
Package ‘Rcplex’
December 5, 2021

Version 0.3-5

Date 2021-12-04

Title R Interface to CPLEX

Description R interface to CPLEX solvers for linear, quadratic, and (linear and quadratic) mixed inte-
ger programs. Support for quadratically constrained programming is available. See the file ``IN-
STALL'' for details on how to install the Rcplex package in Linux/Unix-like and Windows sys-
tems. Support for sparse matrices is provided by an S3-style class ``sim-
ple_triplet_matrix'' from package slam and by objects from the Matrix package class hierarchy.

LazyLoad yes

Depends R (>= 2.6.0), slam

Imports methods

Enhances Matrix

SystemRequirements IBM ILOG CPLEX libraries and headers

License LGPL (>= 2.0)

URL https://R-Forge.R-project.org/projects/rcplex

NeedsCompilation yes

Author Hector Corrada Bravo [aut],
Kurt Hornik [ctb],
Stefan Theussl [aut, cre]

Maintainer Stefan Theussl <Stefan.Theussl@R-project.org>

Repository CRAN

Date/Publication 2021-12-05 08:00:12 UTC

R topics documented:
Rcplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Rcplex.close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Rcplex_solve_QCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 10

1

https://R-Forge.R-project.org/projects/rcplex


2 Rcplex

Rcplex Solve optimization problem with CPLEX

Description

Interface to CPLEX solvers for linear quadratic and (linear or quadratic) mixed-integer programs.
The general statement of the problem is

min
1

2
x′Qx+ c′x

s.tAx ≤ b

lb ≤ x ≤ ub

If Q==NULL then the problem is linear, if any value of the vtype argument is "B" or "I" then the prob-
lem is a mixed-integer program. The control argument is used to set CPLEX’s many parameters.
See details. The objsense determines if the problem is a maximization or minimization problem.
The sense argument is used to set the constraint directions.

Usage

Rcplex(cvec, Amat, bvec, Qmat = NULL,
lb = 0, ub = Inf, control = list(),
objsense = c("min", "max"), sense = "L", vtype = NULL, n = 1)

Arguments

cvec The linear coefficient of the objective function

Amat The constraint matrix (requires ncol(Amat)==length(cvec))

bvec The constraints right-hand side (requires length(bvec)==nrow(Amat))

Qmat The quadratic coefficient of the objective function. If NULL the problem is lin-
ear. If not NULL, it must be a symmetric positive semidefinite matrix of size
length(cvec) by length(cvec). Default NULL

lb Lower bound on the problem variables. If length(lb)==1 then lb is the lower
bound of all variables. Otherwise, length(lb)==length(cvec). Set lb=-Inf
to have no lower bound. Default 0.

ub Upper bound on the problem variables. See lb for further details. Default Inf.

control A list of CPLEX parameters. See *Details*

objsense Either "max" or "min", determines the optimization direction. Default "min"

sense The direction of the inequality in each constraint. If length(sense)==1 then the
same value is taken for each constraint. Can be one of "L" (less than or equal),
"G" (reater than or equal) or "E" (equal). Requires length(sense)==length(bvec).
Default "L".



Rcplex 3

vtype Determines the type of each problem variable. Can be one of "C" (continuous),
"I" (integer) or "B" (binary). If length(vtype)==1 the same value is taken for
all variables. Otherwise, requires length(vtype)==length(ctype). Default
"C".

n Determines the maximal number of solutions the solver should return in case
of an MIP with more than one solution at optimum. If CPLEX should search
for "all" solutions then n has to be set to NA. In CPLEX this is also called
populating the solution pool. The parameters solnpoolagap, solnpoolgap,
and solnpoolintensity influence the search for multiple solutions (see also
the control argument below for details). Available from CPLEX 11.0 on.
Rcplex() raises a warning if an older version of CPLEX is used and n>1. De-
fault 1.

Details

Matrices A and C may be sparse matrices from a class in the hierarchy defined by the Matrix pack-
age. In that case, the internal casting functions are used to create the proper data structures to pass
to CPLEX, which is similar to the column-major storage mode defined by the dgCMatrix-class
defined by the Matrix package.

We also provide a simple S3-style class for sparse matrices simple_triplet_matrix, as used in
the relations package. Matrices A and C can be objects of this class. See the examples for example
usage. simple_triplet_matrix objects MUST be in column-major order.

The control argument can be used to set CPLEX’s many parameters, including the particular
algorithm used for solving the given problem. See the ILOG CPLEX Parameters guide for further
details. The following parameters are supported:

trace: Turn CPLEX output on (1) or off(0). Default 1.

maxcalls: Number of calls to the CPLEX optimizer before license is released. Set to 1 to get a new
license on every call to Rcplex. Can be any positive number. Default 500.

method: Algorithm to use (Default 0):

0: Automatic: CPLEX chooses algorithm automatically
1: Primal Simplex
2: Dual Simplex
3: Network Simplex
4: Barrier

preind: Turn presolver on (1) or off (0). Default 1.

aggind: Limit on the number of applications of the aggregator. Possible Values: -1 (automatic), 0
(do not use), any positive integer

itlim: Maximum number of simplex iterations. Can be any nonnegative number. Default 1e8.

epagap: Absolute MIP optimality gap tolerance. Can be any nonnegative number. Default 1e-6.

epgap: Relative MIP optimality gap tolerance. Can be any nonnegative number. Default 1e-4.

tilim: Time limit in seconds of call to optimizer. Can be any nonnegative number. Default 1e75.

disjcuts: Indicator for disjunctive cuts used in MIP solver. Must be in -1:3. Default 0 (automatic).



4 Rcplex

mipemphasis: Indicator for MIP solver emphasis. Must be in 0:4. Default 0 (balance optimality
and feasibility)

cliques: Indicator for clique cuts in MIP solver. Must be in -1:2. Default 0 (automatic)

nodesel: Node selection strategy in MIP solver. Must be in 0:3. Default 1 (best-bound search).

probe: Probe level in MPI solver. Must be -1:3. Default 0 (automatic)

varsel: Variable selection strategy in MIP solver. Must be in -1:4. Default 0 (choose best method
automatically).

flowcovers: Indicator for flowcover cuts in MIP solver. Must be in -1:2. Default 0 (automatic).

solnpoolagap: Sets an absolute tolerance on the objective value for the solutions in the solution
pool. Can be any nonnegative real number. Ignored in versions < 11.0 of CPLEX. Default 0

solnpoolgap: Sets a relative tolerance on the objective value for the solutions in the solution pool.
Can be any nonnegative real number. Ignored in versions < 11.0 of CPLEX. Default 0

solnpoolintensity: Controls the trade-off between the number of solutions generated for the solu-
tion pool and the amount of time and memory consumed. Must be in 0:4. Ignored in versions
< 11.0 of CPLEX. Default 0 (automatic).

round: Flag indicating if integer solutions for MIPs should be rounded before returning. In some
cases, CPLEX returns slightly infeasible integer solutions. Setting this option to 1 ensures that
the returned solution is integral by rounding. Default 0 (no rounding).

Value

Returns a list with the following components, or, if n > 1 a list of length equal to the number of
optimal solutions containing the following components for each solution:

xopt Values of problem variables at optimum.

obj Value of objective function at optimum.

status Solution status. See CPLEX documentation for meaning of status codes.

extra List with extra information about solution with components

slack: Values of slack variables for inequality constraints.
nodecnt: (IF MIP PROBLEM) Number of nodes in the search tree evaluated
lambda: (IF NOT MIP PROBLEM) Values of dual variables at optimum

Author(s)

Hector Corrada Bravo and Stefan Theussl

References

IBM ILOG CPLEX Optimization Studio documentation

See Also

Rcplex.close, optim



Rcplex 5

Examples

## A linear program (this is lpex1.c in the CPLEX examples)
cvec <- c(1,2,3)
Amat <- matrix(c(-1,1,1,-1,3,-1),byrow=TRUE,nc=3)
bvec <- c(20,-30)
ub <- c(40,Inf,Inf)

res <- Rcplex(cvec,Amat,bvec,ub=ub,objsense="max",sense=c('L','G'))
print(res)

## A linear program with random data
## use the barrier method
n = 20; m = 25
nnz <- trunc(.2 * m * n)

## entries in simple_triplet_matrix clas
## *must* be in column major order
nnz <- sort(sample(m*n,nnz,replace=FALSE)-1)
Amat <- simple_triplet_matrix(

i = (nnz %% m) + 1,
j = trunc(nnz/m) + 1,
v = rnorm(nnz),
nrow=m,ncol=n)

x0 <- runif(n)
b <- as.matrix(Amat) %*% x0
cvec <- rnorm(n)

res <- Rcplex(cvec,Amat,b,sense='E',control=list(method=4))
print(res)

## A quadratic problem (this is qpex1.c in the CPLEX examples)
cvec <- c(1,2,3)
Qmat <- matrix(c(-33,6,0,

6,-22,11.5,
0,11.5,-11),

byrow=TRUE,
nc=3)

Amat <- matrix(c(-1,1,1,
1,-3,1),

byrow=TRUE,nc=3)
bvec <- c(20,30)
ub <- c(40,Inf,Inf)

res <- Rcplex(cvec,Amat,bvec,Qmat,ub=ub,objsense="max")
print(res)

## A mixed integer linear program (mipex1.c in the CPLEX examples)
cvec <- c(1,2,3,1)
Amat <- matrix(c(-1,1,1,10,

1,-3,1,0,
0,1,0,-3.5),



6 Rcplex.close

byrow=TRUE, nc=4)
bvec <- c(20,30,0)
lb <- c(0,0,0,2)
ub <- c(40,Inf,Inf,3)
vtype <- c(rep("C",3),"I")

res <- Rcplex(cvec,Amat,bvec,lb=lb,ub=ub,sense=c("L","L","E"),
objsense="max",vtype=vtype)

print(res)

## A mixed integer quadratic program
cvec <- c(1,2,3,1)
Qmat <- matrix(c(-33,6,0,0,

6,-22,11.5,0,
0,11.5,-11,0,
0,0,0,0),

byrow=TRUE, nc=4)
Amat <- matrix(c(-1,1,1,10,

1,-3,1,0,
0,1,0,-3.5),

byrow=TRUE, nc=4)
bvec <- c(20,30,0)
ub <- c(40,Inf,Inf,3)
vtype <- c(rep("C",3),"I")

res <- Rcplex(cvec,Amat,bvec,Qmat=Qmat,ub=ub,sense=c("L","L","E"),
objsense="max",vtype=vtype)

print(res)
Rcplex.close()

Rcplex.close Release CPLEX license

Description

This function releases the currently held CPLEX license.

Usage

Rcplex.close()

Author(s)

Hector Corrada Bravo

See Also

Rcplex



Rcplex_solve_QCP 7

Rcplex_solve_QCP Solve quadratically constrained optimization problem with CPLEX

Description

Interface to CPLEX solvers for quadratically constrained linear, quadratic, and mixed-integer pro-
grams. The general statement of the problem is

min
1

2
x′Qx+ c′x

s.tAx ≤ b

anda′ix+ x′Qix ≤ rifori = 1, . . . , q

lb ≤ x ≤ ub

If Q==NULL then the problem is linear, if any value of the vtype argument is "B" or "I" then the prob-
lem is a mixed-integer program. The control argument is used to set CPLEX’s many parameters.
See details. The objsense determines if the problem is a maximization or minimization problem.
The sense argument is used to set the constraint directions.

Usage

Rcplex_solve_QCP(cvec, Amat, bvec, Qmat = NULL, QC,
lb = 0, ub = Inf, sense = "L", objsense = c("min", "max"), vtype

= NULL, n = 1, control = list())

Arguments

cvec The linear coefficient of the objective function

Amat The constraint matrix (requires ncol(Amat)==length(cvec))

bvec The constraints right-hand side (requires length(bvec)==nrow(Amat))

Qmat The quadratic coefficient of the objective function. If NULL the problem is lin-
ear. If not NULL, it must be a symmetric positive semidefinite matrix of size
length(cvec) by length(cvec). Default NULL

QC a list with three elements: QC, dir, and b. The element QC is a list with the
quadratic part Q, a matrix, and the linear part of the constraint L, a numeric
(currently nonzero values are not supported). dir has the same meaning as
argument sense and b as bvec.

lb Lower bound on the problem variables. If length(lb)==1 then lb is the lower
bound of all variables. Otherwise, length(lb)==length(cvec). Set lb=-Inf
to have no lower bound. Default 0.

ub Upper bound on the problem variables. See lb for further details. Default Inf.

control A list of CPLEX parameters. See *Details*

objsense Either "max" or "min", determines the optimization direction. Default "min"



8 Rcplex_solve_QCP

sense The direction of the inequality in each constraint. If length(sense)==1 then the
same value is taken for each constraint. Can be one of "L" (less than or equal),
"G" (reater than or equal) or "E" (equal). Requires length(sense)==length(bvec).
Default "L".

vtype Determines the type of each problem variable. Can be one of "C" (continuous),
"I" (integer) or "B" (binary). If length(vtype)==1 the same value is taken for
all variables. Otherwise, requires length(vtype)==length(ctype). Default
"C".

n Determines the maximal number of solutions the solver should return in case
of an MIP with more than one solution at optimum. If CPLEX should search
for "all" solutions then n has to be set to NA. In CPLEX this is also called
populating the solution pool. The parameters solnpoolagap, solnpoolgap,
and solnpoolintensity influence the search for multiple solutions (see also
the control argument below for details). Available from CPLEX 11.0 on.
Rcplex() raises a warning if an older version of CPLEX is used and n>1. De-
fault 1.

Details

See function link[Rcplex]{Rcplex}() for more information about sparse matrix representation
and control arguments.

Value

Returns a list with the following components, or, if n > 1 a list of length equal to the number of
optimal solutions containing the following components for each solution:

xopt Values of problem variables at optimum.

obj Value of objective function at optimum.

status Solution status. See CPLEX documentation for meaning of status codes.

extra List with extra information about solution with components

slack: Values of slack variables for inequality constraints.
nodecnt: (IF MIP PROBLEM) Number of nodes in the search tree evaluated
lambda: (IF NOT MIP PROBLEM) Values of dual variables at optimum

Author(s)

Hector Corrada Bravo and Stefan Theussl

References

IBM ILOG CPLEX Optimization Studio documentation

See Also

Rcplex.close, optim



Rcplex_solve_QCP 9

Examples

## objective function
c <- c(1, 2, 3)
Q <- matrix(c(-33, 6, 0, 6, -22, 11.5, 0, 11.5, -11), nrow = 3)

## constraints

## linear part
A <- matrix(c(-1, 1, 1, -3, 1, 1), nrow = 2)
dir <- c("L", "L")
b <- c(20, 30)

## quadratic part
QC <- list(QC = list(Q = list(diag(1, nrow = 3)), L = NULL), dir = "L", b = 1)

## bounds
ub <- c(40, Inf, Inf)

## solve
res <- Rcplex_solve_QCP(c,A, b, Q, ub = ub, QC = QC, sense = dir, objsense = "max")
print(res)

## solve MIQCP
res <- Rcplex_solve_QCP(c, A, b, Q, ub = ub, QC = QC,

sense = dir, objsense = "max", vtype = c("C", "I", "C"))

## quadratic and linear part
QC <- list(QC = list(Q = list(diag(1, nrow = 3)), L = list(c(3,4,-3))), dir = "L", b = 1)

## solve
res <- Rcplex_solve_QCP(c,A, b, Q, ub = ub, QC = QC, sense = dir, objsense = "max")
print(res)

Rcplex.close()



Index

∗ optimize
Rcplex, 2
Rcplex_solve_QCP, 7

∗ utilities
Rcplex.close, 6

optim, 4, 8

Rcplex, 2, 6
Rcplex.close, 4, 6, 8
Rcplex_solve_QCP, 7

10


	Rcplex
	Rcplex.close
	Rcplex_solve_QCP
	Index

