

trafo matrix: transformation of the parameter.

upper upper bound for the optimal clipping bound.

lower lower bound for the optimal clipping bound.

OptOrlter character; which method to be used for determining Lagrange multipliers A and
a: if (partially) matched to "optimize"”, getLagrangeMultByOptim is used;
otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getLagrangeMultByIter isused. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”
we use only one (inner) iteration, if matched to "doubleiterate” we use up to
Maxiter (inner) iterations.

maxiter the maximum number of iterations.

tol the desired accuracy (convergence tolerance).

warn logical: print warnings.

nolLow logical: is lower case to be computed?

onesetLM logical: use one set of Lagrange multipliers?

QuadForm matrix of (or which may coerced to) class PosSemDefSymmMatrix for use of
different (standardizing) norm

verbose logical: if TRUE, some messages are printed

checkBounds logical: if TRUE, minimal and maximal clipping bound are computed to check if
a valid bound was specified.

withPICcheck logical: at the end of the algorithm, shall we check how accurately this is a pIC;
this will only be done if withPICcheck && verbose.

.withEvalAsVar logical (of length 1): if TRUE, risks based on covariances are to be evaluated
(default), otherwise just a call is returned.

Value

The optimally robust IC is computed.

Methods

L2deriv = ""UnivariateDistribution", risk = ""asCov"', neighbor = '""ContNeighborhood' computes
the classical optimal influence curve for L2 differentiable parametric families with unknown
one-dimensional parameter.

L2deriv = ""UnivariateDistribution'’, risk = '""asCov"', neighbor = ""TotalVarNeighborhood' computes
the classical optimal influence curve for L2 differentiable parametric families with unknown
one-dimensional parameter.

44 getInfRobIC

L2deriv = '""RealRandVariable'', risk = ""asCov'"', neighbor = ""UncondNeighborhood' computes
the classical optimal influence curve for L2 differentiable parametric families with unknown
k-dimensional parameter (X > 1) where the underlying distribution is univariate; for total vari-
ation neighborhoods only is implemented for the case where there is a 1 X k transformation
trafo matrix.

L2deriv = ""UnivariateDistribution", risk = "asBias'', neighbor = '"UncondNeighborhood' computes
the bias optimal influence curve for L2 differentiable parametric families with unknown one-
dimensional parameter.

L2deriv = '"RealRand Variable", risk = "asBias"', neighbor = ""UncondNeighborhood' computes
the bias optimal influence curve for L2 differentiable parametric families with unknown k-
dimensional parameter (k > 1) where the underlying distribution is univariate.

L2deriv = ""UnivariateDistribution'', risk = '""asHampel'"', neighbor = '"UncondNeighborhood"
computes the optimally robust influence curve for L2 differentiable parametric families with
unknown one-dimensional parameter.

L2deriv = '"RealRandVariable", risk = ""asHampel'', neighbor = '""UncondNeighborhood' computes
the optimally robust influence curve for L2 differentiable parametric families with unknown
k-dimensional parameter (k > 1) where the underlying distribution is univariate; for total vari-
ation neighborhoods only is implemented for the case where there is a 1 x k transformation
trafo matrix.

L2deriv = ""UnivariateDistribution", risk = '"asAnscombe', neighbor = '"'UncondNeighborhood"
computes the optimally bias-robust influence curve to given ARE in the ideal model for L2
differentiable parametric families with unknown one-dimensional parameter.

L2deriv = '""RealRandVariable'', risk = '"asAnscombe'', neighbor = '"UncondNeighborhood"
computes the optimally bias-robust influence curve to given ARE in the ideal modelfor L2
differentiable parametric families with unknown k-dimensional parameter (¥ > 1) where the
underlying distribution is univariate; for total variation neighborhoods only is implemented
for the case where there is a 1 x k transformation trafo matrix.

L2deriv = ""UnivariateDistribution", risk = ""asGRisk", neighbor = '""UncondNeighborhood"
computes the optimally robust influence curve for L2 differentiable parametric families with
unknown one-dimensional parameter.

L2deriv = '"RealRand Variable", risk = "asGRisk'', neighbor = ""UncondNeighborhood' computes
the optimally robust influence curve for L2 differentiable parametric families with unknown
k-dimensional parameter (k¥ > 1) where the underlying distribution is univariate; for total vari-
ation neighborhoods only is implemented for the case where there is a 1 x k transformation
trafo matrix.

L2deriv = ""UnivariateDistribution'', risk = '""asUnOvShoot", neighbor = '"UncondNeighborhood"
computes the optimally robust influence curve for one-dimensional L2 differentiable paramet-
ric families and asymptotic under-/overshoot risk.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

getIntStand 45

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106-115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22: 201-223.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 7/4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfRobModel-class

getInfStand Generic Function for the Computation of the Standardizing Matrix

Description

Generic function for the computation of the standardizing matrix which takes care of the Fisher
consistency of the corresponding IC. This function is rarely called directly. It is used to compute
optimally robust ICs.

Usage

getInfStand(L2deriv, neighbor, biastype, ...)

S4 method for signature 'UnivariateDistribution,ContNeighborhood,BiasType'
getInfStand(L2deriv,
neighbor, biastype, clip, cent, trafo)

S4 method for signature
'UnivariateDistribution,TotalVarNeighborhood,BiasType'
getInfStand(L2deriv,

neighbor, biastype, clip, cent, trafo)

S4 method for signature 'RealRandVariable,UncondNeighborhood,BiasType'
getInfStand(L2deriv,
neighbor, biastype, Distr, A.comp, cent, trafo, w, ...)

S4 method for signature
'UnivariateDistribution,ContNeighborhood,onesidedBias'
getInfStand(L2deriv,

neighbor, biastype, clip, cent, trafo, ...)

46 getIntStand

S4 method for signature
'UnivariateDistribution,ContNeighborhood,asymmetricBias'
getInfStand(L2deriv,

neighbor, biastype, clip, cent, trafo)

Arguments
L2deriv L2-derivative of some L2-differentiable family of probability measures.
neighbor object of class "Neighborhood”.
biastype object of class "BiasType".
e additional parameters, in particular for expectation E.
clip optimal clipping bound.
cent optimal centering constant.
Distr object of class "Distribution”.
trafo matrix: transformation of the parameter.
A.comp matrix: indication which components of the standardizing matrix have to be
computed.
w object of class RobWeight; current weight.
Value

The standardizing matrix is computed.

Methods

L2deriv = ""UnivariateDistribution", neighbor = ''ContNeighborhood'', biastype = ''BiasType"
computes standardizing matrix for symmetric bias.

L2deriv = ""UnivariateDistribution'', neighbor = ''"Total VarNeighborhood", biastype = ''BiasType"'
computes standardizing matrix for symmetric bias.

L2deriv = '""RealRandVariable'', neighbor = '"'UncondNeighborhood", biastype = ''BiasType"
computes standardizing matrix for symmetric bias.

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood'', biastype = ''onesidedBias"
computes standardizing matrix for onesided bias.

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood'', biastype = '"asymmetricBias"
computes standardizing matrix for asymmetric bias.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics /4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

getInfV 47

See Also

ContIC-class, TotalVarIC-class

getInfV Generic Function for the Computation of the asymptotic Variance of a
Hampel type IC

Description

Generic function for the computation of the optimal clipping bound in case of infinitesimal robust
models. This function is rarely called directly. It is used to compute optimally robust ICs.

Usage
getInfV(L2deriv, neighbor, biastype, ...)
S4 method for signature 'UnivariateDistribution,ContNeighborhood,BiasType'
getInfV(L2deriv,

neighbor, biastype, clip, cent, stand)
S4 method for signature
'UnivariateDistribution,TotalVarNeighborhood,BiasType'
getInfV(L2deriv,

neighbor, biastype, clip, cent, stand)
S4 method for signature 'RealRandVariable,ContNeighborhood,BiasType'
getInfV(L2deriv,

neighbor, biastype, Distr, V.comp, cent, stand,

W, ...)
S4 method for signature 'RealRandVariable,TotalVarNeighborhood,BiasType
getInfV(L2deriv,

neighbor, biastype, Distr, V.comp, cent, stand,

W, ...)
S4 method for signature
'UnivariateDistribution,ContNeighborhood,onesidedBias'
getInfV(L2deriv,

neighbor, biastype, clip, cent, stand, ...)
S4 method for signature
'UnivariateDistribution,ContNeighborhood,asymmetricBias'
getInfV(L2deriv,

neighbor, biastype, clip, cent, stand)

Arguments
L2deriv L2-derivative of some L2-differentiable family of probability measures.
neighbor object of class "Neighborhood”.
biastype object of class "BiasType".

additional parameters, in particular for expectation E.

48 getL 1normL 2deriv
clip positive real: clipping bound
cent optimal centering constant.
stand standardizing matrix.
Distr standardizing matrix.
V. comp matrix: indication which components of the standardizing matrix have to be
computed.
w object of class RobWeight; current weight.
Value

The asymptotic variance of an ALE to IC of Hampel type is computed.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106-115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics /4(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ContIC-class, TotalVarIC-class

getLInormL2deriv Calculation of LI norm of L2derivative

Description

Methods to calculate the L1 norm of the L2derivative in a smooth parametric model.

Usage

getL1normL2deriv(L2deriv, ...)
S4 method for signature 'UnivariateDistribution'
getL1normL2deriv(L2deriv,

cent, ...)

S4 method for signature 'RealRandVariable'
getL1normL2deriv(L2deriv,
cent, stand, Distr, normtype, ...)

getL2normL 2deriv

Arguments
L2deriv L2derivative of the model
cent centering Lagrange Multiplier
stand standardizing Lagrange Multiplier
Distr distribution of the L2derivative
normtype object of class NormType; the norm under which we work
further arguments (not used at the moment)
Value

L1 norm of the L2derivative

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

#it

getlL2normL2deriv Calculation of L2 norm of L2derivative

Description

Function to calculate the L2 norm of the L2derivative in a smooth parametric model.

Usage
getL2normL2deriv(aFinfo, cent, ...)
Arguments
aFinfo trace of the Fisher information
cent centering
further arguments (not used at the moment)
Value

L2 norm of the L2derivative

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

#it

50 getMaxIneff

getMaxIneff getMaxIneff — computation of the maximal inefficiency of an IC

Description

computes the maximal inefficiency of an IC for the radius range [0,Inf).

Usage

getMaxIneff(IC, neighbor, biastype = symmetricBias(),
normtype = NormType(), z.start = NULL,
A.start = NULL, maxiter = 50,
tol = .Machine$double.eps”0.4,

warn = TRUE, verbose = NULL, ...)

Arguments

IC some IC of class IC

neighbor object of class Neighborhood; the neighborhood at which to compute the bias.

biastype a bias type of class BiasType

normtype a norm type of class NormType

z.start initial value for the centering constant.

A.start initial value for the standardizing matrix.

maxiter the maximum number of iterations.

tol the desired accuracy (convergence tolerance).

warn logical: print warnings.

verbose logical: if TRUE, some messages are printed

additional arguments to be passed to E

Value

The maximal inefficiency, i.e.; a number in [1,Inf).

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@fraunhofer.itwm.de>

References
Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications /7(1) 13-40.

getModifylC 51

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Submitted.
Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Pro-
cesses), Humboldt University, Berlin; also available under www.uni-bayreuth.de/departments/
math/org/mathe7/RIEDER/pubs/RR. pdf

Examples

N@ <- NormLocationFamily(mean=2, sd=3)

L_2 family + infinitesimal neighborhood

neighbor <- ContNeighborhood(radius = 0.5)

N@.Rob1 <- InfRobModel(center = N@, neighbor = neighbor)

OBRE solution (ARE 95%)

N@.ICA <- optIC(model = N@.Rob1, risk = asAnscombe(.95))

OMSE solution radius 0.5

N@.ICM <- optIC(model=N@.Rob1, risk=asMSE())

RMX solution

N@.ICR <- radiusMinimaxIC(L2Fam=N@, neighbor=neighbor,risk=asMSE())

getMaxIneff(N@.ICA,neighbor)
getMaxIneff(N@.ICM,neighbor)
getMaxIneff(N@.ICR,neighbor)

Don't run to reduce check time on CRAN
NOls <- NormLocationScaleFamily()

ICsc <- makeIC(list(sin,cos),Nols)
getMaxIneff(ICsc,neighbor)

getModifyIC Generic Function for the Computation of Functions for Slot modifyIC

Description

These function is used by internal computations and is rarely called directly.

Usage

getModifyIC(L2FamIC, neighbor, risk,...)
S4 method for signature 'L2ParamFamily,Neighborhood,asRisk'’
getModifyIC(L2FamIC,

neighbor, risk, ...)
S4 method for signature 'L2LocationFamily,UncondNeighborhood,asGRisk'
getModifyIC(L2FamIC,

neighbor, risk, ...)
S4 method for signature 'L2LocationFamily,UncondNeighborhood, fiUnOvShoot'
getModifyIC(L2FamIC,

neighbor, risk, ...)
S4 method for signature 'L2ScaleFamily,UncondNeighborhood,asGRisk'

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

52 getModifyIC

getModifyIC(L2FamIC,

neighbor, risk, ..., modifyICwarn = NULL)
S4 method for signature 'L2LocationScaleFamily,UncondNeighborhood,asGRisk!'
getModifyIC(L2FamIC,

neighbor, risk, ..., modifyICwarn = NULL)

scaleUpdateIC(neighbor,...)

S4 method for signature 'UncondNeighborhood'
scaleUpdateIC(neighbor, sdneu, sdalt, IC)

S4 method for signature 'ContNeighborhood'
scaleUpdateIC(neighbor, sdneu, sdalt, IC)

S4 method for signature 'TotalVarNeighborhood'
scaleUpdateIC(neighbor, sdneu, sdalt, IC)

Arguments

L2FamIC object of class L2ParamFamily.
neighbor object of class "Neighborhood”.
risk object of class "RiskType"”

further arguments to be passed over to optIC.
sdneu positive numeric of length one; the new scale.
sdalt positive numeric of length one; the new scale.
IC a Hampel-IC to be updated.

modifyICwarn logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

Details

This function is used for internal computations. By setting RobAStBaseOption("”all.verbose” = TRUE)
somewhere globally, the generated function modifyIC will generate calls to optIC with argument
verbose=TRUE.

Value

getmodifyIC Function for slot modifyIC of ICs
scaleUpdateIC a list to be digested in corresponding methods of getmodifyIC by generateIC

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

getRadius 53

See Also

optIC, IC-class

getRadius Computation of the Optimal Radius for Given Clipping Bound

Description

The usual robust optimality problem for given asGRisk searches the optimal clipping height b of a
Hampel-type IC to given radius of the neighborhood. Instead, again for given asGRisk and for given
Hampel-Type IC with given clipping height b we may determine the radius of the neighborhood for
which it is optimal in the sense of the first sentence.

Usage

getRadius(IC, risk, neighbor, L2Fam)

Arguments
IC an IC of class "HampIC".
risk object of class "RiskType".
neighbor object of class "Neighborhood”.
L2Fam object of class "L2FamParameter”. Can be missing; in this case it is constructed
from slot CalllL2Fam of IC.
Value

The optimal radius is computed.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statis-
tics & Decisions 22, 201-223.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 74(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

54

See Also

getReq

ContIC-class, TotalvVarIC-class

Examples

N <- NormLocationFamily(mean=0, sd=1)

nb <- ContNeighborhood(); ri <- asMSE()

radIC <- radiusMinimaxIC(L2Fam=N, neighbor=nb, risk=ri, loRad=0.1, upRad=0.5)
getRadius(radIC, L2Fam=N, neighbor=nb, risk=ri)

taken from script NormalScaleModel.R in folder scripts
N@ <- NormScaleFamily(mean=0, sd=1)
(N@.IC7 <- radiusMinimaxIC(L2Fam=N@, neighbor=nb, risk=ri, loRad=0, upRad=Inf))

#it

getRadius(N@.IC7, risk=asMSE(), neighbor=nb, L2Fam=N@)
getRadius(N@.IC7, risk=asL4(), neighbor=nb, L2Fam=N@)

getReq

getReq — computation of the radius interval where IC1 is better than
I1C2.

Description

(tries to) compute a radius interval where IC1 is better than IC2, respectively the number of (worst-
case) outliers interval where IC1 is better than IC2.

Usage

getReq(Risk,neighbor,IC1,IC2,n=1,upper=15, radOrOutl=c("radius”,"Outlier"”), ...

Arguments
Risk

neighbor

IC1
IC2

n

upper

radoroutl

an object of class "asGRisk" — the risk at which IC1 is better than IC2.

object of class "Neighborhood”; the neighborhood at which to compute the
bias.

some IC of class "IC"
some IC of class "IC"

the sample size; by default set to 1; then the radius interval refers to starting
radii in the shrinking neighborhood setting of Rieder[94]. Otherwise the radius
interval is scaled down accordingly.

the upper bound of the radius interval in which to search

a character string specifying whether an interval of radii or a number of outliers
is returned; must be one of "radius" (default) and "Outlier".

further arguments to be passed on E().

getReq 55

Value

The radius interval (given by its endpoints) where IC1 is better than IC2 according to the risk. In
case IC2 is better than IC1 as to both variance and bias, the return value is NA.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@fraunhofer.itwm.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Examples

N@ <- NormLocationFamily(mean=2, sd=3)

L_2 family + infinitesimal neighborhood

neighbor <- ContNeighborhood(radius = 0.5)

N@.Rob1 <- InfRobModel(center = N@, neighbor = neighbor)
OBRE solution (ARE 95%)

N@.ICA <- optIC(model = N@.Rob1, risk = asAnscombe(.95))
MSE solution

N@.ICM <- optIC(model=N@.Rob1, risk=asMSE())

getReq(asMSE(),neighbor,N@.ICA,N@.ICM,n=1)
getReq(asMSE(),neighbor,N@.ICA,N@.ICM,n=30)

Don't test to reduce check time on CRAN

RMX solution
N@.ICR <- radiusMinimaxIC(L2Fam=N@, neighbor=neighbor,risk=asMSE())

getReq(asL1(),neighbor,N@.ICA,N@.ICM, n=30)
getReq(asL4(),neighbor,N@.ICA,N0@.ICM,n=30)
getReq(asMSE(),neighbor,N@.ICA,N@.ICR,n=30)
getReq(asL1(),neighbor,N@.ICA,N0@.ICR,n=30)
getReq(asL4(),neighbor,N@.ICA,N0@.ICR,n=30)
getReq(asMSE(),neighbor,N@.ICM,N@.ICR,n=30)

when to use MAD and when Qn

for Qn, see C. Croux, P. Rousseeuw (1993). Alternatives to the Median

#it Absolute Deviation, JASA 88(424):1273-1283

L2M <- NormScaleFamily()

IC.mad <- makeIC(function(x)sign(abs(x)-gnorm(.75)),L2M)

d.gn <- (2*.5%gnorm(5/8))*-1

IC.gn <- makeIC(function(x) d.gn*(1/4 - pnorm(x+1/d.gn) + pnorm(x-1/d.gn)), L2M)
getReq(asMSE(), neighbor, IC.mad, IC.qgn)

getReq(asMSE(), neighbor, IC.mad, IC.gn, radOrQutl = "Qutlier”, n = 30)

=> MAD is better once r > 0.5144 (i.e. for more than 2 outliers for n = 30)

56 getRiskIC

getRiskFctBV-methods Methods for Function getRiskFctBV in Package ‘ROptEst’

Description

getRiskFctBV for a given object of S4 class asGRisk returns a function in bias and variance to
compute the asymptotic risk.

Methods

getRiskFctBV signature(risk = "asL1”, biastype = "ANY"): returns a function with argu-
ments bias and variance to compute the asymptotic absolute (L.1) error for a given ALE at
a situation where it has bias bias (including the radius!) and variance variance.

getRiskFctBV signature(risk = "aslL4"”, biastype = "ANY"): returns a function with argu-
ments bias and variance to compute the asymptotic L4 error for a given ALE at a situation
where it has bias bias (including the radius!) and variance variance.

Examples

myrisk <- asMSE()
getRiskFctBV(myrisk)

getRiskIC Generic function for the computation of a risk for an IC

Description

Generic function for the computation of a risk for an IC.

Usage

getRiskIC(IC, risk, neighbor, L2Fam, ...)

S4 method for signature 'HampIC,asCov,missing,missing’
getRiskIC(IC, risk, withCheck= TRUE, ...)

S4 method for signature 'HampIC,asCov,missing,L2ParamFamily’
getRiskIC(IC, risk, L2Fam, withCheck= TRUE, ...)

S4 method for signature 'TotalVarIC,asCov,missing,L2ParamFamily’
getRiskIC(IC, risk, L2Fam, withCheck = TRUE, ...)

getRiskIC 57

Arguments
IC object of class "InfluenceCurve”
risk object of class "RiskType".
neighbor object of class "Neighborhood”; missing in the methods described here.
additional parameters to be passed to E
L2Fam object of class "L2ParamFamily".
withCheck logical: should a call to checkIC be done to check accuracy (defaults to TRUE;
ignored if nothing is computed but simply a slot is read out).
Details

To make sure that the results are valid, it is recommended to include an additional check of the IC
properties of IC using checkIC.

Value

The risk of an IC is computed.

Methods
IC = "HampIC", risk = ""asCov"', neighbor = "missing"', L2Fam = ""'missing'' asymptotic covari-
ance of IC read off from corresp. Risks slot.

IC = "HampIC"', risk = "asCov"', neighbor = '""missing'’', L2Fam = "L2ParamFamily'' asymptotic
covariance of IC under L2Fam read off from corresp. Risks slot.

IC = "TotalVarIC"', risk = ""asCov", neighbor = ""missing'', L2Fam = "L2ParamFamily' asymptotic
covariance of IC read off from corresp. Risks slot, resp. if this is NULL calculates it via
getInfV.

Note

This generic function is still under construction.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269—
278.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk of M-estimators on
Neighborhoods.

58 getStartIC-methods

See Also

getRiskIC, InfRobModel-class

Examples
B <- BinomFamily(size = 25, prob = 0.25)
classical optimal IC

ICO <- optIC(model = B, risk = asCov())
getRiskIC(IC@, asCov())

getStartIC-methods Methods for Function getStartIC in Package ‘ROptEst’

Description

getStartIC computes the optimally-robust IC to be used as argument ICstart in kStepEstimator.

Usage
getStartIC(model, risk, ...)
S4 method for signature 'ANY,ANY'
getStartIC(model, risk, ...)

S4 method for signature 'L2ParamFamily,asGRisk'
getStartIC(model, risk, ...,
withEvalAsVar = TRUE, withMakeIC = FALSE, ..debug=FALSE,
modifyICwarn = NULL, diagnostic = FALSE)
S4 method for signature 'L2ParamFamily,asBias'
getStartIC(model, risk, ..., withMakeIC = FALSE,
. .debug=FALSE, modifyICwarn = NULL, diagnostic = FALSE)
S4 method for signature 'L2ParamFamily,asCov'
getStartIC(model, risk, ..., withMakeIC = FALSE,
. .debug=FALSE)
S4 method for signature 'L2ParamFamily,trAsCov'
getStartIC(model, risk, ..., withMakeIC = FALSE,
. .debug=FALSE)
S4 method for signature 'L2ParamFamily,asAnscombe'’
getStartIC(model, risk, ...,
withEvalAsVar = TRUE, withMakeIC = FALSE, ..debug=FALSE,
modifyICwarn = NULL, diagnostic = FALSE)
S4 method for signature 'L2LocationFamily,interpolRisk'

getStartIC(model, risk, ...)
S4 method for signature 'L2ScaleFamily,interpolRisk'
getStartIC(model, risk, ...)

S4 method for signature 'L2LocationScaleFamily,interpolRisk'
getStartIC(model, risk, ...)

getStartIC-methods

Arguments

model

risk

withEvalAsVar

withMakeIC
. .debug

modifyICwarn

diagnostic

Details

59

normtype of class NormType
normtype of class NormType
further arguments to be passed to specific methods.

logical (of length 1): if TRUE, risks based on covariances are to be evaluated
(default), otherwise just a call is returned.

logical; if TRUE the IC is passed through makeIC before return.
logical; if TRUE information for debugging is issued.

logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

logical; if TRUE, diagnostic information on the performed integrations is gath-
ered and shipped out as an attribute diagnostic of the return value of the esti-
mators.

getStartIC is used internally in functions robest and roptest to compute the optimally robust
influence function according to the arguments given to them.

Value

An IC of type HampIC.

Methods

getStartIC signature(model = "ANY", risk = "ANY"): issue that this is not yet implemented.

getStartIC signature(model = "L2ParamFamily”, risk = "asGRisk"): depending on the
values of argument eps (to be passed on through the ... argument) computes the optimally
robust influence function on the fly via calls to optIC or radiusMinimaxIC.

getStartIC signature(model = "L2ParamFamily”, risk = "asBias"): computes the most-
bias-robust influence function on the fly via calls to optIC.

getStartIC signature(model = "L2ParamFamily”, risk = "asCov"): computes the classi-
cally optimal influence function on the fly via calls to optIC.

getStartIC signature(model = "L2ParamFamily”, risk = "trAsCov"): computes the clas-
sically optimal influence function on the fly via calls to optIC.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

robest,optIC, radiusMinimaxIC

60 inputGenerators

inputGenerators Input generating functions for function 'robest’

Description

Generating functions to generate structured input for function robest.

Usage

genkStepCtrl(uselLast = getRobAStBaseOption("kStepUselLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdatelnKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"),
scalename = "scale"”, withLogScale = TRUE,
withEvalAsVar = NULL, withMakeIC = FALSE,
E.arglist = NULL)
genstartCtrl(initial.est = NULL, initial.est.ArglList = NULL,
startPar = NULL, distance = CvMDist, withMDE = NULL,
E.arglist = NULL)
gennbCtrl(neighbor = ContNeighborhood(), eps, eps.lower, eps.upper)
genstartICCtrl(withMakeIC = FALSE, withEvalAsVar = NULL, modifyICwarn = NULL,
E.arglist = NULL)

Arguments
uselLast which parameter estimate (initial estimate or k-step estimate) shall be used to
fill the slots pIC, asvar and asbias of the return value.
withUpdateInKer

if there is a non-trivial trafo in the model with matrix D, shall the parameter be
updated on ker(D)?

IC.UpdatelInKer if there is a non-trivial trafo in the model with matrix D, the IC to be used for
this; if NULL the result of getboundedIC(L2Fam,D) is taken; this IC will then be
projected onto ker(D).

withICList logical: shall slot ICList of return value be filled?
withPICList logical: shall slot pICList of return value be filled?
scalename character: name of the respective scale component.

withLogScale logical; shall a scale component (if existing and found with name scalename) be
computed on log-scale and backtransformed afterwards? This avoids crossing
0.

withEvalAsVar logical or NULL: if TRUE (default), tells R to evaluate the asymptotic variance or
if FALSE just to produces a call to do so. If withEvalAsVar is NULL (default),
the content of slot .withEvalAsVar in the L2 family is used instead to take this
decision.

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

inputGenerators 61

modifyICwarn logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

initial.est initial estimate for unknown parameter. If missing minimum distance estimator
is computed.

initial.est.ArglList
a list of arguments to be given to argument start if the latter is a function;
this list by default already starts with two unnamed items, the sample x, and the
model L2Fam.

startPar initial information used by optimize resp. optim; i.e; if (total) parameter
is of length 1, startPar is a search interval, else it is an initial parameter
value; if NULL slot startPar of ParamFamily is used to produce it; in the
multivariate case, startPar may also be of class Estimate, in which case slot
untransformed.estimate is used.

distance distance function

withMDE logical or NULL: Shall a minimum distance estimator be used as starting esti-
mator in roptest() / robest()—in addition to the function given in argument
startPar of the current function or, if the argument is NULL, in slot startPar
of the L2 family? If NULL (default) the content of slot . withMDE in the L2 family
is used instead to take this decision.

neighbor object of class "UncondNeighborhood”
eps positive real (0 < eps <= 0.5): amount of gross errors. See details below.
eps.lower positive real (0 <= eps. lower <= eps.upper): lower bound for the amount of

gross errors. See details below.

eps.upper positive real (eps.lower <= eps.upper <= 0.5): upper bound for the amount
of gross errors. See details below.

E.arglList NULL (default) or a list of arguments to be passed to calls to E; appears (and may
vary from instance to instance) as argument in the generators genkStepCtrl,
genstartCtrl genstartICCtrl. The onein genstartCtrl isused forMDEstimator
in case initial.est is NULL only. Arguments for calls to E in an explicit func-
tion argument initial.est should be entered to argument initial.est.ArglList.
Potential clashes with arguments of the same name in ... are resolved by in-
serting the items of argument list E.arglist as named items to the argument
lists, so in case of collisions the item of E.arglList overwrites the existing one
from

Details
All these functions bundle their respective input to (reusable) lists which can be used as arguments
in function robest. For details, see this function.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

leastFavorableRadius

See Also

roblox, L2ParamFamily-class UncondNeighborhood-class, RiskType-class

Examples

genkStepCtrl()
genstartICCtrl()
genstartCtrl()
gennbCtrl()

leastFavorableRadius Generic Function for the Computation of Least Favorable Radii

Description

Generic function for the computation of least favorable radii.

Usage

leastFavorableRadius(L2Fam, neighbor, risk, ...)

S4 method for signature 'L2ParamFamily,UncondNeighborhood,asGRisk'
leastFavorableRadius(

Arguments

L2Fam
neighbor
risk
upRad

rho
z.start
A.start
upper
OptOrlter

L2Fam, neighbor, risk, rho, upRad = 1,
z.start = NULL, A.start = NULL, upper = 100,
OptOrIter = "iterate”, maxiter = 100,
tol = .Machine$double.eps”@.4, warn = FALSE, verbose = NULL, ...)

L2-differentiable family of probability measures.

object of class "Neighborhood”.

object of class "RiskType".

the upper end point of the radius interval to be searched.
The considered radius interval is: [rp,r/p] with p € (0, 1).
initial value for the centering constant.

initial value for the standardizing matrix.

upper bound for the optimal clipping bound.

character; which method to be used for determining Lagrange multipliers A and

a: if (partially) matched to "optimize"”, getLagrangeMultByOptim is used;

otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getlLagrangeMultByIter is used. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”

we use only one (inner) iteration, if matched to "doubleiterate” we use up to

Maxiter (inner) iterations.

leastFavorableRadius 63

maxiter the maximum number of iterations

tol the desired accuracy (convergence tolerance).
warn logical: print warnings.

verbose logical: if TRUE, some messages are printed

additional arguments to be passed to E

Value

The least favorable radius and the corresponding inefficiency are computed.

Methods

L2Fam = "L2ParamFamily'', neighbor = '""UncondNeighborhood', risk = ""asGRisk' computation
of the least favorable radius.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications /7(1) 13-40.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Submitted.
Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Pro-
cesses), Humboldt University, Berlin; also available under www. uni-bayreuth.de/departments/
math/org/mathe7/RIEDER/pubs/RR. pdf

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 74(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

radiusMinimaxIC

Examples

N <- NormLocationFamily(mean=0, sd=1)
leastFavorableRadius(L2Fam=N, neighbor=ContNeighborhood(),
risk=asMSE(), rho=0.5)

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

64 lowerCaseRadius

lowerCaseRadius Computation of the lower case radius

Description

The lower case radius is computed; confer Subsection 2.1.2 in Kohl (2005) and formula (4.5) in
Ruckdeschel (2005).

Usage

lowerCaseRadius(L2Fam, neighbor, risk, biastype, ...)
Arguments

L2Fam L2 differentiable parametric family

neighbor object of class "Neighborhood”

risk object of class "RiskType”

biastype object of class "BiasType"

additional parameters

Value

lower case radius

Methods

L2Fam = "L2ParamFamily'', neighbor = '""ContNeighborhood", risk = "asMSE", biastype = "'BiasType"
lower case radius for risk "asMSE" in case of "ContNeighborhood"” for symmetric bias.

L2Fam = "L2ParamFamily'', neighbor = ""TotalVarNeighborhood', risk = ""asMSE", biastype = ''BiasType"
lower case radius for risk "asMSE" in case of "TotalVarNeighborhood"; (argument biastype
is just for signature reasons).

L2Fam = "L2ParamFamily'', neighbor = ""ContNeighborhood', risk = ""asMSE", biastype = ''onesidedBias"
lower case radius for risk "asMSE" in case of "ContNeighborhood"” for onesided bias.

L2Fam = "L2ParamFamily'', neighbor = '"ContNeighborhood', risk = "'asMSE", biastype = '"asymmetricBias"
lower case radius for risk "asMSE" in case of "ContNeighborhood" for asymmetric bias.

L2Fam = "UnivariateDistribution'', neighbor = '"ContNeighborhood'', risk = '""asMSE'"', biastype = "onesidedBias'"
used only internally; trick to be able to call lower case radius from within minmax bias solver

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

minmaxBias 65

References

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 74(1), 105-131.
See Also

L2ParamFamily-class, Neighborhood-class

Examples

lowerCaseRadius(BinomFamily(size = 10), ContNeighborhood(), asMSE())
lowerCaseRadius(BinomFamily(size = 10), TotalVarNeighborhood(), asMSE())

minmaxBias Generic Function for the Computation of Bias-Optimally Robust ICs

Description

Generic function for the computation of bias-optimally robust ICs in case of infinitesimal robust
models. This function is rarely called directly.

Usage

minmaxBias(L2deriv, neighbor, biastype, ...)

S4 method for signature 'UnivariateDistribution,ContNeighborhood,BiasType'
minmaxBias(L2deriv,
neighbor, biastype, symm, trafo, maxiter, tol, warn, Finfo, verbose = NULL)

S4 method for signature
'UnivariateDistribution,ContNeighborhood,asymmetricBias'
minmaxBias(
L2deriv, neighbor, biastype, symm, trafo, maxiter, tol, warn, Finfo, verbose

S4 method for signature
'UnivariateDistribution,ContNeighborhood,onesidedBias'
minmaxBias(
L2deriv, neighbor, biastype, symm, trafo, maxiter, tol, warn, Finfo, verbose

S4 method for signature
'UnivariateDistribution,TotalVarNeighborhood,BiasType'
minmaxBias(
L2deriv, neighbor, biastype, symm, trafo, maxiter, tol, warn, Finfo, verbose

S4 method for signature 'RealRandVariable,ContNeighborhood,BiasType'

NULL)

NULL)

NULL)

66 minmaxBias

minmaxBias(L2deriv,
neighbor, biastype, normtype, Distr, z.start, A.start, z.comp, A.comp,
Finfo, trafo, maxiter, tol, verbose = NULL, ...)

S4 method for signature 'RealRandVariable,TotalVarNeighborhood,BiasType'

minmaxBias(L2deriv,
neighbor, biastype, normtype, Distr, z.start, A.start, z.comp, A.comp,
Finfo, trafo, maxiter, tol, verbose = NULL, ...)

Arguments

L2deriv L2-derivative of some L2-differentiable family of probability measures.

neighbor object of class "Neighborhood”.

biastype object of class "BiasType".

normtype object of class "NormType".

additional arguments to be passed to E

Distr object of class "Distribution”.

symm logical: indicating symmetry of L2deriv.

z.start initial value for the centering constant.

A.start initial value for the standardizing matrix.

Z.comp logical indicator which indices need to be computed and which are 0 due to
symmetry.

A.comp matrix of logical indicator which indices need to be computed and which are
0 due to symmetry.

trafo matrix: transformation of the parameter.

maxiter the maximum number of iterations.

tol the desired accuracy (convergence tolerance).

warn logical: print warnings.

Finfo Fisher information matrix.

verbose logical: if TRUE, some messages are printed

Value

The bias-optimally robust IC is computed.

Methods

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood', biastype = ''BiasType"
computes the bias optimal influence curve for symmetric bias for L2 differentiable parametric
families with unknown one-dimensional parameter.

L2deriv = ""UnivariateDistribution'', neighbor = ''ContNeighborhood'', biastype = ''asymmetricBias"
computes the bias optimal influence curve for asymmetric bias for L2 differentiable parametric
families with unknown one-dimensional parameter.

optlC 67

L2deriv = ""UnivariateDistribution", neighbor = '"TotalVarNeighborhood'', biastype = ''BiasType"
computes the bias optimal influence curve for symmetric bias for L2 differentiable parametric
families with unknown one-dimensional parameter.

L2deriv = '"RealRand Variable", neighbor = ''ContNeighborhood'', biastype = '"BiasType'' computes
the bias optimal influence curve for symmetric bias for L2 differentiable parametric families
with unknown k-dimensional parameter (K > 1) where the underlying distribution is univari-
ate.

L2deriv = '"RealRand Variable"', neighbor = ""TotalNeighborhood'', biastype = ''BiasType'' computes
the bias optimal influence curve for symmetric bias for L2 differentiable parametric families in
a setting where we are interested in a p = 1 dimensional aspect of an unknown k-dimensional
parameter (k > 1) where the underlying distribution is univariate.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods
in Statistics 74(1), 105-131.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfRobModel-class

optIC Generic function for the computation of optimally robust ICs

Description

Generic function for the computation of optimally robust ICs.

Usage

optIC(model, risk, ...)

S4 method for signature 'InfRobModel,asRisk'
optIC(model, risk, z.start = NULL, A.start = NULL,
upper = 1e4, lower = le-4,
OptOrIter = "iterate”, maxiter = 50,
tol = .Machine$double.eps”@.4, warn = TRUE,
noLow = FALSE, verbose = NULL, ...,

68

optlC

.withEvalAsVar = TRUE, withMakeIC = FALSE,
returnNAifProblem = FALSE, modifyICwarn = NULL)

S4 method for signature 'InfRobModel,asUnOvShoot'
optIC(model, risk, upper = Te4,

lower = 1e-4, maxiter = 50,

tol = .Machine$double.eps”0.4,

withMakeIC = FALSE, warn = TRUE,
verbose = NULL, modifyICwarn = NULL, ...)

S4 method for signature 'FixRobModel, fiUnOvShoot'
optIC(model, risk, sampleSize, upper = 1e4, lower = le-4,

Arguments

model

risk

z.start
A.start
upper
lower
maxiter
tol
warn
sampleSize
Algo
cont
noLow

OptOrlter

verbose

.withEvalAsVar

maxiter = 50, tol = .Machine$double.eps”*0.4,
withMakeIC = FALSE, warn = TRUE,
Algo = "A", cont = "left",
verbose = NULL, modifyICwarn = NULL, ...)

probability model.
object of class "RiskType".

additional arguments; e.g. are passed on to E via e.g. makeIC in case of all signa-
ture, and, in addition, to getInfRobIC in case of signature(”"InfRobModel”, "asRisk").

initial value for the centering constant.
initial value for the standardizing matrix.
upper bound for the optimal clipping bound.
lower bound for the optimal clipping bound.
the maximum number of iterations.

the desired accuracy (convergence tolerance).
logical: print warnings.

integer: sample size.

"A" or "B".

"left" or "right".

logical: is lower case to be computed?

character; which method to be used for determining Lagrange multipliers A and

a: if (partially) matched to "optimize"”, getLagrangeMultByOptim is used;

otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getlLagrangeMultByIter is used. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”

we use only one (inner) iteration, if matched to "doubleiterate” we use up to

Maxiter (inner) iterations.

logical: if TRUE, some messages are printed.

logical (of length 1): if TRUE, risks based on covariances are to be evaluated
(default), otherwise just a call is returned.

optIC 69

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

returnNAifProblem
logical (of length 1): if TRUE (not the default), in case of convergence problems
in the algorithm, returns NA.

modifyICwarn logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

Details

In case of the finite-sample risk "fiUnOvShoot"” one can choose between two algorithms for the
computation of this risk where the least favorable contamination is assumed to be left or right of
some bound. For more details we refer to Section 11.3 of Kohl (2005).

Value

Some optimally robust IC is computed.

Methods

model = "InfRobModel", risk = "asRisk'' computes optimally robust influence curve for robust
models with infinitesimal neighborhoods and various asymptotic risks.

model = "InfRobModel", risk = ""asUnOvShoot' computes optimally robust influence curve for
robust models with infinitesimal neighborhoods and asymptotic under-/overshoot risk.

model = "FixRobModel"', risk = ""fiUnOvShoot'" computes optimally robust influence curve for
robust models with fixed neighborhoods and finite-sample under-/overshoot risk.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269—
278.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Kohl, M. and Ruckdeschel, P. (2010): R package distrMod: Object-Oriented Implementation of
Probability Models. J. Statist. Softw. 35(10), 1-27

Kohl, M. and Ruckdeschel, P., and Rieder, H. (2010): Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Stat. Methods Appl., 19, 333-354.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications 17(1) 13-40.

70 optRisk

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Appeared
as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes),
Humboldt University, Berlin; also available under www.uni-bayreuth.de/departments/math/
org/mathe7/RIEDER/pubs/RR.pdf

See Also

InfluenceCurve-class, RiskType-class

Examples

B <- BinomFamily(size = 25, prob = 0.25)

classical optimal IC

ICO <- optIC(model = B, risk = asCov())
plot(ICO) # plot IC

checkIC(ICQ, B)

optRisk Generic function for the computation of the minimal risk

Description

Generic function for the computation of the optimal (i.e., minimal) risk for a probability model.

Usage

optRisk(model, risk, ...)

S4 method for signature 'L2ParamFamily,asCov'
optRisk(model, risk)

S4 method for signature 'InfRobModel,asRisk'
optRisk(model, risk, z.start = NULL,
A.start = NULL, upper = 1e4, maxiter = 50,
tol = .Machine$double.eps*@.4, warn = TRUE, noLow = FALSE)

S4 method for signature 'FixRobModel, fiUnOvShoot'

optRisk(model, risk, sampleSize,
upper = le4, maxiter = 50, tol = .Machine$double.eps*0.4,
warn = TRUE, Algo = "A", cont = "left")

Arguments
model probability model
risk object of class RiskType

additional parameters

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

optRisk 71

z.start initial value for the centering constant.

A.start initial value for the standardizing matrix.

upper upper bound for the optimal clipping bound.

maxiter the maximum number of iterations

tol the desired accuracy (convergence tolerance).

warn logical: print warnings.

sampleSize integer: sample size.

Algo "A" or "B".

cont "left" or "right".

nolLow logical: is lower case to be computed?
Details

In case of the finite-sample risk "fiUnOvShoot"” one can choose between two algorithms for the
computation of this risk where the least favorable contamination is assumed to be left or right of
some bound. For more details we refer to Section 11.3 of Kohl (2005).

Value

The minimal risk is computed.

Methods

model = "L2ParamFamily", risk = "asCov'' asymptotic covariance of L2 differentiable param-
eteric family.

model = "InfRobModel"", risk = "asRisk'' asymptotic risk of a infinitesimal robust model.

model = "FixRobModel"', risk = ""fiUnOvShoot'" finite-sample under-/overshoot risk of a robust
model with fixed neighborhood.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269—
278.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106—115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

RiskType-class

72 ORobEstimate-class

Examples

optRisk(model = NormLocationScaleFamily(), risk = asCov())

ORobEstimate-class ORobEstimate-class.

Description

Class of optimally robust asymptotically linear estimates.

Objects from the Class

Objects can be created by calls of the form new("ORobEstimate”, ...). More frequently they are
created as results of functions roptest, MBREstimator, RMXEstimator, or OMSEstimator.

Slots

name Object of class "character”: name of the estimator. [*]
estimate Object of class "ANY": estimate. [*]
estimate.call Object of class "call”: call by which estimate was produced. [*]

samplesize object of class "numeric” — the samplesize (only complete cases are counted) at
which the estimate was evaluated. [*]

completecases: object of class "logical” — complete cases at which the estimate was evaluated.
[*]

asvar objectof class "OptionalNumericOrMatrix"” which may contain the asymptotic (co)variance
of the estimator. [*]

asbias Optional object of class "numeric”: asymptotic bias. [*¥]
pIC Optional object of class InfluenceCurve: influence curve. [¥]

nuis.idx object of class "OptionalNumeric"”: indices of estimate belonging to the nuisance
part. [*]

fixed object of class "OptionalNumeric”: the fixed and known part of the parameter. [*]
steps Object of class "integer": number of steps. [*]

Infos object of class "matrix” with two columns named method and message: additional infor-
mations. [*]

trafo object of class "1ist": a list with components fct and mat (see below). [*]

untransformed.estimate: Object of class "ANY": untransformed estimate. [*]

untransformed.asvar: objectof class "OptionalNumericOrMatrix” which may contain the asymp-

totic (co)variance of the untransformed estimator. [*]

pICList Optional object of class "OptionalpICList": the list of (intermediate) (partial) influence
curves used; only filled when called from ORobEstimator with argument withPICList==TRUE.
[*]

ORobEstimate-class 73

ICList Optional object of class "OptionalpICList"”: the list of (intermediate) (total) influence
curves used; only filled when called from ORobEstimator with argument withICList==TRUE.
[*]

start The argument start — of class "StartClass"” used in call to ORobEstimator. [¥]

startval Objectof classmatrix: the starting value with which the k-step Estimator was initialized
(in p-space / transformed). [*]

ustartval Object of class matrix: the starting value with which the k-step Estimator was initial-
ized (in k-space / untransformed). [*]

ksteps Object of class "OptionalMatrix"”: the intermediate estimates (in p-space) for the param-
eter; only filled when called from ORobEstimator. [*¥]

uksteps Object of class "OptionalMatrix”: the intermediate estimates (in k-space) for the pa-
rameter; only filled when called from ORobEstimator. [*]

robestcall Object of class "OptionalCall”, i.e., a call or NULL: only filled when called from
roptest. [*¥]

roptestcall Object of class "OptionalCall”,i.e., a call or NULL: only filled when called from
roptest, MBREstimator, RMXEstimator, or OMSEstimator.

Extends

Class "kStepEstimate”, directly.
Class "ALEstimate” and class "Estimate”, by class "kStepstimate”. All slots and methods
marked with [*] are inherited.

Methods
steps signature(object = "ORobEstimate"): accessor function for slot steps. [*]
ksteps signature(object = "ORobEstimate"”): accessor function for slot ksteps; has addi-

tional argument diff, defaulting to FALSE; if the latter is TRUE, the starting value from slot
startval is prepended as first column; otherwise we return the corresponding increments in
each step. [¥]

uksteps signature(object = "ORobEstimate"): accessor function for slot uksteps; has addi-
tional argument diff, defaulting to FALSE; if the latter is TRUE, the starting value from slot
ustartval is prepended as first column; otherwise we return the corresponding increments in
each step. [¥]

start signature(object = "ORobEstimate”): accessor function for slot start. [*]
startval signature(object = "ORobEstimate"): accessor function for slot startval. [*]
ustartval signature(object = "ORobEstimate"): accessor function for slot startval. [*]

ICList signature(object = "ORobEstimate"): accessor function for slot ICList. [*]
pICList signature(object = "ORobEstimate"): accessor function for slot pICList. [*]

robestCall signature(object = "ORobEstimate”): accessor function for slot robestCall. [*]
roptestCall signature(object = "ORobEstimate”): accessor function for slot roptestCall.
timings signature(object = "ORobEstimate"): accessor function for attribute "timings".

with additional argument wi thKStep defaulting to FALSE; in case argument withKStep==TRUE,
the return value is a list with items timings and kStepTimings combining the two timing in-
formaion attributes.

74 radiusMinimaxIC

kSteptimings signature(object = "ORobEstimate”): accessor function for attribute "timings"”.

show signature(object = "ORobEstimate"): a show method; [*]

Author(s)

Peter Ruckdeschel <Peter.Ruckdeschel@uni-oldenburg.de>

See Also

ALEstimate-class, kStepEstimate-class

plot-methods Methods for Function plot in Package ‘ROptEst’

Description

plot-methods

Details

S4-Method plot for for signature IC,missing has been enhanced compared to its original defini-
tion in RobAStBase so that if argument MBRB is NA, it is filled automatically by a call to optIC which
computes the MBR-IC on the fly. To this end, there is an additional argument n.MBR defaulting to
10000 to determine the number of evaluation points. points.

Examples

N <- NormLocationScaleFamily(mean=0, sd=1)
IC <- optIC(model = N, risk = asCov())
Don't run to reduce check time on CRAN

plot(IC, main = TRUE, panel.first= grid(),
col = "blue”, cex.main = 2, cex.inner = 0.6,
withMBR=TRUE)

radiusMinimaxIC Generic function for the computation of the radius minimax IC

Description

Generic function for the computation of the radius minimax IC.

radiusMinimaxIC 75

Usage

radiusMinimaxIC(L2Fam, neighbor, risk, ...)

S4 method for signature 'L2ParamFamily,UncondNeighborhood,asGRisk'
radiusMinimaxIC(
L2Fam, neighbor, risk, loRad = @, upRad = Inf, z.start = NULL, A.start = NULL,

upper = NULL, lower = NULL, OptOrIter = "iterate”,

maxiter = 50, tol = .Machine$double.eps”9.4,

warn = FALSE, verbose = NULL, loRad@ = 1e-3, ...,

returnNAifProblem = FALSE, loRad.s = NULL, upRad.s = NULL,

modifyICwarn = NULL)

Arguments

L2Fam L2-differentiable family of probability measures.

neighbor object of class "Neighborhood”.

risk object of class "RiskType".

loRad the lower end point of the interval to be searched in the inner optimization (for
the least favorable situation to the user-guessed radius).

upRad the upper end point of the interval to be searched in the inner optimization (for
the least favorable situation to the user-guessed radius).

z.start initial value for the centering constant.

A.start initial value for the standardizing matrix.

upper upper bound for the optimal clipping bound.

lower lower bound for the optimal clipping bound.

OptOrlter character; which method to be used for determining Lagrange multipliers A and
a: if (partially) matched to "optimize"”, getLagrangeMultByOptim is used;
otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getLagrangeMultByIter isused. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”
we use only one (inner) iteration, if matched to "doubleiterate” we use up to
Maxiter (inner) iterations.

maxiter the maximum number of iterations

tol the desired accuracy (convergence tolerance).

warn logical: print warnings.

verbose logical: if TRUE, some messages are printed

1oRado for numerical reasons: the effective lower bound for the zero search; internally

set to max (1oRad, 1oRad®).

e further arguments to be passed on to getInfRobIC

returnNAifProblem
logical (of length 1): if TRUE (not the default), in case of convergence problems
in the algorithm, returns NA.

loRad.s the lower end point of the interval to be searched in the outer optimization (for
the user-guessed radius); if NULL (default) set to 1oRad in the algorithm.

76 radiusMinimaxIC

upRad.s the upper end point of the interval to be searched in the outer optimization (for
the user-guessed radius); if NULL (default) set to upRad in the algorithm.

modifyICwarn logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

Details

In case the neighborhood radius is unknown, Rieder et al. (2001, 2008) and Kohl (2005) show that
there is nevertheless a way to compute an optimally robust IC - the so-called radius-minimax IC -
which is optimal for some radius interval.

Value

The radius minimax IC is computed.

Methods

L2Fam = "L2ParamFamily'', neighbor = ""UncondNeighborhood", risk = "asGRisk'': computation
of the radius minimax IC for an L2 differentiable parametric family.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References
Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications, /7(1) 13-40.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Appeared
as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes),
Humboldt University, Berlin; also available under www.uni-bayreuth.de/departments/math/
org/mathe7/RIEDER/pubs/RR.pdf

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

radiusMinimaxIC

Examples

N <- NormLocationFamily(mean=0, sd=1)

radIC <- radiusMinimaxIC(L2Fam=N, neighbor=ContNeighborhood(),
risk=asMSE(), loRad=0.1, upRad=0.5)

checkIC(radIC)

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

RMXEOMSEMBREOBRE 77

RMXEOMSEMBREOBRE Optimally robust estimation: RMXE, OMSE, MBRE, and OBRE

Description

These are wrapper functions to ‘roptest’ to compute optimally robust estimates, more specifically
RMXEs, OMSEs, MBREs, and OBREs, for L2-differentiable parametric families via k-step con-
struction.

Usage

RMXEstimator(x, L2Fam, fsCor = 1, initial.est, neighbor = ContNeighborhood(),
steps = 1L, distance = CvMDist, startPar = NULL, verbose = NULL,
OptOrIter = "iterate"”, uselLast = getRobAStBaseOption("kStepUselLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"), na.rm = TRUE,
initial.est.ArglList, ..., withLogScale = TRUE, ..withCheck=FALSE,
withTimings = FALSE, withMDE = NULL, withEvalAsVar = NULL,
withMakeIC = FALSE, modifyICwarn = NULL, E.arglist = NULL,
diagnostic = FALSE)
OMSEstimator(x, L2Fam, eps=0.5, fsCor = 1, initial.est, neighbor = ContNeighborhood(),
steps = 1L, distance = CvMDist, startPar = NULL, verbose = NULL,
OptOrIter = "iterate"”, uselLast = getRobAStBaseOption("kStepUselLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"), na.rm = TRUE,
initial.est.ArglList, ..., withLogScale = TRUE, ..withCheck=FALSE,
withTimings = FALSE, withMDE = NULL, withEvalAsVar = NULL,
withMakeIC = FALSE, modifyICwarn = NULL, E.arglList = NULL,
diagnostic = FALSE)
OBREstimator(x, L2Fam, eff=0.95, fsCor = 1, initial.est, neighbor = ContNeighborhood(),
steps = 1L, distance = CvMDist, startPar = NULL, verbose = NULL,
OptOrIter = "iterate"”, uselLast = getRobAStBaseOption("kStepUselLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"), na.rm = TRUE,
initial.est.ArglList, ..., withLogScale = TRUE, ..withCheck=FALSE,
withTimings = FALSE, withMDE = NULL, withEvalAsVar = NULL,
withMakeIC = FALSE, modifyICwarn = NULL, E.arglList = NULL,
diagnostic = FALSE)
MBREstimator(x, L2Fam, fsCor = 1, initial.est, neighbor = ContNeighborhood(),
steps = 1L, distance = CvMDist, startPar = NULL, verbose = NULL,
OptOrIter = "iterate"”, uselLast = getRobAStBaseOption("kStepUselLast"),

78 RMXEOMSEMBREOBRE

withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
withICList = getRobAStBaseOption("withICList"),

withPICList = getRobAStBaseOption("withPICList"), na.rm = TRUE,
initial.est.ArglList, ..., withLogScale = TRUE, ..withCheck=FALSE,
withTimings = FALSE, withMDE = NULL, withEvalAsVar = NULL,
withMakeIC = FALSE, modifyICwarn = NULL, E.arglList = NULL,
diagnostic = FALSE)

Arguments

X sample

L2Fam object of class "L2ParamFamily”

eff positive real (0 <= eff <= 1): amount of asymptotic efficiency loss in the ideal
model. See details below.

eps positive real (0 < eps <= 0.5): amount of gross errors. See details below.

fsCor positive real: factor used to correct the neighborhood radius; see details.

initial.est initial estimate for unknown parameter. If missing minimum distance estimator
is computed.

neighbor object of class "UncondNeighborhood”

steps positive integer: number of steps used for k-steps construction

distance distance function used in MDEstimator, which in turn is used as (default) start-
ing estimator.

startPar initial information used by optimize resp. optim; i.e; if (total) parameter
is of length 1, startPar is a search interval, else it is an initial parameter
value; if NULL slot startPar of ParamFamily is used to produce it; in the
multivariate case, startPar may also be of class Estimate, in which case slot
untransformed.estimate is used.

verbose logical: if TRUE, some messages are printed

uselast which parameter estimate (initial estimate or k-step estimate) shall be used to
fill the slots pIC, asvar and asbias of the return value.

OptOrlter character; which method to be used for determining Lagrange multipliers A and
a: if (partially) matched to "optimize”, getlLagrangeMultByOptim is used;
otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getlLagrangeMultByIter is used. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”
we use only one (inner) iteration, if matched to "doubleiterate” we use up to
Maxiter (inner) iterations.

withUpdateInKer
if there is a non-trivial trafo in the model with matrix D, shall the parameter be
updated on ker(D)?

IC.UpdateInKer if there is a non-trivial trafo in the model with matrix D, the IC to be used for
this; if NULL the result of getboundedIC(L2Fam,D) is taken; this IC will then be
projected onto ker(D).

RMXEOMSEMBREOBRE 79

withPICList logical: shall slot pICList of return value be filled?
withICList logical: shall slot ICList of return value be filled?

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).

initial.est.ArglList
a list of arguments to be given to argument start if the latter is a function;
this list by default already starts with two unnamed items, the sample x, and the
model L2Fam.

further arguments

withLogScale logical; shall a scale component (if existing and found with name scalename) be
computed on log-scale and backtransformed afterwards? This avoids crossing
0.

. .withCheck logical: if TRUE, debugging info is issued.

withTimings logical: if TRUE, separate (and aggregate) timings for the three steps evaluating
the starting value, finding the starting influence curve, and evaluating the k-step
estimator is issued.

withMDE logical or NULL: Shall a minimum distance estimator be used as starting estimator—
in addition to the function given in slot startPar of the L2 family? If NULL
(default), the content of slot .withMDE in the L2 family is used instead to take
this decision.

withEvalAsVar logical or NULL: if TRUE (default), tells R to evaluate the asymptotic variance or
if FALSE just to produces a call to do so. If withEvalAsVar is NULL (default),
the content of slot .withEvalAsVar in the L2 family is used instead to take this
decision.

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

modifyICwarn logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

E.arglList NULL (default) or a list of arguments to be passed to calls to E from (a) MDEstimator
(here this additional argument is only used if initial.est is missing), (b)
getStartIC, and (c) kStepEstimator. Potential clashes with arguments of
the same name in ... are resolved by inserting the items of argument list
E.arglList as named items, so in case of collisions the item of E.arglList over-
writes the existing one from

diagnostic logical; if TRUE, diagnostic information on the performed integrations is gath-
ered and shipped out as an attribute diagnostic of the return value of the esti-
mators.
Details

The functions compute optimally robust estimator for a given L2 differentiable parametric family;
more specifically they are RMXEs, OMSEs, MBREs, and OBREs. The computation uses a k-step
construction with an appropriate initial estimate; cf. also kStepEstimator. Valid candidates are
e.g. Kolmogorov(-Smirnov) or von Mises minimum distance estimators (default); cf. Rieder (1994)
and Kohl (2005).

80

RMXEOMSEMBREOBRE

For OMSE, i.e., the asymptotically linear estimator with minimax mean squared error on this neigh-
borhood of given size, the amount of gross errors (contamination) is assumed to be known, and is
specified by eps. The radius of the corresponding infinitesimal contamination neighborhood is
obtained by multiplying eps by the square root of the sample size.

If the amount of gross errors (contamination) is unknown, RMXE should be used, i.e., the radius-
minimax estimator in the sense of Rieder et al. (2001, 2008), respectively Section 2.2 of Kohl
(2005) is returned.

The OBRE, i.e., the optimal bias-robust (asymptotically linear) estimator; (terminology due to Ham-
pel et al (1985)), expects an efficiency loss (at the ideal model) to be specified and then, according
to an (asymptotic) Anscombe criterion computes the the bias bound achieving this efficiency loss.

The MBRE, i.e., the most bias-robust (asymptotically linear) estimator; (terminology due to Hampel
et al (1985)), uses the influence curve with minimal possible bias bound, hence minimaxes bias on
these neighborhoods (in an infinitesimal sense)..

Finite-sample and higher order results suggest that the asymptotically optimal procedure is to lib-
eral. Using fsCor the radius can be modified - as a rule enlarged - to obtain a more conservative
estimate. In case of normal location and scale there is function finiteSampleCorrection which
returns a finite-sample corrected (enlarged) radius based on the results of large Monte-Carlo studies.

The default value of argument useLast is set by the global option kStepUselLast which by default
is set to FALSE. In case of general models uselLast remains unchanged during the computations.
However, if slot CallL2Fam of IC generates an object of class "L2GroupParamFamily” the value
of uselLast is changed to TRUE. Explicitly setting useLast to TRUE should be done with care as in
this situation the influence curve is re-computed using the value of the one-step estimate which may
take quite a long time depending on the model.

If uselLast is set to TRUE the computation of asvar, asbias and IC is based on the k-step estimate.
All these estimators are realized as wrappers to function roptest.

Timings for the steps run through in these estimators are available in attributes timings, and for the
step of the kStepEstimator in kStepTimings.

One may also use the arguments startCtrl, startICCtrl, and kStepCtrl of function robest.
This allows for individual settings of E.arglList, withEvalAsVar, and withMakeIC for the dif-
ferent steps. If any of the three arguments startCtrl, startICCtrl, and kStepCtrl is used, the
respective attributes set in the correspondig argument are used and, if colliding with arguments
directly passed to the estimator function, the directly passed ones are ignored.

Diagnostics on the involved integrations are available if argument diagnostic is TRUE. Then there
are attributes diagnostic and kStepDiagnostic attached to the return value, which may be in-
spected and assessed through showDiagnostic and getDiagnostic.

Value

Object of class "kStepEstimate”. In addition, it has an attribute "timings"” where computation
time is stored.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

RMXEOMSEMBREOBRE 81

References

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Kohl, M. and Ruckdeschel, P. (2010): R package distrMod: Object-Oriented Implementation of
Probability Models. J. Statist. Softw. 35(10), 1-27

Kohl, M. and Ruckdeschel, P., and Rieder, H. (2010): Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Stat. Methods Appl., 19, 333-354.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications 17(1) 13-40.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Appeared
as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes),
Humboldt University, Berlin; also available under www.uni-bayreuth.de/departments/math/
org/mathe7/RIEDER/pubs/RR. pdf

See Also

roptest, robest, roblox, L2ParamFamily-class UncondNeighborhood-class, RiskType-class

Examples

HHHEHHHEHEE A

1. Binomial data

HHHEHHARHEE

generate a sample of contaminated data
set.seed(123)

ind <- rbinom(100, size=1, prob=0.05)

X <= rbinom(100, size=25, prob=(1-ind)*0.25 + indx0.9)

ML-estimate

MLE.bin <- MLEstimator(x, BinomFamily(size = 25))

compute optimally robust estimators

OMSE.bin <- OMSEstimator(x, BinomFamily(size = 25), steps = 3)
MBRE.bin <- MBREstimator(x, BinomFamily(size = 25), steps = 3)
estimate(MLE.bin)

estimate(MBRE.bin)

estimate(OMSE.bin)

to reduce time load at CRAN tests
RMXE.bin <- RMXEstimator(x, BinomFamily(size = 25), steps = 3)
OBRE.bin <- OBREstimator(x, BinomFamily(size = 25), steps = 3)
estimate (RMXE.bin)
estimate (OBRE.bin)

to reduce time load at CRAN tests
W
2. Poisson data
HHHHHHH

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

82 robest

Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)

x <- c(rep(@, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532),
rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27),
rep(10, 10), rep(11, 4), rep(12, @), rep(13, 1), rep(14, 1))

ML-estimate
MLE.pois <- MLEstimator(x, PoisFamily())

OBRE.pois <- OBREstimator(x, PoisFamily(), steps = 3)
OMSE.pois <- OMSEstimator(x, PoisFamily(), steps = 3)
MBRE.pois <- MBREstimator(x, PoisFamily(), steps = 3)
RMXE.pois <- RMXEstimator(x, PoisFamily(), steps = 3)

estimate(MLE.pois)
estimate (OBRE.pois)
estimate (RMXE.pois)
estimate(MBRE.pois)
estimate (OMSE.pois)

to reduce time load at CRAN tests

HHH A A

3. Normal (Gaussian) location and scale

S PR A

24 determinations of copper in wholemeal flour
library(MASS)

data(chem)

MLE.n <- MLEstimator(chem, NormLocationScaleFamily())

MBRE.n <- MBREstimator(chem, NormLocationScaleFamily(), steps = 3)
OMSE.n <- OMSEstimator(chem, NormLocationScaleFamily(), steps = 3)
OBRE.n <- OBREstimator(chem, NormLocationScaleFamily(), steps = 3)
RMXE.n <- RMXEstimator(chem, NormLocationScaleFamily(), steps = 3)

estimate(MLE.n)
estimate(MBRE.n)
estimate (OMSE.n)
estimate (OBRE.n)
estimate (RMXE.n)

robest Optimally robust estimation

Description
Function to compute optimally robust estimates for L2-differentiable parametric families via k-step
construction.

Usage

robest(x, L2Fam, fsCor = 1, risk = asMSE(), steps = 1L,

robest 83

verbose = NULL, OptOrIter = "iterate"”, nbCtrl = gennbCtrl(),
startCtrl = genstartCtrl(), startICCtrl = genstartICCtrl(),
kStepCtrl = genkStepCtrl(), na.rm = TRUE, ..., debug = FALSE,
withTimings = FALSE, diagnostic = FALSE)

Arguments

X sample

L2Fam object of class "L2ParamFamily”

fsCor positive real: factor used to correct the neighborhood radius; see details.

risk object of class "RiskType”

steps positive integer: number of steps used for k-steps construction

verbose logical: if TRUE, some messages are printed

OptOrlter character; which method to be used for determining Lagrange multipliers A and
a: if (partially) matched to "optimize"”, getLagrangeMultByOptim is used;
otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getlLagrangeMultByIter is used. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”
we use only one (inner) iteration, if matched to "doubleiterate” we use up to
Maxiter (inner) iterations.

nbCtrl a list specifying input concerning the used neighborhood; to be generated by a
respective call to gennbCtrl.

startCtrl a list specifying input concerning the used starting estimator; to be generated by
a respective call to genstartCtrl.

startICCtrl a list specifying input concerning the call to getStartIC which returns the start-
ing influence curve; to be generated by a respective call to genstartICCtrl.

kStepCtrl a list specifying input concerning the used variant of a kstepEstimator; to be
generated by a respective call to genkStepCtrl.

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).
further arguments

debug logical: if TRUE, only the respective calls within the function are generated for
debugging purposes.

withTimings logical: if TRUE, separate (and aggregate) timings for the three steps evaluating
the starting value, finding the starting influence curve, and evaluating the k-step
estimator is issued.

diagnostic logical; if TRUE, diagnostic information on the performed integrations is gath-
ered and shipped out as attributes kStepDiagnostic (for the kStepEstimator-
step) and diagnostic for the remaining steps of the return value of robest.

Details

A new, more structured interface to the former function roptest. For details, see this function.

In some respects this functions allows for more granular arguments, in the sense that the different
steps (a) computation of the inital estimator, resp. (a’) in case initial.est is missing computation

84 robest

of the initial MDE, (b) computation of the optimal IC and (c) computation of the k-step estimator
each can have individial arguments E.arglist to be passed on to calls to expectation operator E
within each step.

These different arguments are passed through the input generating functions genstartCtrl, genstartICCtrl,
and kStepCtrl

Diagnostics on the involved integrations are available if argument diagnostic is TRUE. Then there
are attributes diagnostic and kStepDiagnostic attached to the return value, which may be in-
spected and assessed through showDiagnostic and getDiagnostic.

Value

Object of class "kStepEstimate”. In addition, it has an attribute "timings"” where computation
time is stored.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

roblox, L2ParamFamily-class UncondNeighborhood-class, RiskType-class

Examples

Don't test to reduce check time on CRAN

B S S S S i

1. Binomial data

A

generate a sample of contaminated data
set.seed(123)

ind <- rbinom(100, size=1, prob=0.05)

X <- rbinom(100, size=25, prob=(1-ind)*@.25 + indx@.9)

Family

BF <- BinomFamily(size = 25)
ML-estimate

MLest <- MLEstimator(x, BF)
estimate(MLest)
confint(MLest)

compute optimally robust estimator (known contamination)
nb <- gennbCtrl(eps=0.05)

robestl <- robest(x, BF, nbCtrl = nb, steps = 3)
estimate(robest1)

confint(robest1l, method = symmetricBias())
neglecting bias

confint(robest1)

plot(pIC(robest1))

robest 85

tmp <- ggplot(x, robestl, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, jit.fac=.9)

compute optimally robust estimator (unknown contamination)
nb2 <- gennbCtrl(eps.lower = @, eps.upper = 0.2)

robest2 <- robest(x, BF, nbCtrl = nb2, steps = 3)
estimate(robest2)

confint(robest2, method = symmetricBias())

plot(pIC(robest2))

total variation neighborhoods (known deviation)

nb3 <- gennbCtrl(eps = 0.025, neighbor = TotalVarNeighborhood())
robest3 <- robest(x, BF, nbCtrl = nb3, steps = 3)
estimate(robest3)

confint(robest3, method = symmetricBias())

plot(pIC(robest3))

total variation neighborhoods (unknown deviation)
nb4 <- gennbCtrl(eps.lower = @, eps.upper = 0.1,
neighbor = TotalVarNeighborhood())
robest3 <- robest(x, BF, nbCtrl = nb4, steps = 3)
robest4 <- robest(x, BinomFamily(size = 25), nbCtrl = nb4, steps = 3)
estimate(robest4)
confint(robest4, method = symmetricBias())
plot(pIC(robest4))

S HEHHRHEHEHREEEE AR

2. Poisson data

HHHHHHHHHHEREE A AR

Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)

x <- c(rep(@, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532),
rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27),
rep(10, 10), rep(11, 4), rep(12, @), rep(13, 1), rep(14, 1))

Family
PF <- PoisFamily()

ML-estimate
MLest <- MLEstimator(x, PF)
estimate(MLest)
confint(MLest)

compute optimally robust estimator (unknown contamination)
nb1 <- gennbCtrl(eps.upper = 0.1)

robest <- robest(x, PF, nbCtrl = nbl, steps = 3)
estimate(robest)

confint(robest, symmetricBias())

plot(pIC(robest))

tmp <- ggplot(x, robest, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, jit.fac=.9)

robest

total variation neighborhoods (unknown deviation)

nb2 <- gennbCtrl(eps.upper = 0.05, neighbor = TotalVarNeighborhood())
robest1 <- robest(x, PF, nbCtrl = nb2, steps = 3)

estimate(robest1)

confint(robestl, symmetricBias())

plot(pIC(robest1))

HHHHHAHHHHEERE RN

3. Normal (Gaussian) location and scale
HHHHHHARHEE

24 determinations of copper in wholemeal flour
library(MASS)

data(chem)

plot(chem, main = "copper in wholemeal flour”, pch = 20)

Family

NF <- NormLocationScaleFamily()
ML-estimate

MLest <- MLEstimator(chem, NF)
estimate(MLest)

confint(MLest)

Don't run to reduce check time on CRAN

Not run:

compute optimally robust estimator (known contamination)
takes some time -> you can use package RobLox for normal
location and scale which is optimized for speed

nb1 <- gennbCtrl(eps = 0.05)

robEst <- robest(chem, NF, nbCtrl = nbl, steps = 3)
estimate.call(robEst)

attr(robEst,"”timings")

estimate(robest)

confint(robest, symmetricBias())

plot(pIC(robest))

plot of relative and absolute information; cf. Kohl (2005)
infoPlot(pIC(robest))

tmp <- ggplot(chem, robest, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, withLab = TRUE, which.Order=1:4,
exp.cex2.1bl = .12,exp.fadcol.lbl = .45,
nosym.pCI = TRUE, adj.lbl=c(1.7,.2),
exact.pCI = FALSE, log ="xy")

finite-sample correction
if(require(RobLox)){
n <- length(chem)
r <- 0.05xsqgrt(n)
r.fi <- finiteSampleCorrection(n = n, r = r)
fsCor@ <- r.fi/r
nb1 <- gennbCtrl(eps = 0.05)
robest <- robest(chem, NF, nbCtrl = nb1, fsCor = fsCor@, steps = 3)

roptest

87

estimate(robest)

}

compute optimally robust estimator (unknown contamination)

takes

some time -> use package RobLox!

nb2 <- gennbCtrl(eps.lower = 0.05, eps.upper = 0.1)

robest1 <- robest(chem, NF, nbCtrl = nb2, steps = 3)
estimate(robest1)

confint(robestl, symmetricBias())

plot(pIC(robest1))

plot of relative and absolute information; cf. Kohl (2005)
infoPlot(pIC(robest1))

End(Not run)

roptest

Optimally robust estimation

Description

Function to compute optimally robust estimates for L2-differentiable parametric families via k-step
construction.

Usage

roptest(x, L2Fam, eps, eps.lower, eps.upper, fsCor = 1, initial.est,

roptest.

neighbor = ContNeighborhood(), risk = asMSE(), steps = 1L,
distance = CvMDist, startPar = NULL, verbose = NULL,
OptOrIter = "iterate”,

uselLast = getRobAStBaseOption("kStepUselLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"),

na.rm = TRUE, initial.est.ArglList, ...,

withLogScale = TRUE, ..withCheck = FALSE, withTimings = FALSE,
withMDE = NULL, withEvalAsVar = NULL, withMakeIC = FALSE,
modifyICwarn = NULL, E.arglist = NULL, diagnostic = FALSE)
old(x, L2Fam, eps, eps.lower, eps.upper, fsCor = 1, initial.est,
neighbor = ContNeighborhood(), risk = asMSE(), steps = 1L,
distance = CvMDist, startPar = NULL, verbose = NULL,
OptOrlIter = "iterate”,

useLast = getRobAStBaseOption("kStepUselLast"),
withUpdateInKer = getRobAStBaseOption("”withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdatelInKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"),

na.rm = TRUE, initial.est.ArglList, ...,

withLogScale = TRUE)

88 roptest

Arguments

X sample

L2Fam object of class "L2ParamFamily”

eps positive real (0 < eps <= 0.5): amount of gross errors. See details below.

eps.lower positive real (0 <= eps. lower <= eps.upper): lower bound for the amount of
gross errors. See details below.

eps.upper positive real (eps.lower <= eps.upper <= 0.5): upper bound for the amount
of gross errors. See details below.

fsCor positive real: factor used to correct the neighborhood radius; see details.

initial.est initial estimate for unknown parameter. If missing, a minimum distance estima-
tor is computed.

neighbor object of class "UncondNeighborhood”

risk object of class "RiskType"

steps positive integer: number of steps used for k-steps construction

distance distance function used in MDEstimator, which in turn is used as (default) start-
ing estimator.

startPar initial information used by optimize resp. optim; i.e; if (total) parameter
is of length 1, startPar is a search interval, else it is an initial parameter
value; if NULL slot startPar of ParamFamily is used to produce it; in the
multivariate case, startPar may also be of class Estimate, in which case slot
untransformed.estimate is used.

verbose logical: if TRUE, some messages are printed

uselast which parameter estimate (initial estimate or k-step estimate) shall be used to
fill the slots pIC, asvar and asbias of the return value.

OptOrlter character; which method to be used for determining Lagrange multipliers A and
a: if (partially) matched to "optimize"”, getLagrangeMultByOptim is used;
otherwise: by default, or if matched to "iterate” or to "doubleiterate”,
getLagrangeMultByIter isused. More specifically, when using getLagrangeMultByIter,
and if argument risk is of class "asGRisk", by default and if matched to "iterate”
we use only one (inner) iteration, if matched to "doubleiterate” we use up to
Maxiter (inner) iterations.

withUpdateInKer
if there is a non-trivial trafo in the model with matrix D, shall the parameter be
updated on ker(D)?

IC.UpdatelInKer if there is a non-trivial trafo in the model with matrix D, the IC to be used for
this; if NULL the result of getboundedIC(L2Fam,D) is taken; this IC will then be
projected onto ker(D).

withPICList logical: shall slot pICList of return value be filled?
withICList logical: shall slot ICList of return value be filled?

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).

roptest 89

initial.est.ArglList
a list of arguments to be given to argument start if the latter is a function;
this list by default already starts with two unnamed items, the sample x, and the
model L2Fam.

further arguments

withLogScale logical; shall a scale component (if existing and found with name scalename) be
computed on log-scale and backtransformed afterwards? This avoids crossing
0.

. .withCheck logical: if TRUE, debugging info is issued.

withTimings logical: if TRUE, separate (and aggregate) timings for the three steps evaluating
the starting value, finding the starting influence curve, and evaluating the k-step
estimator is issued.

withMDE logical or NULL: Shall a minimum distance estimator be used as starting estimator—
in addition to the function given in slot startPar of the L2 family? If NULL
(default), the content of slot .withMDE in the L2 family is used instead to take
this decision.

withEvalAsVar logical or NULL: if TRUE (default), tells R to evaluate the asymptotic variance or
if FALSE just to produces a call to do so. If withEvalAsVar is NULL (default),
the content of slot .withEvalAsVar in the L2 family is used instead to take this
decision.

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

modifyICwarn logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to NULL
in which case this value is taken from RobAStBaseOptions.

E.arglList NULL (default) or a list of arguments to be passed to calls to E from (a) MDEstimator
(here this additional argument is only used if initial.est is missing), (b)
getStartIC, and (c) kStepEstimator. Potential clashes with arguments of
the same name in ... are resolved by inserting the items of argument list
E.argList as named items, so in case of collisions the item of E.arglList over-
writes the existing one from

diagnostic logical; if TRUE, diagnostic information on the performed integrations is gath-
ered and shipped out as attributes kStepDiagnostic (for the kStepEstimator-
step) and diagnostic for the remaining steps of the return value of roptest.

Details

Computes the optimally robust estimator for a given L2 differentiable parametric family. The com-
putation uses a k-step construction with an appropriate initial estimate; cf. also kStepEstimator.
Valid candidates are e.g. Kolmogorov(-Smirnov) or von Mises minimum distance estimators (de-
fault); cf. Rieder (1994) and Kohl (2005).

Before package version 0.9, this computation was done with the code of function roptest.old
(with the same formals). From package version 0.9 on, this function uses the modularized function
robest internally.

If the amount of gross errors (contamination) is known, it can be specified by eps. The radius of
the corresponding infinitesimal contamination neighborhood is obtained by multiplying eps by the
square root of the sample size.

90

roptest

If the amount of gross errors (contamination) is unknown, try to find a rough estimate for the amount
of gross errors, such that it lies between eps. lower and eps. upper.

In case eps. lower is specified and eps . upper is missing, eps . upper is set to 0.5. In case eps . upper
is specified and eps. lower is missing, eps. lower is set to 0.

If neither eps nor eps. lower and/or eps. upper is specified, eps. lower and eps.upper are set to
0 and 0.5, respectively.

If eps is missing, the radius-minimax estimator in sense of Rieder et al. (2001, 2008), respectively
Section 2.2 of Kohl (2005) is returned.

Finite-sample and higher order results suggest that the asymptotically optimal procedure is to lib-
eral. Using fsCor the radius can be modified - as a rule enlarged - to obtain a more conservative
estimate. In case of normal location and scale there is function finiteSampleCorrection which
returns a finite-sample corrected (enlarged) radius based on the results of large Monte-Carlo studies.

The logic in argument initial.est is as follows: It can be a numeric vector of the length of
the unknow parameter or a function or it can be missing. If it is missing, one consults argument
startPar for a search interval (if a one dimensional unknown parameter) or a starting value for
the search (if the dimension of the unknown parameter is larger than one). If startPar is missing,
too, it takes the value from the corresponding slot of argument L2Fam. Then, if argument withMDE
is TRUE a Minimum-Distance estimator is computed as initial value initial.est with distance as
specified in argument distance and possibly further arguments as passed through

In the next step, the value of initial.est (either if not missing from beginning or as computed
through the MDE) is then passed on to kStepEstimator.start which then takes out the essential
information for the sequel, i.e., a numeric vector of the estimate.

At this initial value the optimal influence curve is computed through interface getStartIC, which
in turn, depending on the risk calls optIC, radiusMinimaxIC, or computes the IC from precom-
puted grid values in case of risk being of class interpolRisk. With the obtained optimal IC,
kStepEstimator is called.

The default value of argument uselLast is set by the global option kStepUseLast which by default
is set to FALSE. In case of general models uselLast remains unchanged during the computations.
However, if slot CallL2Fam of IC generates an object of class "L2GroupParamFamily” the value
of uselLast is changed to TRUE. Explicitly setting useLast to TRUE should be done with care as in
this situation the influence curve is re-computed using the value of the one-step estimate which may
take quite a long time depending on the model.

If uselLast is set to TRUE the computation of asvar, asbias and IC is based on the k-step estimate.

Timings for the steps run through in roptest are available in attributes timings, and for the step
of the kStepEstimator in kStepTimings.

One may also use the arguments startCtrl, startICCtrl, and kStepCtrl of function robest.
This allows for individual settings of E.arglList, withEvalAsVar, and withMakeIC for the dif-
ferent steps. If any of the three arguments startCtrl, startICCtrl, and kStepCtrl is used, the
respective attributes set in the correspondig argument are used and, if colliding with arguments
directly passed to roptest, the directly passed ones are ignored.

Diagnostics on the involved integrations are available if argument diagnostic is TRUE. Then there
are attributes diagnostic and kStepDiagnostic attached to the return value, which may be in-
spected and assessed through showDiagnostic and getDiagnostic.

roptest 91

Value

Object of class "kStepEstimate”. In addition, it has an attribute "timings" where computation
time is stored.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Kohl, M. and Ruckdeschel, P. (2010): R package distrMod: Object-Oriented Implementation of
Probability Models. J. Statist. Softw. 35(10), 1-27

Kohl, M. and Ruckdeschel, P., and Rieder, H. (2010): Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Stat. Methods Appl., 19, 333-354.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical
Methods and Applications 17(1) 13-40.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Appeared
as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes),
Humboldt University, Berlin; also available under www.uni-bayreuth.de/departments/math/
org/mathe7/RIEDER/pubs/RR.pdf

See Also

roblox, L2ParamFamily-class UncondNeighborhood-class, RiskType-class

Examples

Don't run to reduce check time on CRAN

Not run:

HHHEHHHEHEEE A

1. Binomial data

HHHHHHARE

generate a sample of contaminated data
set.seed(123)

ind <- rbinom(100, size=1, prob=0.05)

X <= rbinom(100, size=25, prob=(1-ind)*0.25 + indx@.9)

ML-estimate
MLest <- MLEstimator(x, BinomFamily(size = 25))
estimate(MLest)
confint(MLest)

compute optimally robust estimator (known contamination)
robest1 <- roptest(x, BinomFamily(size = 25), eps = 0.05, steps = 3)
robest1.0 <- roptest.old(x, BinomFamily(size = 25), eps = 0.05, steps = 3)

www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf
www.uni-bayreuth.de/departments/math/org/mathe7/RIEDER/pubs/RR.pdf

roptest

identical(robest1,robest1.0)

estimate(robest1)

confint(robest1l, method = symmetricBias())

neglecting bias

confint(robest1)

plot(pIC(robest1))

tmp <- ggplot(x, robestl, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, jit.fac=.9)

compute optimally robust estimator (unknown contamination)

robest2 <- roptest(x, BinomFamily(size = 25), eps.lower = @, eps.upper = 0.2, steps = 3)
estimate(robest2)

confint(robest2, method = symmetricBias())

plot(pIC(robest2))

total variation neighborhoods (known deviation)

robest3 <- roptest(x, BinomFamily(size = 25), eps = 0.025,
neighbor = TotalVarNeighborhood(), steps = 3)

estimate(robest3)

confint(robest3, method = symmetricBias())

plot(pIC(robest3))

total variation neighborhoods (unknown deviation)

robest4 <- roptest(x, BinomFamily(size = 25), eps.lower = @, eps.upper = 0.1,
neighbor = TotalVarNeighborhood(), steps = 3)

estimate(robest4)

confint(robest4, method = symmetricBias())

plot(pIC(robest4))

HHHHHHHHHHERE AR

2. Poisson data

HHHEHHHEHEE AR

Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)

x <- c(rep(@, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532),
rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27),
rep(10, 10), rep(11, 4), rep(12, @), rep(13, 1), rep(14, 1))

ML-estimate
MLest <- MLEstimator(x, PoisFamily())
estimate(MLest)
confint(MLest)

compute optimally robust estimator (unknown contamination)
robest <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
estimate(robest)

confint(robest, symmetricBias())

plot(pIC(robest))
tmp <- ggplot(x, robest, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, jit.fac=.9)

total variation neighborhoods (unknown deviation)
robest1 <- roptest(x, PoisFamily(), eps.upper = 0.05,

roptest

neighbor = TotalVarNeighborhood(), steps = 3)
estimate(robest1)
confint(robest1, symmetricBias())
plot(pIC(robest1))

End(Not run)

HHHHHHARHEEE

3. Normal (Gaussian) location and scale
SRR

24 determinations of copper in wholemeal flour
library(MASS)

data(chem)

plot(chem, main = "copper in wholemeal flour”, pch = 20)

ML-estimate
MLest <- MLEstimator(chem, NormLocationScaleFamily())
estimate(MLest)
confint(MLest)

Don't run to reduce check time on CRAN

compute optimally robust estimator (known contamination)

takes some time -> you can use package RobLox for normal

location and scale which is optimized for speed

robest <- roptest(chem, NormLocationScaleFamily(), eps = 0.05, steps = 3)
estimate(robest)

confint(robest, symmetricBias())

plot(pIC(robest))

plot of relative and absolute information; cf. Kohl (2005)

infoPlot (pIC(robest))

tmp <- ggplot(chem, robest, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, withLab = TRUE, which.Order=1:4,
exp.cex2.1bl = .12,exp.fadcol.lbl = .45,
nosym.pCI = TRUE, adj.lbl=c(1.7,.2),
exact.pCI = FALSE, log ="xy")

finite-sample correction
if(require(RobLox)){
n <- length(chem)
r <- 0.05*sqrt(n)
r.fi <- finiteSampleCorrection(n = n, r =r)
fsCor <- r.fi/r
robest <- roptest(chem, NormLocationScaleFamily(), eps = 0.05,
fsCor = fsCor, steps = 3)
estimate(robest)

compute optimally robust estimator (unknown contamination)

takes some time -> use package RoblLox!

robest1 <- roptest(chem, NormLocationScaleFamily(), eps.lower = 0.05,
eps.upper = 0.1, steps = 3)

93

94 updateNorm-methods

estimate(robest1)

confint(robestl, symmetricBias())

plot(pIC(robest1))

plot of relative and absolute information; cf. Kohl (2005)
infoPlot(pIC(robest1))

updateNorm-methods Methods for Function updateNorm in Package ‘ROptEst’

Description

updateNorm-methods to update norm in IC-Algo

Usage

updateNorm(normtype, ...)

S4 method for signature 'SelfNorm'

updateNorm(normtype, L2, neighbor, biastype, Distr, V.comp,
cent, stand, w)

Arguments
normtype normtype of class NormType
further arguments to be passed to specific methods.
L2 L2derivative
neighbor object of class "Neighborhood”.
biastype object of class "BiasType”
cent optimal centering constant.
stand standardizing matrix.
Distr standardizing matrix.
V. comp matrix: indication which components of the standardizing matrix have to be
computed.
W object of class RobWeight; current weight
Details

updateNorm is used internally in the opt-IC-algorithm to be able to work with a norm that depends
on the current covariance (SelfNorm)

Value

updateNorm an updated object of class NormType.

updateNorm-methods 95

Methods

updateNorm signature(normtype = "SelfNorm"): udates the norm in the self-standardized
case; just used internally in the opt-IC-Algorithm.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

NormType-class

Index

*Topic classes
asAnscombe-class, 5
asL1-class, 7
asL4-class, 9
get.asGRisk.fct-methods, 18
getRiskFctBV-methods, 56
getStartIC-methods, 58
ORobEstimate-class, 72
updateNorm-methods, 94

*Topic distribution
plot-methods, 74

*Topic methods
plot-methods, 74

xTopic package
ROptEst-package, 3

*Topic robust
asAnscombe, 4
asL1,6
aslL4, 8
checkIC-methods, 10
cniperCont, 11
comparePlot-methods, 17
getAsRisk, 19
getBiasIC, 23
getFixClip, 25
getFixRobIC, 26
getIneffDiff, 27
getInfCent, 29
getInfClip, 31
getInfGamma, 34
getInflM, 36
getInfRad, 38
getInfRobIC, 41
getInfStand, 45
getInfV, 47
getL1normL2deriv, 48
getL2normL2deriv, 49
getMaxIneff, 50
getModifyIC, 51

96

getRadius, 53
getReq, 54
getRiskIC, 56
inputGenerators, 60
leastFavorableRadius, 62
lowerCaseRadius, 64
minmaxBias, 65
optIC, 67

optRisk, 70
radiusMinimaxIC, 74
RMXEOMSEMBREOBRE, 77
robest, 82
roptest, 87

asAnscombe, 4, 6
asAnscombe-class, 5
asL1,6,8, 9
asL1-class, 7
asL4,7,8,10
aslL4-class, 9
asMSE, 7-10

checkIC (checkIC-methods), 10
checkIC,ContIC,L2ParamFamily-method
(checkIC-methods), 10

checkIC-methods, 10

cniperCont, 11

cniperPoint (cniperCont), 11

CniperPointPlot, 16

cniperPointPlot (cniperCont), 11

comparePlot (comparePlot-methods), 17

comparePlot,IC,IC-method
(comparePlot-methods), 17

comparePlot-methods, 17

eff (asAnscombe-class), 5
eff,asAnscombe-method

(asAnscombe-class), 5

finiteSampleCorrection, 80, 90

INDEX

genkStepCtrl, 83

genkStepCtrl (inputGenerators), 60

gennbCtrl, 83

gennbCtrl (inputGenerators), 60

genstartCtrl, 83, 84

genstartCtrl (inputGenerators), 60

genstartICCtrl, 83, 84

genstartICCtrl (inputGenerators), 60

get.asGRisk. fct
(get.asGRisk.fct-methods), 18

get.asGRisk.fct,asL1-method
(get.asGRisk.fct-methods), 18

get.asGRisk. fct,asL4-method
(get.asGRisk. fct-methods), 18

get.asGRisk. fct,asMSE-method
(get.asGRisk.fct-methods), 18

get.asGRisk.fct-methods, 18

getAsRisk, 18, 19

97

getAsRisk,asSemivar,UnivariateDistribution,Neighborhood,on
(getAsRisk), 19

getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighbo
(getAsRisk), 19

getAsRisk, trAsCov,RealRandVariable,ContNeighborhood, ANY-me
(getAsRisk), 19

getAsRisk, trAsCov,UnivariateDistribution,UncondNeighborhoo
(getAsRisk), 19

getAsRisk-methods (getAsRisk), 19

getBiasIC, 23

getBiasIC,HampIC,UncondNeighborhood-method
(getBiasIC), 23

getBiasIC,TotalVarIC,UncondNeighborhood-method
(getBiasIC), 23

getBiasIC-methods (getBiasIC), 23

getDiagnostic, 80, 84, 90

getFixClip, 25

getFixClip,numeric,Norm, fiUnOvShoot,ContNeighborhood-metho

getAsRisk,asAnscombe,RealRandVariable, ContNeighborhoodetvi-xfetiind 25

(getAsRisk), 19

getFixClip,numeric,Norm, fiUnOvShoot, TotalVarNeighborhood-m

getAsRisk,asAnscombe,UnivariateDistribution,UncondNei(gidrindad mhgSmethod

(getAsRisk), 19

getFixClip-methods (getFixClip), 25

getAsRisk,asBias,RealRandVariable, ContNeighbog@btbtxRolyEme2hiod

(getAsRisk), 19

getFixRobIC,Norm, fiUnOvShoot,UncondNeighborhood-method

getAsRisk,asBias,RealRandVariable, TotalVarNeighborhooeiNYitethdd, 26

(getAsRisk), 19

getFixRobIC-methods (getFixRobIC), 26

getAsRisk,asBias,UnivariateDistribution, ContNedghbeffdbdf AR¥Y-method

(getAsRisk), 19

getIneffDiff,numeric,L2ParamFamily,UncondNeighborhood, asMS

getAsRisk,asBias,UnivariateDistribution, ContNeighborhgst awfifiitifi)cBTas-method

(getAsRisk), 19

getIneffDiff-methods (getIneffDiff), 27

getAsRisk,asBias,UnivariateDistribution, ContNedghbbCanbdl9nesidedBias-method

(getAsRisk), 19

getInfCent,RealRandVariable,ContNeighborhood,BiasType-meth

getAsRisk,asBias,UnivariateDistribution, TotalVarNeightgatiothCemNy;-#9thod

(getAsRisk), 19

getInfCent,RealRandVariable, TotalVarNeighborhood,BiasType-

getAsRisk, asCov,RealRandVariable, ContNeighborhood, ANY@etthdiCent), 29

(getAsRisk), 19

getInfCent,UnivariateDistribution,ContNeighborhood, asymmet

getAsRisk,asCov,UnivariateDistribution, ContNeighborho@k tNv-Gentod9

(getAsRisk), 19

getInfCent,UnivariateDistribution,ContNeighborhood,BiasTyp

getAsRisk,asCov,UnivariateDistribution, TotalVarNeighbgdidod vtm@thod

(getAsRisk), 19

getInfCent,UnivariateDistribution,ContNeighborhood,oneside

getAsRisk,aslL1,UnivariateDistribution,Neighborhood, ANfgertdirtfdsent), 29

(getAsRisk), 19

getInfCent,UnivariateDistribution,TotalVarNeighborhood,Bia

getAsRisk,aslL4,UnivariateDistribution,Neighborhood, ANfgertdirifdsent), 29

(getAsRisk), 19

getInfCent-methods (getInfCent), 29

getAsRisk, asMSE,EuclRandVariable,Neighborhoodgat¥rfiethpd3 1

(getAsRisk), 19

getInfClip,numeric,EuclRandVariable, asMSE,UncondNeighborho

getAsRisk,asMSE,UnivariateDistribution,Neighborhood, Afpetiatttdip), 31

(getAsRisk), 19

getInfClip,numeric,UnivariateDistribution,asL1,ContNeighbo

98 INDEX

(getInfClip), 31 getInfRad,numeric,UnivariateDistribution,asSemivar,ContNei
getInfClip,numeric,UnivariateDistribution,asL1, TotalViENigfttaahh38d-method

(getInfClip), 31 getInfRad, numeric,UnivariateDistribution,asUnOvShoot,Uncon
getInfClip,numeric,UnivariateDistribution,asL4,ContNe(gshtdorfiRemt);B&thod

(getInfClip), 31 getInfRad-methods (getInfRad), 38
getInfClip,numeric,UnivariateDistribution, asLde TorifRyalBed ghborhood-method

(getInfClip), 31 getInfRobIC,RealRandVariable, asAnscombe,UncondNeighborhood
getInfClip,numeric,UnivariateDistribution, asMSE, ContNgieghbdiftadddmdihod

(getInfClip), 31 getInfRobIC,RealRandVariable,asBias,UncondNeighborhood-met
getInfClip,numeric,UnivariateDistribution, asMSE, Total{mrtNaifftdiditiodd-method

(getInfClip), 31 getInfRobIC,RealRandVariable, asCov,UncondNeighborhood-meth
getInfClip,numeric,UnivariateDistribution,asSemivar, G@etNaifftdadtjodd-method

(getInfClip), 31 getInfRobIC,RealRandVariable, asGRisk,UncondNeighborhood-me
getInfClip,numeric,UnivariateDistribution, asUnOvShoot(gitdontihilghbdihood-method

(getInfClip), 31 getInfRobIC,RealRandVariable, asHampel,UncondNeighborhood-m
getInfClip-methods (getInfClip), 31 (getInfRobIC), 41
getInfGamma, 34 getInfRobIC,UnivariateDistribution, asAnscombe,UncondNeighb
getInfGamma,RealRandVariable, asMSE, ContNeighborhood, BiigestTyfiReielthod 1

(getInfGamma), 34 getInfRobIC,UnivariateDistribution,asBias,UncondNeighborho
getInfGamma,RealRandVariable, asMSE, TotalVarNeighborhotgk EirdRiohdésmdthod

(getInfGamma), 34 getInfRobIC,UnivariateDistribution,asCov,ContNeighborhood-
getInfGamma,UnivariateDistribution,asGRisk, ContNeighb@dtdod Rid<Tygdd-method

(getInfGamma), 34 getInfRobIC,UnivariateDistribution,asCov,TotalVarNeighborh
getInfGamma,UnivariateDistribution,asGRisk, TotalVarNefiggtdortRuid Bjd4Type-method

(getInfGamma), 34 getInfRobIC,UnivariateDistribution, asGRisk,UncondNeighborh
getInfGamma,UnivariateDistribution,asMSE, ContNeighborfgesd rdRomid)r #dBias-method

(getInfGamma), 34 getInfRobIC,UnivariateDistribution,asHampel,UncondNeighbor
getInfGamma,UnivariateDistribution,asMSE, ContNeighborfgstd oiRedildeddias-method

(getInfGamma), 34 getInfRobIC,UnivariateDistribution,asUnOvShoot,UncondNeigh
getInfGamma,UnivariateDistribution,asUnOvShoot , ContNefigdtdorRubd Bid44Type-method

(getInfGamma), 34 getInfRobIC-methods (getInfRobIC), 41
getInfGamma-methods (getInfGamma), 34 getInfStand, 45
getInfLM, 36 getInfStand,RealRandVariable,UncondNeighborhood,BiasType-m
getInfRad, 38 (getInfStand), 45
getInfRad, numeric,EuclRandVariable, asMSE, UncogeliEighbantipdaimarthatieDistribution, ContNeighborhood, asymme

(getInfRad), 38 (getInfStand), 45
getInfRad,numeric,UnivariateDistribution, asL1g€bhtRetghtdpbhboarmetedilstribution,ContNeighborhood,BiasTy

(getInfRad), 38 (getInfStand), 45
getInfRad,numeric,UnivariateDistribution,aslL1g@blalytahdjghborhdatiedishoibution,ContNeighborhood,onesid

(getInfRad), 38 (getInfStand), 45
getInfRad,numeric,UnivariateDistribution, asL4g€bbifgtighthpbhdvarmateédistribution, TotalVarNeighborhood,Bi

(getInfRad), 38 (getInfStand), 45
getInfRad,numeric,UnivariateDistribution, asL4g@btafybahdigaboots¢den&nfistdand), 45

(getInfRad), 38 getInfV, 47,57
getInfRad,numeric,UnivariateDistribution, asMSge €onftNeRghbRahdvdrinatthedContNeighborhood,BiasType-method

(getInfRad), 38 (getInfVv), 47

getInfRad,numeric,UnivariateDistribution, asMSgeThitfl yRedNERghtbahvadtectbbal VarNeighborhood,BiasType-met
(getInfRad), 38 (getInfVv), 47

INDEX 99

getInfV,UnivariateDistribution, ContNeighborhogetStyminet (geBsaarné€hodthods), 58

(getInfV), 47 getStartIC,ANY,ANY-method
getInfV,UnivariateDistribution,ContNeighborhood,BiasTigetHtetrhdd -methods), 58

(getInfV), 47 getStartIC,L2LocationFamily, interpolRisk-method
getInfV,UnivariateDistribution,ContNeighborhood, onesi(etSitas-tidttmethods), 58

(getInfVv), 47 getStartIC,L2LocationScaleFamily, interpolRisk-method
getInfV,UnivariateDistribution, TotalVarNeighborhood, BigesiStsr-tidttmethods), 58

(getInfVv), 47 getStartIC,L2ParamFamily, asAnscombe-method
getInfV-methods (getInfV), 47 (getStartIC-methods), 58
getL1normL2deriv, 48 getStartIC,L2ParamFamily, asBias-method
getL1normL2deriv,RealRandVariable-method (getStartIC-methods), 58

(getL1normL2deriv), 48 getStartIC,L2ParamFamily,asCov-method
getL1normL2deriv,UnivariateDistribution-method (getStartIC-methods), 58

(getL1normL2deriv), 48 getStartIC,L2ParamFamily,asGRisk-method
getL1normL2deriv-methods (getStartIC-methods), 58

(getL1normL2deriv), 48 getStartIC,L2ParamFamily, trAsCov-method
getL2normL2deriv, 49 (getStartIC-methods), 58
getLagrangeMultByIter (getInfLM), 36 getStartIC,L2ScaleFamily, interpolRisk-method
getlLagrangeMultByOptim (getInfLM), 36 (getStartIC-methods), 58
getMaxIneff, 50 getStartIC-methods, 58

getModifyIC, 51 IcLi ORObESE 1 7
getModifyIC,L2LocationFamily,UncondNeighborhoo ,é% §1sﬁ—mg%ﬁ@8te class),
(getModi fyIC), 51 ICList,ORobEstimate-method
getModifyIC,L2LocationFamily,UncondNeighborhood,F% angﬁﬁﬁgﬁﬁ?ﬁﬁﬁfCIass)’72
(getModifyIC), 51 1nputhenerators,
getModlfyIC,L2Locat10nSca1eFam11y,UncondNelgth{Qgegrffgglsk—method

) (getModifyIC),S} . . kStepEstimator, 79, 89
getModlfyIC,L2ParamFam11y,Nelghborhood,asRlskEggng?ORobEstimate_class) 7

. (getModlfyIC),S}) ksteps,ORobEstimate-method
getModifyIC,L2ScaleFamily,UncondNeighborhood, asGRis _ﬂﬁﬁggﬁétimate—class) 7

) (getModifyIC), 51 . kStepTimings (ORobEstimate-class), 72
getModifyIC-methods (getModifyIC), 51 kStepTimings,ORobEstimate-method

getRadius, 38, 53 (ORobEstimate-class), 72
getReq, 18, 54
getRiskFctBY (getRiskFctBV-methods), 56 leastFavorableRadius, 29, 62
getRiskFctBY,asL1,ANY-method leastFavorableRadius,L2ParamFamily,UncondNeighborhood, asGR
(getRiskFctBV-methods), 56 (leastFavorableRadius), 62
getRiskFctBY,asL4, ANY-method leastFavorableRadius-methods
(getRiskFctBV-methods), 56 (leastFavorableRadius), 62
getRiskFctBV-methods, 56 lowerCaseRadius, 64
getRiskIC, 56, 58 lowerCaseRadius,L2ParamFamily, ContNeighborhood, asMSE, ANY-nm
getRiskIC,HampIC,asCov,missing,L2ParamFamily-method (lowerCaseRadius), 64
(getRiskIC), 56 lowerCaseRadius,L2ParamFamily, ContNeighborhood, asMSE, asymn
getRiskIC,HampIC,asCov,missing,missing-method (lowerCaseRadius), 64
(getRiskIC), 56 lowerCaseRadius,L2ParamFamily, ContNeighborhood, asMSE, onesi
getRiskIC,TotalVarIC,asCov,missing,L2ParamFamily-meth@bwerCaseRadius), 64
(getRiskIC), 56 lowerCaseRadius,L2ParamFamily, TotalVarNeighborhood, asMSE, A

getRiskIC-methods (getRiskIC), 56 (lowerCaseRadius), 64

100 INDEX

lowerCaseRadius,UnivariateDistribution, ContNepgbboFpoilsasiigEnehkesd dpdBiamenbbteg
(lowerCaseRadius), 64 74
lowerCaseRadius-methods plot-methods, 74
(lowerCaseRadius), 64
radiusMinimaxIC, 29, 59, 63, 74, 76

makeIC (checkIC-methods), 10 radiusMinimaxIC,L2ParamFamily,UncondNeighborhood, asGRisk-nm
makeIC,ContIC,L2ParamFamily-method (radiusMinimaxIC), 74
(checkIC-methods), 10 radiusMinimaxIC-methods
MBREstimator (RMXEOMSEMBREOBRE), 77 (radiusMinimaxIC), 74
minmaxBias, 65 RMXEOMSEMBREOBRE, 77

minmaxBias,RealRandVariable,ContNeighborhood ,B¥4E5}bBaket BYXEOMSEMBREOBRE), 77
(minmaxBias). 65 robest, 59, 61, 80, 81, 82, 89, 90

minmaxBias,RealRandVariable, TotalVarNeighborht3Re8tG3ky saRpkERSdMate-class), 72
(minmaxBias), 65 robestCall ORobEstimate method

minmaxBias,UnivariateDistribution,ContNeighborhood, as! et 72
(minmaxBias), 65 roblox 6 81 84 91

minmaxBias,UnivariateDistribution,ContNeighboRRBbESE{BQ gBéimB%ﬁbage) 3
(minmaxBias), 65 roptest, 81,

minmaxBias,UnivariateDistribution,ContNeighboFABbGES brRaskReR 3s-method
(minmaxBias), 65 roptestCall (ORobEstimate-class), 72

minmaxBias,UnivariateDistribution TotalVarNelﬁﬂBB?ﬁBgﬂlhlggqg%ﬁtH@?B%dmethOd
(minmaxBias), 65 (ORobEstimate-class), 72

minmaxBias-methods (minmaxBias), 65 .
scaleUpdatelIC (getModifyIC), 51

scaleUpdateIC,ContNeighborhood-method
(getModifyIC), 51

scaleUpdateIC,TotalVarNeighborhood-method
(getModifyIC), 51

scaleUpdateIC,UncondNeighborhood-method

OBREstimator (RMXEOMSEMBREOBRE), 77
OMSEstimator (RMXEOMSEMBREOBRE), 77
optIC, 53, 59, 67

optIC,FixRobModel, fiUnOvShoot-method

IC, I g—"(;pthoé 617 Risk-method (gethodifylc), o1
optIC,InfRo IO %7»35 1sk-metho scaleUpdateIC-methods (getModifyIC), 51
(optIC), show, asAnscombe-method
optIC, InfRobModel, asUnOvShoot-method (asAnscombe-class), 5
(optIC), 67 show, ORobEstimate-method
optIC-methods (optIC), 67 (ORobEstimate-class), 72
optRisk, 70

showDiagnostic, 80, 84, 90
start,ORobEstimate-method

.) (ORobEstimate-class), 72
optRisk, InfRobModel, asRisk-method startval (ORobEstimate-class), 72

) (optRisk),7Q startval,ORobEstimate-method
optRisk,L2ParamFamily, asCov-method (ORobEstimate-class), 72

. (optRisk), 70 . steps (ORobEstimate-class), 72
optRisk-methods (optRisk), 70 steps,ORobEstimate-method

optRisk, FixRobModel, fiUnOvShoot-method
(optRisk), 70

ORobEstimate-class, 72 (ORobEstimate-class), 72
pICList (ORobEstimate-class), 72 timings,ORobEstimate-method
pICList,ORobEstimate-method (ORobEstimate-class), 72

(ORobEstimate-class), 72
plot (plot-methods), 74 uksteps (ORobEstimate-class), 72

INDEX

uksteps,ORobEstimate-method
(ORobEstimate-class), 72

updateNorm (updateNorm-methods), 94

updateNorm, SelfNorm-method
(updateNorm-methods), 94

updateNorm-methods, 94

ustartval (ORobEstimate-class), 72

ustartval,ORobEstimate-method
(ORobEstimate-class), 72

101

	ROptEst-package
	asAnscombe
	asAnscombe-class
	asL1
	asL1-class
	asL4
	asL4-class
	checkIC-methods
	cniperCont
	CniperPointPlot
	comparePlot-methods
	get.asGRisk.fct-methods
	getAsRisk
	getBiasIC
	getFixClip
	getFixRobIC
	getIneffDiff
	getInfCent
	getInfClip
	getInfGamma
	getInfLM
	getInfRad
	getInfRobIC
	getInfStand
	getInfV
	getL1normL2deriv
	getL2normL2deriv
	getMaxIneff
	getModifyIC
	getRadius
	getReq
	getRiskFctBV-methods
	getRiskIC
	getStartIC-methods
	inputGenerators
	leastFavorableRadius
	lowerCaseRadius
	minmaxBias
	optIC
	optRisk
	ORobEstimate-class
	plot-methods
	radiusMinimaxIC
	RMXEOMSEMBREOBRE
	robest
	roptest
	updateNorm-methods
	Index

