
Package Ravages (RAre Variant Analysis and GEnetic Simulation)

Herve Perdry and Ozvan Bocher

2022-06-01

Introduction

Ravages was developped to simulate genetic data and to perform rare variant association tests (burden
tests and the variance-component test SKAT) on different types of phenotypes (Bocher et al., 2019, doi:
10.1002/gepi.22210, Bocher et al., 2020, doi:10.1038/s41431-020-00792-8) at a genome-wide scale. Ravages
relies on the package Gaston developped by Herve Perdry and Claire Dandine-Roulland. Most functions are
written in C++ thanks to the packages Rcpp, RcppParallel and RcppEigen.

Functions of Ravages use bed.matrix to manipulate genetic data as in the package Gaston (see documentation
of this package for more details).

In this vignette, we illustrate how to perform rare variant association tests on real data on different phenotypes
at a genome-wide scale. A second vignette is available showing how to simulate genetic data and how to use
them for power calculation. To learn more about all options of the functions, the reader is advised to look at
the manual pages.

Global parameters of Ravages

Functions in Ravages are parallelised either using RcppParallel when functions are implemented in C++ or
using parallel otherwise. When the argument cores is present in the function, it can be directly changed to
fix the number of cores to use. Otherwise, the number of threads used by multithreaded functions can be
modified through RcppParallel function setThreadOptions(). It is advised to try several values for the
number of threads, as using too many threads might be counterproductive due to an important overhead.
The default value set by RcppParallel is generally too high.

Information on progression is provided if verbose = T for multiple functions in Ravages.

Example of analysis using LCT data

Below is an example of an association analysis and previous steps of data filtering using the dataset LCT.matrix
available with the package Ravages. This dataset containts data from the 1000Genome project in the locus
containing the Lactase gene. In this example, we look for an association between rare variants and the
european populations of 1000Genomes. The population of each individual is available in the dataframe
LCT.matrix.pop1000G. A classical analysis by gene is performed, and an analysis using the strategy “RAVA-
FIRST”.

Details about the “RAVA-FIRST” strategy and each function is given right after this example.
Import data in a bed matrix
x <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)
Add population
x@ped[,c("pop", "superpop")] <- LCT.matrix.pop1000G[,c("population", "super.population")]

1

doi:10.1002/gepi.22210
doi:10.1002/gepi.22210
doi:10.1038/s41431-020-00792-8

Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

Group variants within know genes by extending their positions
500bp upstream and downstream
(the function uses build 37 unless told otherwise)
x <- set.genomic.region(x, flank.width=500)

a quick look at the result
table(x@snps$genomic.region, useNA = "ifany")

##
R3HDM1 UBXN4 LCT MCM6 DARS <NA>
2047 1207 1454 1149 924 1295

Filter variants with maf in the entire sample lower than 1%
And keep only genomic region with at least 10 SNPs
x1 <- filter.rare.variants(x, filter = "whole", maf.threshold = 0.01, min.nb.snps = 10)
table(x1@snps$genomic.region, useNA="ifany")

##
R3HDM1 UBXN4 LCT MCM6 DARS
268 172 208 163 136

run burden test CAST, using the 1000Genome population as "outcome"
Null model for CAST
x1.H0.burden <- NullObject.parameters(x1@ped$pop, ref.level = "CEU",

RVAT = "burden", pheno.type = "categorical")
burden(x1, NullObject = x1.H0.burden, burden = "CAST", cores = 1)

Categorical phenotype

p.value is.err
R3HDM1 1.300274e-04 0
UBXN4 1.993354e-05 0
LCT 4.489474e-08 0
MCM6 3.142808e-08 0
DARS 2.064661e-03 0

run SKAT, using the 1000Genome population as "outcome"
COnstruct null model for SKAT, then run test with only a few permutations
x1.H0.SKAT <- NullObject.parameters(x1@ped$pop, RVAT = "SKAT", pheno.type = "categorical")
SKAT(x1, x1.H0.SKAT, params.sampling=list(perm.target = 10, perm.max = 500))

Categorical phenotype
permutations

stat p.perm p.chi2 p.value
R3HDM1 6.445786 0.001996008 4.414844e-05 4.414844e-05
UBXN4 2.136390 0.017964072 1.340258e-02 1.340258e-02
LCT 3.623174 0.003992016 1.263409e-03 1.263409e-03
MCM6 2.923228 0.007984032 4.364514e-03 4.364514e-03
DARS 2.132967 0.043478261 8.326214e-02 4.347826e-02

run a similar analysis but using the RAVA-FIRST approach with WSS
RAVA-FIRST(x1, filter = "whole", maf.threshold = 0.01, min.nb.snps = 10,
burden = TRUE, x1.H0.burden, SKAT = F)

2

Defining genomic regions

For rare variant association tests, the unit of analysis is not a single variant but a genomic region or ‘testing
unit’, typically a gene. The first step of the analysis is therefore to group variants into genomic regions. This
can be done using the function set.genomic.region() and known regions positions. It works on a bed.matrix
(see Gaston) and simply adds a column “genomic.region” to the slot x@snps containing the genomic region (a
factor) assigned to each variant. The positions of regions should be given to regions as a dataframe in a bed
format containing the following columns: Chr, Start (0-based), End (1-based), Name. The dataframe should
absolutely be ordered in the genome order, as well as the levels of regions$Name.

By default, any variant being outside the gene positions won’t be annotated. Regions boundaries can be
extended to include more variants using the argument flank.width corresponding to the number of base pairs
upstream and downstream the region to which expand the positions. If flank.width=Inf, each variant will be
assigned to the nearest region.

If two regions overlap, variants in the overlapping zone will be attributed to both regions, separated
by a comma. By default, split=TRUE in set.genomic.region(), which means that variants at-
tributed to multiple regions will be duplicated in the bed matrix. This is done by calling the function
bed.matrix.split.genomic.region() which takes a bed matrix as argument (x) and duplicates variants
being assigned to multiple regions separated by split.pattern. If changeID=TRUE, the id from the bedmatrix
will be changed to the format chr:pos:A1:A2:genomic.region to distinguish the duplicated variants.

The files genes.b37 and genes.b38 available in Ravages which contain gene positions from ENSEMBL
versions GRCH37 and GRCH38 can be used as regions.

Running the following toy example will show you the behavior of these functions.
Example bed matrix with 4 variants
x.ex <- as.bed.matrix(x=matrix(0, ncol=4, nrow=10),

bim=data.frame(chr=1:4, id=paste("rs", 1:4, sep=""),
dist = rep(0,4), pos=c(150,150,200,250),
A1=rep("A", 4), A2=rep("T", 4)))

Example genes dataframe
genes.ex <- data.frame(Chr=c(1,1,3,4), Start=c(10,110,190,220), End=c(170,180,250,260),

Gene_Name=factor(letters[1:4]))

Attribute genomic regions without splitting the variants
attributed to multiple genomic regions
x.ex <- set.genomic.region(x.ex, regions = genes.ex, split = FALSE)
x.ex@snps$genomic.region

Split genomic regions
x.ex.split <- bed.matrix.split.genomic.region(x.ex, split.pattern = ",")
x.ex.split@snps$genomic.region

Rare variant selection

Frequency filter

To perform rare variant analysis, it is also important to define what is a rare variant in order to leave out
common ones that are expected to have a weaker functional impact. The function filter.rare.variants()
enables to keep only variants with a MAF (Minor Allele Frequency) below a given threshold while leaving out
monomorphic variants. This function uses and returns a bed.matrix which can be filtered in three different
ways:

3

• If filter=“whole”, all the variants with a MAF lower than the threshold in the entire sample will be kept.
• If filter=“controls”, all the variants with a MAF lower than the threshold in the controls group will be

kept. In this situation, the controls group needs to be specified to the argument ref.level.
• If filter=“any”, all the variants with a MAF lower than the threshold in any of the groups will be kept.

It is also possible to specify the minimum number of variants needed in a genomic region to keep it using the
parameter min.nb.snps, as well as the minimum cumulative MAF using min.cumulative.maf.

For the any and controls filters, the group of each individual should be given as a factor to group.

Rare variant association tests

We have implemented two burden tests extensions (CAST and WSS, doi:10.1002/gepi.22210) and an extension
of the variance-component test SKAT (doi:10.1038/s41431-020-00792-8) to perform the association tests
between a region and more than two groups of individuals.

The general idea of burden tests is to compute a genetic score per individual and per genomic region and to
test if its distribution differs between the different groups of individuals. To extend these tests to more than
two groups of individuals, a non-ordinal multinomial regression is used. The independant variable in this
regression is the genetic effect of the region represented by the genetic score. Covariates can be added in the
model. In addition to the genetic scores CAST and WSS directly implemented in the package, the user can
specify another genetic score for the regression.

The variance-component test SKAT looks at the dispersion of genetics effects of rare variants. A geometrical
interpretation of the test was used for its extension to more than two groups of individuals. Covariates can
also be included in this model.

Genetic score for burden tests

We have implemented two functions to compute CAST and WSS scores respectively. These functions
return a matrix with one row per individual and one column by genomic region. They are directly called
in the function burden() if these scores are used to perform the association tests. It is also possible to
compute genetic scores in a genomic region based on a vector of weights for each variant using the function
burden.weighted.matrix(). It is important to note that all burden functions compute a score for the
rare alleles. Therefore, if the reference allele is rare, the alleles will be flipped and the reference allele will
be counted in the score instead of the alternative allele. This can be avoided only in the CAST() score if
flip.rare.alleles = FALSE (it is set at TRUE by default).

CAST

CAST is based on a binary score which has a value of one if an individual carries at least one variant in the
considered genomic region, and 0 otherwise. A MAF threshold for the definition of a rare variant is therefore
needed (argument maf.threshold). This score can be computed using the function CAST() as shown here on
the LCT data:
Calculation of the genetic score with a maf threshold of 1%
CAST.score <- CAST(x = x1, genomic.region = x1@snps$genomic.region, maf.threshold = 0.01)
head(CAST.score)

R3HDM1 UBXN4 LCT MCM6 DARS
HG00096 0 0 1 1 1
HG00097 1 0 0 0 0
HG00099 1 0 0 0 0
HG00100 0 1 0 0 0
HG00101 0 1 0 0 0

4

doi:10.1002/gepi.22210
doi:10.1038/s41431-020-00792-8

HG00102 1 0 0 0 1

WSS

WSS (Weighted Sum Statistic) is based on a continuous score giving the highest weights to the rarest variants:

WSSj =
R∑

i=1
Iij × wi

with
wi = 1√

ti × qi × (1 − qi)
and

qi = ni + 1
2ti + 1

Where ni is the total number of minor alleles genotyped for variant i, ti is the total number of alleles
genotyped for variant i and Iij is the number of minor alleles of variant i for the invidual j. In the original
method, each variant is weighted according to its frequency in the controls group. In our version of WSS, the
weights depend on allele frequencies calculated on the entire sample ; this avoids using permutations. The
function WSS() can be used to compute the WSS score as shown on the LCT data:
WSS.score <- WSS(x = x1, genomic.region = x1@snps$genomic.region)
head(WSS.score)

R3HDM1 UBXN4 LCT MCM6 DARS
HG00096 0.0000000 0.000000 0.8185268 1.26932 1.418436
HG00097 0.8185268 0.000000 0.0000000 0.00000 0.000000
HG00099 1.0019881 0.000000 0.0000000 0.00000 0.000000
HG00100 0.0000000 1.001988 0.0000000 0.00000 0.000000
HG00101 0.0000000 1.001988 0.0000000 0.00000 0.000000
HG00102 1.0019881 0.000000 0.0000000 0.00000 1.001988

Other genetic scores

It is also possible to compute other genetic scores based on variants weights using the function bur-
den.weighted.matrix(). The weights should be given as a vector to weights (with the length as the number
of variants). The genetic score will be compute as:

Scorej =
R∑

i=1
Iij × wi

with wi the weight of each variant in weights, and Iij the number of minor alleles for individual j in variant i.
Here is an example corresponding to a genetic score with all the weights at 1, i.e. counting the number of
minor alleles:
Sum.score <- burden.weighted.matrix(x = x1, weights = rep(1, ncol(x1)))
head(Sum.score)

R3HDM1 UBXN4 LCT MCM6 DARS
HG00096 0 0 1 2 2
HG00097 1 0 0 0 0
HG00099 1 0 0 0 0
HG00100 0 1 0 0 0
HG00101 0 1 0 0 0
HG00102 1 0 0 0 1

5

Regressions

We have extended burden tests using a non-ordinal multinomial regression model. Let consider C groups of
individuals including a group of controls (c = 0) and C − 1 groups of cases with different sub-phenotypes of
the disease. We can compute C − 1 probability ratios, one for each group of cases:

ln
P (Yj = c)
P (Yj = 0) = β0,c + βG,cXG + βk1,cK1 + ...+ βkl,cKl

where Yj corresponds to the phenotype of the individual j and Kl is a vector for the lth covariate with the
corresponding coefficient βkl. The genetic effect is represented by XG and correspond to the genetic score
(for example CAST or WSS) with βG,c the log-odds ratio associated to this burden score.

The p-value associated to the genetic effect is calculated using a likelihood ratio test comparing this model to
the same model without the genetic effect (null hypothesis). If only two groups are compared, a classical
logistic regression is performed.

This regression can be performed on a bed.matrix using the function burden() which relies on the package
mlogit. Parameters under the null model can be obtained using the function NullObject.parameters().
To generate this null model, the phenotype (argument pheno) of each individual should be given as a factor,
and the potential covariates to include in the model should be given as a matrix to the argument data (one
row per individual and one column per covariate). If only a subset of covariates from data are to be included
in the model, a R formula should be given to formula with these covariates, otherwise all the covariates will
be included. In addition, the reference group should be given to the argument ref.level, i.e. all odds ratios
will be computed in comparison to this group of individuals. The choice of the reference group won’t affect
the p-value. As the parameters needed to run the association tests depend on the type of test performed
(burden tests or SKAT), and the type of phenotype (continuous or categorical), both arguments shouls be
given to NullObject.parameters() (RVAT and pheno.type respectively).

The function NullObject.parameters() will return a list with the parameters to use in burden() to run
the burden test, including the Log-Likelihood computed under the null model, the argument data with the
covariates to include determined from the argument formula.

Once the null model has been created, the function burden() can be used to perform burden tests. To do so,
the user needs to give the results from NullObject.parameters() to the argument NullObject, and needs
to specify the genomic region associated to each variant (argument genomic.region).

The CAST or WSS genetic scores can be directly calculated in the regression (burden=“CAST” or bur-
den=“WSS”). The user can also use another genetic score in the regression, which has to be specified as a
matrix with one row per individual and one column per genomic region to burden. In this situation, no bed
matrix is needed, and the result from burden.weighted.matrix() can be used directly.

To shorten the computation time, calculations are parallelised; the argument cores, set at 10 by default,
controls the parallelisation.

The function burden() will return the p-value associated to the regression for each genomic region. If there
is a convergence problem with the regression, the function will return 1 in the column is.err. The effect size
(odds ratio for categorical phenotypes and beta value for continuous phenotypes) associated to each group of
cases compared to the reference group (NullObject$ref.level) with its confidence interval at a given alpha
threshold (argument alpha) can also be obtained with get.effect.size=TRUE.

An example of the p-value and OR calculation with its 95% confidence interval using WSS on the LCT data
is shown below with or without the inclusion of covariates. The outcome here corresponds to the population
from 1000Genome.
Null model
x1.H0 <- NullObject.parameters(x1@ped$pop, ref.level = "CEU",

RVAT = "burden", pheno.type = "categorical")
WSS
burden(x = x1, NullObject = x1.H0, burden ="WSS",

6

alpha=0.05, get.effect.size=TRUE, cores = 1)

Sex + a simulated variable as covariates
sex <- x1@ped$sex
u <- runif(nrow(x1))
covar <- cbind(sex, u)
Null model with the covariate "sex"
x1.H0.covar <- NullObject.parameters(x1@ped$pop, ref.level = "CEU",

RVAT = "burden", pheno.type = "categorical",
data = covar, formula = ~ sex)

Regression with the covariate "sex" without OR values
Using the score matrix WSS computed previously
burden(NullObject = x1.H0.covar, burden=WSS.score, cores = 1)

Finally, using Ravages, it is also possible to perform burden tests with a continuous phenotype by specifying
pheno.type = “continuous”, and by giving a numeric vector to pheno as showed below:
Random continuous phenotype
set.seed(1) ; pheno1 <- rnorm(nrow(x1))
Null model
x1.H0.continuous <- NullObject.parameters(pheno1, RVAT = "burden",

pheno.type = "continuous")
Test CAST
burden(x1, NullObject = x1.H0.continuous, burden = "CAST", cores = 1)

Functionally-informed burden tests

Finally, we offer to perform functionally-informed burden tests to take into account functional information.
To do so, we propose to define genomic regions (for example a gene of interest) and to integrate sub-scores in
the regression corresponding to different functional categories (for example distinguish between coding and
regulatory variants). A burden test will then be applied for each genomic region but will take into account
the different categories of variants. The number of freedom corresponds to: (number of groups of individuals
- 1) * number of sub-scores.

To attribute variants to genomic region and subregions, the function set.genomic.region.subregion()
needs to be used which is very similar to set.genomic.region(). Two dataframes (in bed format) should be
included: one for the large genomic regions (regions), and one for the subregions (subregions). Two columns
will be added to *x@snps*: genomic.region and SubRegion.

The function burden.subscores() can then be applied on this bed matrix, which works similarily as
burden(), with the extra argument SubRegion corresponding to the vector with the subregions on which
subscores should be computed. In addition, the argument burden.function replaces the argument burden in
burden() and requires to give a function which determines how the genetic score is computed (for example
CAST or WSS).

Below is an example of the two functions where subscores correspond to coding and regulatory categories in
the LCT locus.
*** Functionally-informed WSS analysis ***
Attribution of variants to regions and subregions
x2 <- set.genomic.region.subregion(x, regions = genes.b37,

subregions = subregions.LCT)
Burden test
burden.subscores(x2, x1.H0.burden, cores = 1)

7

mailto:*x@snps*

Categorical phenotype

p.value n_subscores is.err
R3HDM1 NA 3 1
UBXN4 2.626565e-21 2 0
LCT NA 3 1
MCM6 3.488717e-31 2 0
DARS NA 3 1

SKAT

We also extended the variance-component test SKAT using a geometric interpretation. Unlike the burden
tests, the is no burden calculated in this test: the distribution of the genetic effects in the genomic region is
compared to a null distribution. SKAT is based on a linear mixed model where the random effects correspond
to the genetic effects.

Before running SKAT, the function NullObject.parameters() first needs to be called as for the burden
tests, but by specifying RVAT = “SKAT”. As before, potential covariates could be included as a matrix
to data. If only some of them are to be included, they should be given as a R formula to formula. This
function will compute parameters to use the SKAT() function, and should be given to this function using
the argument NullObject.

To compute the p-values, a chi-square approximation is used based on the statistics’ moments. The moments
can either be estimated using a sampling procedure, or be analytically computed using the method from
Liu et al. 2008. The chi-square approximation can be based on the first three moments (estimation.pvalue
= “skewness”), or on moments 1, 2 and 4 to have a more precise estimation of the tail distribution
(estimation.pvalue = “kurtosis”). If get.moments = “theoretical” and estimation.pvalue = “skewness”, it is
equivalent to the “liu” method in the SKAT package, and if estimation.pvalue = “kurtosis”, it corresponds to
the “liu.mod” method in the SKAT package. If debug = TRUE, the statistics’ moments will be returned in
addition to the p-values.

If the sample size is lower than 2000, we recommand to use the sampling procedure. If no covariates are
present, a simple permutation procedure can be used (get.moments = “permutations”), otherwise, a boostrap
sampling should be used (get.moments = “bootstrap”). For those two situations, a sequential procedure is
used to compute the p-values: permutated statistics are computed and each one is compared to the observed
statistics. The sampling procedure stops when either perm.target (the number of times a permutated statistics
should be greater than the observed statistics) or perm.max (the maximum number of permutations to
perform) is reached. P-values are then computed in two different ways: if perm.target is reached, the p-value
is computed as perm.target divided by the number of permutations performed to reach this value; if perm.max
is reached before perm.target (that is, for pretty small p-values), p-values are computed using the chi-square
approximation based on moments estimated from the permutated statistics. perm.target and perm.max
should be given as a list to the argument params.sampling of SKAT.

If the sample size is bigger than 2000, the analytical calculation from Liu et al. (2009) can be used to compute
the theoretical moments. In this situation, it is possible to parallelise the calculations using the argument
cores, set at 10 by default. Nevertheless, this method can take more computation time than the permutation
procedures when the sample size is large. We therefore recommend to use one of the permutation procedures
to run a first analysis, and then to use the theoretical moments only for the most associated regions.

It is possible to clearly ask for a specific method to compute the moments using get.moments = “permutations”,
“bootstrap” or “theoretical”. By default, get.moments = “size.based”, and the method will depend on the
sample size.

An example of the SKAT function by specifying the “permutations” or “theoretical” method is shown.
Null model
x1.null <- NullObject.parameters(x1@ped$pop, RVAT = "SKAT", pheno.type = "categorical")

8

Permutations because no covariates
SKAT(x1, x1.null, get.moments = "permutations", debug = TRUE,

params.sampling = list(perm.target = 100, perm.max =5e4))
Theoretical on 1 core
SKAT(x1, x1.null, get.moments = "theoretical", debug = TRUE, cores = 1)

It is also possible to perform the SKAT test on a continuous phenotype by using the argument pheno.type =
“continuous” in NullObject.parameters() before the SKAT() function:
Random continuous phenotype
set.seed(1) ; pheno1 <- rnorm(nrow(x1))
Null Model with covariates
x1.H0.c <- NullObject.parameters(pheno1, RVAT = "SKAT", pheno.type = "continuous",

data = covar)
Run SKAT
SKAT(x1, x1.H0.c)

RAVA-FIRST (RAre Variant Analysis using Functionally-InfoRmed STeps)

Ravages also offers the possibility to analyse rare variants using the ‘RAVA-FIRST’ strategy, composed of
three main steps: defining testing units, filtering rare variants, and running functionnaly informed burden
tests.

Definition of testing units: CADD regions

CADD regions are non-overlapping regions defined genome-wide using the variant pathogenicity score CADD
that can be used as testing units: regions are defined between SNVs observed at least two times in GnomAD
with a high CADD score. This CADD score is not the original CADD score v1.4 oublished by Rentzch et al.,
but an adjusted score that take into account three types of functional categories : coding, regulatory and
intergenic categories. This adjusted score enables to find the most important functional variants within each
of those three categories.

To attribute adjusted CADD scores to variants, the function adjustedCADD.annotation() can be used. It
will call the function adjustedCADD.annotation.SNVs() and adjustedCADD.annotation.indels()
to annotate SNVs and indels respectively. As CADD scores are available for every SNVs in the genome,
SNVs in the bed matrix will be annotated using a provided file with adjusted CADD scores to SNVs.scores
(with columns ‘chr’, ‘pos’, ‘A1’, ‘A2’, ‘adjCADD’), or by downloading the adjusted scores from https:
//lysine.univ-brest.fr/RAVA-FIRST/ in a repository indicated to path.data. Oppositely, pre-computed
PHRED CADD scores are not available for every indel in the genome and they should be annotated online
in https://cadd.gs.washington.edu/. To computed adjusted CADD scores for indels, we used a set of 48M
indels available at https://cadd.gs.washington.edu/download. Indels in the bed matrix will then be annotated
using the file AdjustedCADD_v1.4_202204_indels.tsv.gz downloaded from https://lysine.univ-brest.fr/
RAVA-FIRST/ and if new indels not present in the set of 48M indels are to be annotated, they will be given
the same adjusted score as the indel with the nearest PHRED v1.4 CADD score. Therefore, if indels are
present in the bed matrix, a file with the CADD PHRED v1.4 score should be given to indels.scores in
adjustedCADD.annotation() (with columns ‘chr’, ‘pos’, ‘A1’, ‘A2’, ‘CADD’).

To assign variants to CADD regions and to the functional categories, the function set.CADDregions()
can be used. It will add genomic.region to the bed matrix with the corresponding CADD regions present
in the file “CADDRegions.2021.hg19.bed.gz” and SubRegion with the functional area present in the file
“FunctionalAreas.hg19.bed.gz”, both directly downloaded from https://lysine.univ-brest.fr/RAVA-FIRST/
in the repository deifined in path.data. In addition, adjCADD.Median will be added to *x@snps* which
correspond to the median adjusted CADD score of variants (SNVs + indels) observed at least two times in
GnomAD and can be used for variant filtering as explained later.

9

https://lysine.univ-brest.fr/RAVA-FIRST/
https://lysine.univ-brest.fr/RAVA-FIRST/
https://cadd.gs.washington.edu/
https://cadd.gs.washington.edu/download
https://lysine.univ-brest.fr/RAVA-FIRST/
https://lysine.univ-brest.fr/RAVA-FIRST/
https://lysine.univ-brest.fr/RAVA-FIRST/
mailto:*x@snps

Attribution of CADD regions
x.CADDregions <- set.CADDregions(x)
Annotation of variants with adjusted CADD scores
x <- adjustedCADD.annotation(x)

Filtering of rare variants: region-dependant thresholds

In RAVA-FIRST, we propose a new approach to select rare variants to include in the RVAT that keeps
within each CADD region only the variants with an adjusted CADD score greater than the median observed
in GnomAD. To this end, the function filter.adjustedCADD() can be used which relies on the same
arguments than filter.rare.variants() for the frequency parameters. Within this function, SNVs ans indels
of the bed matrix will be directly annotated using adjustedCADD.annotation() described earlier. If the
bed matrix has previously been annotated by adjustedCADD.annotation(), filter.adjustedCADD()
will filter rare variants based on x@snps$adjCADD without annotating the variants to gain in computation
time. Only the variants with a score greater than the median will be kept. It is necessary that the bed matrix
is first annotated with set.CADDregion() to get the median of each variant from its corresponding CADD
region.
Keep only CADD regions with 2 variants and variants with a MAF greater than 1%
and with an adjusted CADD score greater than the median
x.median <- filter.adjustedCADD(x.CADDregions, maf.threshold = 0.01, min.nb.snps = 2)

Functionally-informed burden tests

CADD regions can overlap different types of functional categories (coding, regulatory or intergenic regions).
To take them into account in RAVA-FIRST, we propose to use the functionally-informed burden test
burden.subscores() with subscores in the regression, one for each functional category, within each CADD
region. There will be at most three sub-scores in the regression. burden.subscores() can be directly applied
on the bed matrix obtained from set.CADDregions() or filter.adjustedCADD().
SKAT() can also be applied on the bed matrix with variants grouped and filtered according to RAVA-FIRST
but it will correspond to the classical SKAT analysis without the integration of functional information.
Functionally-informed WSS analysis
x.burden <- burden.subscores(x.median, x1.H0.burden, burden.function = WSS)
SKAT analysis
x.SKAT <- SKAT(x.median, x1.H0.SKAT)

Complete RAVA-FIRST approach and whole-genome analysis

RAVA-FIRST enables to perform RVAT in the whole genome. To facilitate the analysis, we propose the
function RAVA.FIRST() which gathers all the previous functions and enables to directly performs the
whole RAVA-FIRST strategy on a bed matrix. It simply needs the bed matrix and the NullObject (that
can be obtained from NullObject.parameters() and should be given to H0.burden and/or H0.SKAT) and
optional filtering arguments and parameters for the RVAT previously mentionned. burden.parametrs should
be a list containing burden.function and get.effect.size if burden = TRUE and SKAT.parameters should be
a list containing weights, get.moments estimation.pvalue, param.sampling and debug if SKAT = TRUE. If
no such list is provided, the default parameters of burden.subscores() and SKAT will be used. Due to
time and memory management, we advise the user to import the data and apply the different functions of
annotation, filtering and association (or directly RAVA.FIRST()) chromosome by chromosome for large
datasets as shown in the example below.

10

*** RAVA-FIRST analysis with functionally-informed WSS and SKAT
#Burden parameters
burden.parameters <- list(get.effect.size = T, burden.function = WSS)
Chromosome by chromosome
res.bychr <- vector("list", 22)
for(chr in 1:22){

x <- read.bed.matrix(paste0(path_file, prefix_vcf, chr, ".vcf.gz"))
res.bychr[[chr]] <- RAVA.FIRST(x, H0.burden = H0.burden, H0.SKAT = H0.SKAT,

burden.parameters = burden.parameters)
}

When using RAVA-FIRST(), results of association analysis will be provided for burden and/or SKAT
depending on the corresponding arguments. In addition of the results of the test, information about the
CADD region will be provided: the positions of the regions, the type of genomic category overlapped by each
CADD region, and finally the median of adjusted CADD scores used for the filtering of rare variants.

To get more information about a specific CADD region of interest, especially about the positions of the
genomic categories in this region, the user is advised to directly use the file “FunctionalAreas.hg19.bed.gz”
and the corresponding tabix file in the Ravages repository to look at the positions of the corresponding
CADD region.

Data management

Data in plink format or in vcf format can be loaded in R using the functions read.bed.matrix() and
read.vcf() respectively from the package gaston.

If the data for the controls and the different groups of cases are in different files, they can be loaded separately
and then combined using the function gaston::rbind() as long as the same variants are present between the
different groups of individuals.

An example is given below where the simulated data have been split according the the group of each individual,
and then combined in a bed.matrix:
Selection of each group of individuals
CEU <- select.inds(x1, pop=="CEU")
CEU

A bed.matrix with 99 individuals and 947 markers.
snps stats are set
There are 748 monomorphic SNPs
ped stats are set

FIN <- select.inds(x1, pop=="FIN")
FIN

A bed.matrix with 99 individuals and 947 markers.
snps stats are set
There are 771 monomorphic SNPs
ped stats are set

GBR <- select.inds(x1, pop=="GBR")
GBR

A bed.matrix with 91 individuals and 947 markers.
snps stats are set
There are 792 monomorphic SNPs
ped stats are set

11

Combine in one file:
CEU.FIN.GBR <- rbind(CEU, FIN, GBR)
CEU.FIN.GBR

A bed.matrix with 289 individuals and 947 markers.
snps stats are set
There are 515 monomorphic SNPs
ped stats are set

12

	Introduction
	Global parameters of Ravages

	Example of analysis using LCT data
	Defining genomic regions
	Rare variant selection
	Frequency filter

	Rare variant association tests
	Genetic score for burden tests
	Functionally-informed burden tests
	SKAT

	RAVA-FIRST (RAre Variant Analysis using Functionally-InfoRmed STeps)
	Definition of testing units: CADD regions
	Filtering of rare variants: region-dependant thresholds
	Functionally-informed burden tests
	Complete RAVA-FIRST approach and whole-genome analysis

	Data management

