
Package ‘RandomFieldsUtils’
April 19, 2022

Version 1.2.5

Title Utilities for the Simulation and Analysis of Random Fields and
Genetic Data

Author Martin Schlather [aut, cre], Alexander FreudenBerg [aut], Reinhard Furrer [ctb], Mar-
tin Kroll [ctb], Brian D. Ripley [ctb], John W. Ratcliff et al. (cph)

Maintainer Martin Schlather <schlather@math.uni-mannheim.de>

Depends R (>= 3.0)

Imports utils, methods, parallel

Suggests spam, RandomFields

Description Various utilities are provided that might be used in spatial statistics and elsewhere. It de-
livers a method for solving linear equations that checks the sparsity of the matrix before any al-
gorithm is used.

Copyright MIT licence on sse2neon.H

License GPL (>= 3)

URL
NeedsCompilation yes

Repository CRAN

Date/Publication 2022-04-19 11:32:32 UTC

R topics documented:
Cholesky . 2
confirm . 4
dbinorm . 5
FileExists . 5
gauss . 7
host . 8
Instruction Set . 8
Internal functions . 9
matern . 10
nonstwm . 12

1

2 Cholesky

orderx . 13
Print . 14
RFoptions . 15
rowMeansx . 22
sleep.milli . 24
solve . 24
sortx . 26
Struve . 28

Index 30

Cholesky Cholesky Decomposition of Positive Definite Matrices

Description

This function calculates the Cholesky decomposition of a matrix.

Usage

cholx(a)
chol2mv(C, n)
tcholRHS(C, RHS)

Arguments

a a square real-valued positive definite matrix

C a (pivoted) Cholesky decomposition calculated by cholx

n integer. Number of realisations of the multivariate normal distribution

RHS vector

Details

If the matrix is diagonal direct calculations are performed.

Else the Cholesky decomposition is tried.

Value

cholx returns a matrix containing the Cholesky decomposition (in its upper part).

chol2mv takes the Cholesky decomposition and returns a n realisations of a multivariate normal
distribution with mean 0 and covariance function a

tcholRHS multiplies the vector RHS from the right to lower triangular matrix of the Cholesky de-
composition. See examples below.

Cholesky 3

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

References

Harbrecht, H., Peters, M., Schneider, R. (2012) On the low-rank approximation by the pivoted
Cholesky decomposition. Appl. Num. Math. 62, 428–440.

Examples

##########################
Example showing the use of chol2mv and tcholRHS
n <- 10
M <- matrix(nc=n, runif(n^2))
M <- M %*% t(M) + diag(n)
C <- cholx(M)
set.seed(0)
v1 <- chol2mv(C, 1)
set.seed(0)
v2 <- tcholRHS(C, rnorm(n))
stopifnot(all(v1 == v2))

##########################
The following example shows pivoted Cholesky can be used
and the pivotation permutation can be transferred to
subsequent Cholesky decompositions

set.seed(0)
n <- if (interactive()) 1000 else 100
x <- 1:n
y <- runif(n)
M <- x %*% t(x) + rev(x) %*% t(rev(x)) + y %*% t(y)

do pivoting
RFoptions(pivot = PIVOT_DO, la_mode=LA_INTERN)
print(system.time(C <- cholx(M)))
print(range(crossprod(C) - M))
str(C)

use the same pivoted decomposition as in the previous decomposition
M2 <- M + n * diag(1:n)
RFoptions(pivot = PIVOT_IDX, la_mode=LA_INTERN,

pivot_idx = attr(C, "pivot_idx"),
pivot_actual_size = attr(C, "pivot_actual_size"))

print(system.time(C2 <- cholx(M2)))
print(range(crossprod(C2) - M2))
range((crossprod(C2) - M2) / M2)
str(C2)

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

4 confirm

RFoptions(pivot = PIVOT_AUTO, la_mode = LA_AUTO)

confirm Test if Two Objects are (Nearly) Equal

Description

confirm(x,y) is a utility to compare R objects x and y testing ‘near equality’ base on all.equal.
It is written too allow different behaviour on different operating systems

Usage

confirm(x, y, ...)

Arguments

x,y,... see all.equal

Value

Only TRUE or error in linux-gnu. Otherwise logical.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

x <- 3
confirm(gauss(x), exp(-x^2))

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

dbinorm 5

dbinorm Density of a bivariate normal distribution

Description

The function calculates the value of a bivariate normal distribution with mean 0.

Usage

dbinorm (x, S)

Arguments

x a matrix containing the x values and the y values in the first and second row
respectively. Or it is a list of two vectors.

S the covariance matrix; currently only diagonal matrix possible

Value

a vector according to the size of x

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

x <- matrix(1:6, nc=2) + 0.0
C <- diag(c(1,2))
dbinorm(x, C)

FileExists Files

Description

The function FileExists checks whether a file or a lock-file exists

The function LockRemove removes a lock-file

Usage

FileExists(file, printlevel=RFoptions()$basic$printlevel)
LockFile(file, printlevel=RFoptions()$basic$printlevel)
LockRemove(file)
WaitOthers(file, i, cores, ideal.processes=ceiling(cores * 1.25),

max.processes=ceiling(cores * 1.5),
distance=5, time=5, path="./")

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

6 FileExists

Arguments

file name of the data file

printlevel if PrintLevel<=1 no messages are displayed

i integer; current value of process, usually the number of a loop index

cores the number of cores on the machine
ideal.processes,max.processes,distance

integer. See Details

time in minutes a process waits until it rechecks its environment

path the current path of file

Details

FileExists checks whether file or file.lock exists. If none of them exists file.lock is created
and hostname and PID are written into file.lock. This is useful if several processes use the same
directory. Further, it is checked whether another process has tried to create the same file in the
same instance. In this case FileExists returns for at least one of the processes that file.lock has
already been created.

LockFile is the same as FileExists except that it does not check whether file already exists.

WaitOthers waits for others if more than ideal.processes processes have their value is less than
i or if more than cores processes have their value is less than i-distance. It also waits if there are
alreay max.processes are active. Note that WaitOthers write a file with ending ‘.wait’, which is
also deleted be LockRemove.

Value

FileExists returns

1 if file already exists

2 if file.lock already exists

3 if file.lock was tried to be created, but another process inferred and got priority

0 otherwise, file and file.lock did not exist and file.lock has been created

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

Not run:
the next command checks whether the file 'data.rda'
or the file 'data.rda.lock' exists. If so, a positive
value is returned. If not, the file 'data.rda.lock'
is created and the value 0 returned.
FileExists("data.rda")

the next command deletes the file 'data.rda.lock'

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

gauss 7

LockRemove("data.rda")

End(Not run)

gauss Gaussian Covariance Model

Description

gauss is a stationary isotropic covariance model. The corresponding covariance function only
depends on the distance r ≥ 0 between two points and is given by

C(r) = e−r
2

Usage

gauss(x, derivative=0)

Arguments

x numerical vector; for negative values the modulus is used

derivative value in 0:4.

Value

If derivative=0, the function value is returned, otherwise the derivativeth derivative.

A vector of length(x) is returned; nu is recycled; scaling is recycled if numerical.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

References

Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp, P. (eds.) (2010) Handbook of Spatial Statistics.
Boca Raton: Chapman & Hall/CRL.

Stein, M. L. (1999) Interpolation of Spatial Data. New York: Springer-Verlag

Examples

x <- 3
confirm(gauss(x), exp(-x^2))

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

8 Instruction Set

host System calls

Description

The functions hostname and pid return the host name and the PID, respectively.

Usage

hostname()

pid()

Details

If R runs on a unix platform the host name and the PID are returned, otherwise the empty string and
naught, respectively.

Value

hostname returns a string

pid returns an unsigned integer

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

cat("The name of your computer is '", hostname(),
"'. Your R program has current pid ", pid(), ".\n", sep="")

Instruction Set CPU instruction set

Description

The function checks whether a certain instruction is used (missed) under the current compilation of
a package.

Usage

uses.simd.instruction(which=NULL, pkgs=NULL)
misses.simd.instruction(which=NULL, pkgs=NULL)

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

Internal functions 9

Arguments

which character vector with values in "SSE2","SSSE3","AVX","AVX2","CUDA"

pkgs character vector or missing.

Value

logical vector of length which or matrix with number of rows equal to the length of which. An
element is TRUE if the instruction set is used (missed) by the package.

If an arguments is NULL all available information is given.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

uses.simd.instruction()
misses.simd.instruction()

Internal functions Internal functions

Description

These functions are internal and should not be used.

Usage

checkExamples(exclude = NULL, include=1:length(.fct.list),
ask=FALSE, echo=TRUE, halt=FALSE, ignore.all = FALSE,
path=package, package = "RandomFields",
read.rd.files=TRUE, local = FALSE, libpath = NULL,
single.runs = FALSE, reset, catcherror=TRUE)

Dependencies(pkgs = all.pkgs, dir = "Dependencies",
install = FALSE, check=TRUE, reverse=FALSE,

package="RandomFields")

debugging_level()

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

10 matern

Arguments

exclude, include, ask, echo, halt, ignore.all, path, package, read.rd.files, local, libpath, single.runs, reset, catcherror

internal; ignore.all refers to the ‘all’ export statement in the namespace – whether
this should be ignored. If read.rf.files is TRUE or a path to the Rd files, then
the man pages are analysed to get all examples; ignore.all is then ignored. If
FALSE only examples of functions (which are searched in the environments) are
run.

pkgs, dir,install, check, reverse

internal

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

internal function: no examples given

matern Whittle-Matern Model

Description

matern calculates the Whittle-Matern covariance function (Soboloev kernel).

The Whittle model is given by

C(r) = Wν(r) = 21−νΓ(ν)−1rνKν(r)

where ν > 0 and Kν is the modified Bessel function of second kind.

The Matern model is given by

C(r) =
21−ν

Γ(ν)
(
√

2νr)νKν(
√

2νr)

The Handcock-Wallis parametrisation equals

C(r) =
21−ν

Γ(ν)
(2
√
νr)νKν(2

√
νr)

Usage

whittle(x, nu, derivative=0,
scaling=c("whittle", "matern", "handcockwallis"))

matern(x, nu, derivative=0,
scaling=c("matern", "whittle", "handcockwallis"))

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

matern 11

Arguments

x numerical vector; for negative values the modulus is used
nu numerical vector with positive entries
derivative value in 0:4.
scaling numerical vector of positive values or character; see Details.

Value

If derivative=0, the function value is returned, otherwise the derivativeth derivative.

A vector of length(x) is returned; nu is recycled; scaling is recycled if numerical.

If scaling has a numerical values s, the covariance model equals

C(r) =
21−ν

Γ(ν)
(s
√
νr)νKν(s

√
νr)

The function values are rather precise even for large values of nu.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

References

Covariance function

• Chiles, J.-P. and Delfiner, P. (1999) Geostatistics. Modeling Spatial Uncertainty. New York:
Wiley.

• Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp, P. (eds.) (2010) Handbook of Spatial
Statistics. Boca Raton: Chapman & Hall/CRL.

• Guttorp, P. and Gneiting, T. (2006) Studies in the history of probability and statistics. XLIX.
On the Matern correlation family. Biometrika 93, 989–995.

• Handcock, M. S. and Wallis, J. R. (1994) An approach to statistical spatio-temporal modeling
of meteorological fields. JASA 89, 368–378.

• Stein, M. L. (1999) Interpolation of Spatial Data – Some Theory for Kriging. New York:
Springer.

See Also

nonstwm

Examples

x <- 3
confirm(matern(x, 0.5), exp(-x))
confirm(matern(x, Inf), gauss(x/sqrt(2)))
confirm(matern(1:2, c(0.5, Inf)), exp(-(1:2)))

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

12 nonstwm

nonstwm nonstwm

Description

The non-stationary Whittle-Matern model C is given by

C(x, y) = Γ(µ)Γ(ν(x))−1/2Γ(ν(y))−1/2Wµ(f(µ)|x− y|)

where µ = [ν(x) + ν(y)]/2, and ν must a positive function.

Wµ is the covariance function whittle.

The function f takes the following values

scaling = "whittle" : f(µ) = 1

scaling = "matern" : f(µ) =
√

2ν

scaling = "handcockwallis" : f(µ) = 2
√
ν

scaling = s, numerical : f(µ) = s ∗
√
nu

Usage

nonstwm(x, y, nu, log=FALSE,
scaling=c("whittle", "matern", "handcockwallis"))

Arguments

x, y numerical vectors of the same length

nu positive value or a function with positive values and x as argument

log logical. If TRUE the logirithm of the covariance function is returned.

scaling positive value or character; see Details.

Value

A single value is returned.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

References

• Stein, M. (2005) Nonstationary Spatial Covariance Functions. Tech. Rep., 2005

See Also

matern.

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

orderx 13

Examples

nonstwm(2, 1, sin)

orderx Ordering Permutation

Description

orderx has the same functionality as order, except that orderx(...,from=from,to=to) is the
same as order[from:to]

Usage

orderx(x, from=1, to=length(x), decreasing=FALSE, na.last = NA)

Arguments

x an atomic vector

from,to order(...,from=from,to=to) equals order(...)[from:to]

decreasing logical. Should the sort order be increasing or decreasing?

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed (see the Notes in order)

Details

The smaller the difference to-from is compared to the length of x, the faster is orderx compared
to order.

Particularly, orderx(...,from=k,to=k) is much faster than order(...)[k].

orderx is never really slower than order.

For further details see order.

Value

integer vector of length to-from+1.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

See Also

sortx

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

14 Print

Examples

x <- runif(10^6)
k <- 10
system.time(y<-order(x)[1:k])
system.time(z<-orderx(x, from=1, to=k)) ## much faster
stopifnot(all(x[y]== x[z])) ## same result

Print Print method returning also the names automatically

Description

prints variable names and the values

Usage

Print(..., digits = 6, empty.lines = 2)

Arguments

... any object that can be print-ed

digits see print

empty.lines number of leading empty lines

Value

prints the names and the values; for vectors cat is used and for lists str

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

a <- 4
b <- list(c=5, g=7)
m <- matrix(1:4, nc=2)
Print(a, b, m)

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

RFoptions 15

RFoptions Setting control arguments

Description

RFoptions sets and returns control arguments for the analysis and the simulation of random fields

Usage

RFoptions(..., no.class=FALSE, install.control=NULL)

Arguments

... arguments in tag = value form, or a list of tagged values. See ‘Details’ for
options in package RandomFieldsUtils.

no.class logical. If TRUE the list is returned without class specification.
install.control

list. See Details, Part 2.

Details

The subsections below comment on
1. basic: Basic options
2. install.control
3. installNrun: Options for installation and running
4. solve: Options for solving linear systems
5. Reserved words

1. Basic options

asList logical. Lists of arguments are treated slightly different from non-lists. If asList=FALSE
they are treated the same way as non-lists. This options being set to FALSE after calling
RFoptions it should be set as first element of a list.
Default: TRUE

cores Number of cores for multicore algorithms; currently only used for the Cholesky decompo-
sition.
Default : 1 if the package has been compiled with standard flags of CRAN and 0.75 *
cores() + 0.25 * cpus() else.
Note that cores has not effect if set locally in this package or in package miraculix.

cPrintlevel cPrintlevel is automatically set to printlevel when printlevel is changed.
Standard users will never use a value higher than 3.
0 : no messages
1 : messages and warnings when the user’s input looks odd
2 : messages (and internal errors) documenting the choice of the simulation method

16 RFoptions

3 : further user relevant informations
4 : information on recursive function calls
5 : function flow information of central functions
6 : errors that are internally treated
7 : details on building up the covariance structure
8 : details on taking the square root of the covariance matrix
9 : details on intermediate calculations
10 : further details on intermediate calculations

Note that printlevel works on the R level whereas cPrintlevel works on the C level.
cPrintlevel should be changed only globally.
Default: 1

efficient logical. If TRUE then always the most time efficient code is used.
Default: TRUE. It is strongly recommended to retain this value.

helpinfo logical. If TRUE then additional information is printed for more efficient programming
in R.
Default: TRUE

printlevel If printlevel≤ 0 there is not any output on the screen. The higher the number the
more tracing information is given. Standard users will never use a value higher than 3.
0 : no messages
1 : important (error) messages and warnings
2 : less important messages
3 : details, but still for the user
4 : recursive call tracing
5 : function flow information of large functions
6 : errors that are internally treated
7 : details on intermediate calculations
8 : further details on intermediate calculations

Default: 1

seed integer (currently only used by the package RandomFields). If NULL or NA
set.seed is not called. Otherwise,
set.seed(seed) is set before any simulations are performed.
If the argument is set locally, i.e., within a function, it has the usual local effect. If it is set
globally, i.e. by RFoptions the seed is fixed for all subsequent calls.
If the number of simulations n is greater than one and if RFoptions(seed=seed) is set, the
ith simulation is started with the seed ‘seed+i− 1’.

skipchecks logical. If TRUE, several checks whether the given parameter values and the dimension
are within the allowed range is skipped. Do not change the value of this variable except you
really know what you do.
Default: FALSE

verbose logical. If FALSE it identical to printlevel = 1 else to printlevel = 2.

bigendian logical. Read only.

RFoptions 17

2. install.control: Details on argument install.control install.control may contain
any argument of install.packages except type. This options is currently tailored for MS and
Linux on Intel machines, only. The argument configure.args

may not contain 'CXX_FLAGS' which should be passed as an extra argument with the list.

Note that if this argument is given (even with value NULL), an immediate installation takes place. In
case the user tries to force to install 0 packages, an overview over the packages is given. If the user
is asked whether re-installation shall take place, user can pass arguments to install.packages, e.g.,
"quiet=FALSE".

If install.control is given, no further argument may be passed to RFoptions.

Additional components of install.control and special behaviours are:

path the path to the locally saved tar balls

verbose, quiet They affect also the behaviour of RFoptions.

force TRUE reinstallation of all attached libraries based on and including RandomFieldsUtils.
I.e., RFoptions(install.control=list(force=TRUE)) is the strongest form of forc-
ing reinstallation.

FALSE In case some packages have to be re-installed the user will be asked.
not given reinstallation of the attached libraries based on and including RandomFieldsUtils

that have not been tried yet in the current session.

pkgs=NULL brief overview over the installed packages based on RandomFieldsUtils

CROSS logical or character. CROSS is passed to ‘configure.ac’.

"noflag" No extra compiler flag is set with respect to SIMD. This is the default.
TRUE each file is compiled with its specific SIMD/AVX compiler flags; this guarantees the

compatiblity on a plattform with different sets of kernels. No SIND/AVX flag should be
given by the user. Cross-compilation supported; no check is performed whether the code
would run on the compiling CPU.

"nosimd" It is assumed that no SIMD is available and the flag "-no-sse2" is set (if possible).
"sse2" Same behaviour as TRUE, but all CPUs have at least "sse2" available.
"sse3", "ssse3", "sse41", "avx", "avx2" Alternatives to "sse2". Giving the highest guar-

anteed SIMD recognition leads to the most efficient code.
FALSE each file is compiled with all SIMD/AVX flags recognized by both the CPU and the

compiler (no cross-compilation); users may add their own SIMD/AVX flags. This might
lead to faster code, but which is not downwards compatible.

NA Same as FALSE except that the flag -mno-sse2 is set when no SIMD is needed or used.

This option can be set to "avx" interactively if install="ask".

CC_FLAGS character. Flags passed to ‘configure.ac’.

SIMD_FLAGS character. A subset of "sse2", "sse3", "ssse3", "sse41", "avx", "avx2", "arch=xxx",
etc. which will be tried instead of default flags. SIMD_FLAGS is passed to ‘configure.ac’.

LOCAL_ONLY logical. If TRUE, the web is not searched for the latest version of the package.

MEM_IS_ALIGNED logical. If TRUE, then the memory is assumed to be aligned. If FALSE then the
SIMD load commands _mm_*load_* are replaced by _mm_*loadu_*. If given, then force is
set to TRUE.

USE_GPU logical. Force or hinder the compilation for the GPU

18 RFoptions

3. installNrun: Options for installing and for determining basic behaviour

install character. Only used by linux systems and alike including macOS The default by CRAN
is that SIMD/AVX cannot be used at full extend. install determines what the action if
the compiled version does not use the full CPU capacities. Since the use of GPU is heav-
ily hardware dependent, its auto-recompilation is only performed in tow line of an AVX re-
compilation. The users usually use

"no" no re-installation
"ask" asks whether the library should be reinstalled, using the full capacity of the CPU ac-

cording to the package.
"install" performs the auto-recompilation without asking. Note that only the command

RFoptions(install.control=list(force=TRUE)) forces re-compilation of the cur-
rently loaded packages that are based on RandomFieldsUtils.

Note that, in each session, a package can be reinstalled only. This feature avoids trying
to run jobs that cannot be done (e.g.\ due to missing programs of the OS). See argument
install.control for overwriting this behaviour.
Default: at starting point it is "ask" or "no", but the value may change during the session.

installPackages logical. Read only. Indicates whether packages are left to be re-installed.
RFoptions(install="no") sets it to FALSE. RFoptions(install="no",install="ask")
sets it to TRUE.

kahanCorrection obsolete. logical. If TRUE, the Kahan summation algorithm is used for calculat-
ing scalar products.
Default: false

la_mode determines

LA_AUTO, "auto" If a graphic card is recognized, LA_GPU is used. In all other cases the
default is primarily LA_R. Only on linux systems, the package peforms a simple speed
test and takes LA_INTERN if it is faster than LA_R; the time, hence the choice, depends
also on the number of cores used.

LA_INTERN, "intern" mostly own algorithms, often based on SIMD/AVX. This option is
of interest only if no advanced BLAS/LAPACK has been compiled into R

LA_R, "R" BLAS/LAPACK implementation used by R
LA_GPU, "GPU" This option is available when the package has been compiled with nvcc.
LA_QUERY, "query" Request on currently used set-up

Default: LA_AUTO
mem_is_alignedlogical. Read only. See MEM_IS_ALIGNED in install.control.

warn_parallel Logical. RandomFieldsUtils and packages using it, such as RandomFields and
miraculix, should now be prepared for parallelization using package parallel, for instance.
Internal OMP parallelization of RandomFieldsUtils is done, but only at a view points of the
subsequent packages.
As a few parts cannot be in parallel technically or from a logical point of view, a hint or a
warning is given, if such a point is not accessed adequately. These messages can be turned off
by warn_parallel = FALSE.
Default: TRUE.

warn_unknown_option integer.

RFoptions 19

0,1,-1 Unknown options are all ignored. If the value is positive, a hint is delivered whenever
an unknown option is ignored.

-2,2 Unknown options that start with a capital letter are ignored. All others lead to an error.
(Note that all RFoptions start with a minor letter.) If the value is positive, a hint is
delivered whenever an unknown option is ignored.

3,-3 Unknown options that consists of a single capital letter are ignored. All others lead to an
error. (Note that all RFoptions start with a minor letter.) If the value is positive, a hint is
delivered whenever an unknown option is ignored.

4 (and other values) Any unknown option leads to an error.

Default for RandomFieldsUtils: 3
Default for RandomFields: 1

4. solve: Options for solving linear systems

det_as_log

eigen2zero When the svd or eigen decomposition is calculated, all values with modulus less than
or equal to eigen2zero are set to zero.
Default: 1e-12

max_chol integer. Maximum number of rows of a matrix in a Cholesky decomposition
Default: 16384

max_svd integer. Maximum number of rows of a matrix in a svd decomposition
Default: 10000

pivot_partialdet logical. If TRUE then in case of low-rank matrices the determinant is calculated
only in the part with positive eigenvalues

pivot Type of pivoting for the Cholesky decomposition. Possible values are

PIVOT_NONE, "no" No pivoting.
PIVOT_AUTO, "auto" If the matrix has a size greater than 3x3 and Choleskey fails without

pivoting, privoting is done. For matrices of size less than 4x4, no pivoting and no checks
are performed. See also PIVOT_DO

PIVOT_DO, "do" Do always pivoting. NOTE: privoted Cholesky decomposition yields only
very approximately an upper triangular matrix L, but still L^t L = M holds true.

PIVOT_IDX, "idx" uses the same pivoting as in the previous pivoted decomposition. This
option becomes relevant only when simulations with different parameters or different
models shall be performed with the same seed so that also the pivoting must be coupled.

Default: PIVOT_NONE

pivot_actual_size integer. Genuine dimension of the linear mapping given by a matrix in cholx.
This is a very rarely used option when pivoting with pivot=PIVOT_IDX.

pivot_check logical. Only used in pivoted Cholesky decomposition. If TRUE and a numerically
zero diagonal element is detected, it is checked whether the offdiagonal elements are numer-
ically zero as well. (See also pivot_max_deviation and pivot_max_reldeviation.) If NA
then only a warning is given.
Default: TRUE

20 RFoptions

pivot_idx vector of integer. Sequence of pivoting indices in pivoted Cholesky decomposition.
Note that pivot_idx[1] gives the number of indices that will be used. The vector must have
at least the length pivot_idx[1] + 1.
Default: NULL

pivot_relerror positive number. Tolerance for (numerically) negative eigenvalues and for (nu-
merically) overdetermined systems appearing in the pivoted Cholesky decomposition.
Default: 1e-11

pivot_max_deviation positive number. Together with pivot_max_reldeviation it determines
when the rest of the matrix (eigenvalues) in the pivoted Cholesky decomposition are consid-
ered as zero.
Default: 1e-10

pseudoinverse logical. In case of a singular matrix M , shall the pseudo inverse be returned for
solvex(M)?
Default: FALSE

pivot_max_reldeviation positive number. Together with pivot_max_deviation it determines
when the rest of the matrix (eigenvalues) in the pivoted Cholesky decomposition are consid-
ered as zero.
Default: 1e-10

solve_method vector of at most 3 integers that gives the sequence of methods in order to inverse a
matrix or to calculate its square root: "cholesky", "svd", "lu", "eigen" "sparse", "method
undefined". In the latter case, the algorithm decides which method might suit best.
Note that if use_spam is not false the algorithm checks whether a sparse matrix algorithm
should be used and which is then tried first.
Default: "method undefined".

spam_factor integer. See argument spam_sample_n.
Default: 4294967

spam_min_n integer vector of size 2. The minimal size for a matrix to apply a sparse matrix algo-
rithms automatically. The second value is used in case the GPU is activated.
Default: c(400,4000)

spam_min_p (spam_min_p) a numbers in (0, 1) giving the proportion of zero above which an sparse
matrix algorithm is used. The second value is used in case the GPU is activated.
Default: 0.8 (0.9)

spam_pivot integer. Pivoting algorithm for sparse matrices:

PIVOT_NONE No pivoting
PIVOTSPARSE_MMD
PIVOTSPARSE_RCM

See package spam for details.
Default: PIVOTSPARSE_MMD

spam_sample_n (spam_sample_n_GPU) Whether a matrix is sparse or not is tested by a ‘random’
sample of size spam_sample_n; The selection of the sample is iteratively obtained by multi-
plying the index by spam_factor modulo the size of the matrix.
Default: 500 (10000).

RFoptions 21

spam_tol largest absolute value being considered as zero. Default: DBL_EPSILON

svdtol Internal. When the svd decomposition is used for calculating the square root of a matrix
then the absolute componentwise difference between this matrix and the square of the square
root must be less than svdtol. No check is performed if svdtol is not positive.
Default: 0

use_spam Should the package spam (sparse matrices) be used for matrix calculations? If TRUE
spam is always used. If FALSE, it is never used. If NA its use is determined by the size and the
sparsity of the matrix.
Default: NA.

5. Reserved Words

list_ list_ usually equals the output of RFoptions(). This argument is used to reset the RFop-
tions. Some of the options behave differently if passed through list_. E.g. a warning counter
is not reset. The argument list_ cannot be combined with any other arguments.

getoptions_ string vector of prefixes that indicate classes of options. In this package they can
be "basic" and "solve". (E.g. package RandomFields has many more classes of options.)
The given classes of options are then returned by RFoptions(). Note that the values are the
previous values.
getoptions_ must always be the very first argument.

saveoptions_ string vector of prefixes. Same as for getoptions_, except that important classes
are always returned and thus should not be given. Hence saveoptions_ is often a convenient
short cut for getoptions_. The class always included in this package is "basic", in package
RandomFields these are the two classes "basic" and "general".
saveoptions_ must always be the very first argument. In particular, it may not given at the
same time with getoptions_.

local_ logical. This options is allowed only when advanced packages are used, see Random-
Fields.

warnUnknown_ integer. Same as option warn_unknown_option, except that its value overwrites
the value of warn_unknown_option in the current command RFoptions. This options must
be placed between CODE and getoptions_, if the latter are used.

Value

NULL if any argument is given, and the full list of arguments, otherwise.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

n <- 10
M <- matrix(1, ncol=n, nrow=n)

Not run:

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

22 rowMeansx

try(chol(M)) ## error, as M is not strictly positive definite
try(cholx(M)) ## also fails

End(Not run)

RFoptions(la_mode=LA_INTERN, pivot=PIVOT_AUTO)
cholx(M) ## works
RFoptions(la_mode=LA_R)

RFoptions(solve_method="svd", pseudoinverse=TRUE)
solvex(M)
RFoptions(solve_method="method undefined", pseudoinverse=FALSE)

rowMeansx Some Further Row and Column Functions

Description

The function rowMeansx returns weighted row means;
the function colMax returns column maxima;
the function rowProd returns the product of each row;
the function quadratic calculates a quadratic form
the function SelfDivByRow devides each column by a scalar;
the function dotXV calculates columnwise the dot product;
the function crossprodx calculates the cross product (using AVX);
the function scalarx calculates the scalar product (using AVX);

Usage

rowMeansx(x, weight=NULL)
colMax(x)
rowProd(x)
SelfDivByRow(x, v)
quadratic(x, v)
dotXV(x, w)
crossprodx(x,y,mode=-1)
scalarx(x, y, mode=0)

Arguments

x numerical (or logical) matrix

v vector whose length equals the number of columns of x

w vector whose length equals the number of rows of x

rowMeansx 23

weight numerical or logical vector of length nrow(x)

y numerical matrix

mode integer between 0 and 8 or negative, indicating that the default value should
be used. Determine the algorithm how the scalar product is calculated. These
values are experimental and may change their meaning.

Details

quadratic(x,v) calculates the quadratic form v>xv; The matrix x must be squared.

Value

rowMeansx returns a vector of lengthnrow(x).

colMax returns a vector of length ncol(x).

rowProd returns a vector of length nrow(x).

quadratic returns a scalar.

SelfDivByRow returns a matrix of same size as x.

dotXV returns a matrix of same size as x.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

c <- if (interactive()) 10000 else 10
r <- if (interactive()) 20000 else 20
M <- matrix(nr=r, 1:(c * r))

unweighted means, compare to rowMeans
print(system.time(m1 <- rowMeans(M)))
print(system.time(m2 <- rowMeansx(M)))
stopifnot(all.equal(m1, m2))

weighted row means, compare to rowMeans
W <- 1 / (ncol(M) : 1)
print(system.time({M0 <- t(W * t(M)); m1 <- rowMeans(M0)}))
print(system.time(m2 <- rowMeansx(M, W)))
stopifnot(all.equal(m1, m2))

print(system.time(m1 <- apply(M, 2, max)))
print(system.time(m2 <- colMax(M)))
stopifnot(m1 == m2)

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

24 solve

sleep.milli Sleep

Description

Process sleeps for a given amount of time

Usage

sleep.milli(n)
sleep.micro(n)

Arguments

n integer. sleeping time units

Value

No value is returned.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

Examples

next command waits half a second before returning
sleep.milli(500)

solve Solve a System of Equations for Positive Definite Matrices

Description

This function solves the equality ax = b for x where a is a positive definite matrix and b is a vector
or a matrix. It is slightly faster than the inversion by the cholesky decomposition and clearly faster
than solve. It also returns the logarithm of the determinant at no additional computational costs.

Usage

solvex(a, b=NULL, logdeterminant=FALSE)

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

solve 25

Arguments

a a square real-valued matrix containing the coefficients of the linear system. Log-
ical matrices are coerced to numeric.

b a numeric or complex vector or matrix giving the right-hand side(s) of the linear
system. If missing, b is taken to be an identity matrix and solvex will return the
inverse of a.

logdeterminant logical. whether the logarithm of the determinant should also be returned

Details

If the matrix is diagonal direct calculations are performed.

Else if the matrix is sparse the package spam is used.

Else the Cholesky decomposition is tried. Note that with RFoptions(pivot=) pivoting can be
enabled. Pivoting is about 30% slower.

If it fails, the eigen value decomposition is tried.

Value

If logdeterminant=FALSE the function returns a vector or a matrix, depending on b which is the
solution to the linear equation. Else the function returns a list containing both the solution to the
linear equation and the logarithm of the determinant of a.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

References

See chol.spam of the package spam.

Examples

RFoptions(solve_method = "cholesky", printlevel=1)
set.seed(1)
n <- 1000
x <- 1:n
y <- runif(n)

FIRST EXAMPLE: full rank matrix
M <- exp(-as.matrix(dist(x) / n))
b0 <- matrix(nr=n, runif(n * 5))
b <- M %*% b0 + runif(n)

standard with 'solve'
print(system.time(z <- zR <- solve(M, b)))

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

26 sortx

print(range(b - M %*% z))
stopifnot(all(abs((b - M %*% z)) < 2e-11))

using exactly the algorithm used in R
RFoptions(pivot=PIVOT_NONE, la_mode=LA_R) ## (default)
print(system.time(z <- solvex(M, b)))
print(range(b - M %*% z))
stopifnot(all(z == zR))

Without pivoting, internal code:
RFoptions(pivot=PIVOT_NONE, la_mode=LA_INTERN) ## (default)
print(system.time(z <- solvex(M, b)))
print(range(b - M %*% z))
stopifnot(all(abs((b - M %*% z)) < 2e-11))

Pivoting is slower here:
RFoptions(pivot=PIVOT_DO, la_mode=LA_INTERN)
print(system.time(z <- solvex(M, b)))
print(range(b - M %*% z))
stopifnot(all(abs((b - M %*% z)) < 2e-11))

SECOND EXAMPLE: low rank matrix
M <- x %*% t(x) + rev(x) %*% t(rev(x)) + y %*% t(y)
b1 <- M %*% b0

Without pivoting, it does not work
RFoptions(pivot=PIVOT_NONE, la_mode=LA_R)
Not run: try(solve(M, b1))
RFoptions(pivot=PIVOT_NONE, la_mode=LA_INTERN)
Not run: try(solvex(M, b1))

Pivoting works -- the precision however is reduced :
RFoptions(pivot=PIVOT_DO, la_mode=LA_INTERN)
print(system.time(z1 <- solvex(M, b1)))
print(range(b1 - M %*% z1))
stopifnot(all(abs((b1 - M %*% z1)) < 2e-6))

Pivoting fails, when the equation system is not solvable:
b2 <- M + runif(n)
Not run: try(solvex(M, b2))

RFoptions(pivot = PIVOT_AUTO, la_mode = LA_AUTO)

sortx Sorting Vectors

sortx 27

Description

sortx has the same functionality as sort, except that sortx(...,from=from,to=to) is the same
as sort[from:to]

Sort a vector or factor into ascending or descending order.

Usage

sortx(x, from=1, to=length(x), decreasing=FALSE, na.last = NA)

Arguments

x an atomic vector

from,to sort(...,from=from,to=to) equals sort(...)[from:to]

decreasing logical. Should the sort sort be increasing or decreasing?

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed (see the Notes in sort)

Details

The smaller the difference to-from is compared to the length of x, the faster is sortx compared to
sort.

Particularly, sortx(...,from=k,to=k) is much faster than sort(...)[k].

For further details see sort.

Value

vector of length to-from+1.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>

See Also

orderx

Examples

x <- runif(10^6)
k <- 10
system.time(y<-sort(x)[1:k])
system.time(z<-sortx(x, from=1, to=k)) ## much faster
stopifnot(all(y == z)) ## same result

28 Struve

Struve Modified Struve functions and related functions

Description

These functions return the values of the modified Struve functions and related functions

Usage

struveH(x, nu)
struveL(x, nu, expon.scaled=FALSE)
I0L0(x)

Arguments

x non-negative numeric vector

nu numeric vector

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
or underflow respectively.

Details

I0L0 returns besselI(nu=0). minus struveL(nu=0).

Value

Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding function.

The length of the result is the maximum of the lengths of the arguments x and nu. The two arguments
are recycled to that length.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de>, https://www.wim.uni-mannheim.de/
schlather/

References

• MacLeod, A.J. (1993) Chebyshev expansions for modified Struve and related functions, Math-
ematics of Computation, 60, 735-747

• Abramowitz, M., and Stegun, I.A. (1984) Pocketbook of Mathematical Functions, Verlag
Harry Deutsch

See Also

besselI

https://www.wim.uni-mannheim.de/schlather/
https://www.wim.uni-mannheim.de/schlather/

Struve 29

Examples

if (FALSE) {

x <- seq(1, 2, 0.1)
struveH(x, 0)
struveH(x, 1)

I0L0(x) - (besselI(x, nu=0) - struveL(x, 0))
besselI(x, nu=1) - struveL(x, 1) ## cf. Abramovitz & Stegun, table 12.1

}

Index

∗ file
FileExists, 5

∗ manip
orderx, 13
sortx, 26

∗ math
Cholesky, 2
gauss, 7
matern, 10
solve, 24
Struve, 28

∗ misc
dbinorm, 5
sleep.milli, 24

∗ models
gauss, 7
matern, 10
nonstwm, 12

∗ print
Print, 14

∗ spatial
gauss, 7
Internal functions, 9
matern, 10
nonstwm, 12
RFoptions, 15

∗ sysdata
confirm, 4
host, 8
Instruction Set, 8

∗ univar
orderx, 13
sortx, 26

∗ utilities
confirm, 4
dbinorm, 5
FileExists, 5
host, 8
rowMeansx, 22

sleep.milli, 24

all.equal, 4

bessel (Struve), 28
besselI, 28

checkExamples (Internal functions), 9
chol, 24
chol (Cholesky), 2
chol2mv (Cholesky), 2
Cholesky, 2
cholesky (Cholesky), 2
cholPosDef (Cholesky), 2
cholx, 19
cholx (Cholesky), 2
colMax (rowMeansx), 22
confirm, 4
crossprodx (rowMeansx), 22

dbinorm, 5
debugging_level (Internal functions), 9
Dependencies (Internal functions), 9
dotXV (rowMeansx), 22

FileExists, 5

gauss, 7

host, 8
hostname (host), 8

I0L0 (Struve), 28
I0ML0 (Struve), 28
install.packages, 17
Instruction Set, 8
Internal functions, 9

LA_AUTO (RFoptions), 15
LA_GPU (RFoptions), 15
LA_INTERN (RFoptions), 15

30

INDEX 31

LA_QUERY (RFoptions), 15
LA_R (RFoptions), 15
LockFile (FileExists), 5
LockRemove (FileExists), 5

matern, 10, 12
misses.simd.instruction (Instruction

Set), 8

nonstwm, 11, 12

order, 13
orderx, 13, 27

pid (host), 8
PIVOT_AUTO (RFoptions), 15
PIVOT_DO (RFoptions), 15
PIVOT_IDX (RFoptions), 15
PIVOT_NONE (RFoptions), 15
PIVOTSPARSE_MMD (RFoptions), 15
PIVOTSPARSE_RCM (RFoptions), 15
Print, 14
print, 14

quadratic (rowMeansx), 22

RFoptions, 15, 15
rowMeans (rowMeansx), 22
rowMeansx, 22
rowProd (rowMeansx), 22

scalarx (rowMeansx), 22
SelfDivByRow (rowMeansx), 22
sleep (sleep.milli), 24
sleep.milli, 24
sobolev (matern), 10
solve, 24, 24
solvePosDef (solve), 24
solvex (solve), 24
sort, 27
sortx, 13, 26
Struve, 28
struve (Struve), 28
struveH (Struve), 28
struveL (Struve), 28

tcholRHS (Cholesky), 2

uses.simd.instruction (Instruction
Set), 8

WaitOthers (FileExists), 5
whittle, 12
whittle (matern), 10
whittle-matern (matern), 10

	Cholesky
	confirm
	dbinorm
	FileExists
	gauss
	host
	Instruction Set
	Internal functions
	matern
	nonstwm
	orderx
	Print
	RFoptions
	rowMeansx
	sleep.milli
	solve
	sortx
	Struve
	Index

