
Package ‘RcppAlgos’
March 31, 2022

Version 2.5.3

Title High Performance Tools for Combinatorics and Computational
Mathematics

Description Provides optimized functions and flexible combinatorial iterators
implemented in C++ for solving problems in combinatorics and
computational mathematics. Utilizes the RMatrix class from 'RcppParallel'
for thread safety. There are combination/permutation functions with
constraint parameters that allow for generation of all results of a vector
meeting specific criteria (e.g. generating integer partitions
or finding all combinations such that the sum is between two bounds).
Capable of generating specific combinations/permutations (e.g. retrieve
only the nth lexicographical result) which sets up nicely for
parallelization as well as random sampling. Gmp support permits exploration
where the total number of results is large (e.g. comboSample(10000, 500,
n = 4)). Additionally, there are several high performance number theoretic
functions that are useful for problems common in computational mathematics.
Some of these functions make use of the fast integer division library
'libdivide'. The primeSieve function is based on the segmented sieve of
Eratosthenes implementation by Kim Walisch. It is also efficient for large
numbers by using the cache friendly improvements originally developed by
Tomás Oliveira. Finally, there is a prime counting function that implements
Legendre's formula based on the work of Kim Walisch.

URL https://github.com/jwood000/RcppAlgos, https://gmplib.org/,

https://github.com/kimwalisch/primesieve, http://libdivide.com,

https://github.com/kimwalisch/primecount,

http://ridiculousfish.com/,

http://sweet.ua.pt/tos/software/prime_sieve.html

BugReports https://github.com/jwood000/RcppAlgos/issues

LinkingTo cpp11

Imports gmp, methods

Suggests testthat, numbers, partitions, microbenchmark, knitr,
RcppBigIntAlgos, rmarkdown

1

https://github.com/jwood000/RcppAlgos
https://gmplib.org/
https://github.com/kimwalisch/primesieve
http://libdivide.com
https://github.com/kimwalisch/primecount
http://ridiculousfish.com/
http://sweet.ua.pt/tos/software/prime_sieve.html
https://github.com/jwood000/RcppAlgos/issues

2 R topics documented:

License GPL (>= 2)

SystemRequirements C++11, gmp (>= 4.2.3)

VignetteBuilder knitr

NeedsCompilation yes

Author Joseph Wood

Maintainer Joseph Wood <jwood000@gmail.com>

Encoding UTF-8

RoxygenNote 7.1.2

Repository CRAN

Date/Publication 2022-03-31 07:50:13 UTC

R topics documented:

RcppAlgos-package . 3
Combo-class . 4
comboCount . 5
comboGeneral . 6
comboGrid . 12
comboGroups . 13
comboGroupsCount . 16
comboGroupsSample . 17
comboIter . 19
comboSample . 23
Constraints-class . 25
divisorsRcpp . 26
divisorsSieve . 28
eulerPhiSieve . 29
isPrimeRcpp . 31
numDivisorSieve . 33
Partitions-class . 35
partitionsCount . 36
partitionsGeneral . 37
partitionsIter . 39
partitionsSample . 41
primeCount . 43
primeFactorize . 45
primeFactorizeSieve . 46
primeSieve . 48
stdThreadMax . 50

Index 51

RcppAlgos-package 3

RcppAlgos-package High Performance Tools for Combinatorics and Computational Math-
ematics

Description

The RcppAlgos package attacks age-old problems in combinatorics and computational mathemat-
ics.

Goals

1. The main goal is to encourage fresh and creative approaches to foundational problems. The
question that most appropriately summarizes RcppAlgos is: "Can we do better?".

2. Provide highly optimized functions that facilitates a broader spectrum of researchable cases.
E.g

• Investigating the structure of large numbers over wide ranges:
– primeFactorizeSieve(10^13 -10^7,10^13 + 10^7)

– primeSieve(2^53 -10^10,2^53 -1,nThreads = 32)

• Easily explore combinations/permutations/partitions that would otherwise be inaccessible
due to time of execution/memory constraints:

– c_iter = comboIter(10000, 100)
bigSamp = gmp::urand.bigz(3, gmp::log2.bigz(comboCount(10000, 100)))
iter[[bigSamp]]

– p_iter = partitionsIter(5000, 100, target = 6000)
p_iter[[1e9]] ## start iterating from index = 1e9
p_iter@nextIter()
p_iter@nextNIter(1e3)

– comboGeneral(150,5,constraintFun = "sum",Parallel = TRUE)

– parallel::mclapply(seq(...), function(x) {
temp = permuteGeneral(15, 10, lower = x, upper = y)
analyze permutations
output results

}, mc.cores = detectCores() - 1))

– partitionsGeneral(0:80, repetition = TRUE)

– permuteSample(rnorm(100),10,freqs = rep(1:4,25),n = 15,seed = 123)

– set.seed(123)
comboGeneral(runif(42, 0, 50), 10,

constraintFun = "mean",
comparisonFun = c(">","<"),
limitConstraints = c(39.876, 42.123))

3. Speed!!!.... You will find that the functions in RcppAlgos are some of the fastest of their type
available in R.

Author(s)

Joseph Wood

4 Combo-class

Combo-class S4-classes for Exposing C++ Combinatorial Classes

Description

The Combo class family are S4-classes that expose C++ classes that provide access to iterators and
other useful methods.

Slots

of "Combo" and all classes inheriting from it:

nextIter Retrieve the next lexicographical result

nextNIter Pass an integer n to retrieve the next n lexicographical results

nextRemaining Retrieve all remaining lexicographical results

currIter Returns the current iteration

prevIter Retrieve the previous lexicographical result (the next reverse lexicographical result)

prevNIter Pass an integer n to retrieve the previous n lexicographical results (the next n reverse
lexicographical results)

prevRemaining Retrieve all remaining reverse lexicographical results

startOver Resets the iterator

sourceVector View the source vector

summary Returns a list of summary information about the iterator

front Retrieve the first lexicographical result

back Retrieve the last lexicographical result

randomAccess Random access method. Pass a single value or a vector of valid indices. If a single
value is passed, the internal index of the iterator will be updated, however if a vector is passed
the internal state will not change. GMP support allows for flexible indexing.

Author(s)

Joseph Wood

See Also

Partitions-class, Constraints-class

Examples

showClass("Combo")

comboCount 5

comboCount Number of combinations/permutations

Description

Calculate the number of combinations/permutations of a vector chosen m at a time with or without
replacement. Additionally, these functions can calculate the number of combinations/permutations
of multisets.

Usage

comboCount(v, m = NULL, repetition = FALSE, freqs = NULL)

permuteCount(v, m = NULL, repetition = FALSE, freqs = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

m Number of elements to choose. If repetition = TRUE or freqs is utilized, m
can exceed the length of v. If m = NULL, the length will default to length(v) or
sum(freqs).

repetition Logical value indicating whether combinations/permutations should be with or
without repetition. The default is FALSE.

freqs A vector of frequencies used for producing all combinations/permutations of a
multiset of v. Each element of freqs represents how many times each element
of the source vector, v, is repeated. It is analogous to the times argument in
rep. The default value is NULL.

Value

A numerical value representing the total number of combinations/permutations.

Note

When the number of results exceeds 253 − 1, a number of class bigz is returned.

See Also

comboGeneral, permuteGeneral

6 comboGeneral

Examples

Same interface as the respective "general" functions:
i.e. comboGeneral & permuteGeneral

permuteCount(-5)
permuteCount(5)
comboCount(25, 12)
permuteCount(15, 7, TRUE)
comboCount(25, 12, freqs = rep(2, 25))

Return object of class 'bigz'
comboCount(250, 15, freqs = rep(2, 250))

comboGeneral Generate Combinations and Permutations of a Vector with/without
Constraints

Description

• Generate combinations or permutations of a vector with or without constraints.

• Produce results in parallel using the Parallel or nThreads arguments. You can also apply
each of the five compiled functions given by the argument constraintFun in parallel.

• The arguments lower and upper make it possible to generate combinations/permutations in
chunks allowing for parallelization via the parallel-package. This is convenient when you
want to apply a custom function to the output in parallel.

• Attack integer partition and general subset sum problems.

• GMP support allows for exploration of combinations/permutations of vectors with many ele-
ments.

• The output is in lexicographical order.

Usage

comboGeneral(v, m = NULL, repetition = FALSE, freqs = NULL,
lower = NULL, upper = NULL, constraintFun = NULL,
comparisonFun = NULL, limitConstraints = NULL,
keepResults = NULL, FUN = NULL, Parallel = FALSE,
nThreads = NULL, tolerance = NULL, FUN.VALUE = NULL)

permuteGeneral(v, m = NULL, repetition = FALSE, freqs = NULL,
lower = NULL, upper = NULL, constraintFun = NULL,
comparisonFun = NULL, limitConstraints = NULL,
keepResults = NULL, FUN = NULL, Parallel = FALSE,
nThreads = NULL, tolerance = NULL, FUN.VALUE = NULL)

comboGeneral 7

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

m Number of elements to choose. If repetition = TRUE or freqs is utilized, m
can exceed the length of v. If m = NULL, the length will default to length(v) or
sum(freqs).

repetition Logical value indicating whether combinations/permutations should be with or
without repetition. The default is FALSE.

freqs A vector of frequencies used for producing all combinations/permutations of a
multiset of v. Each element of freqs represents how many times each element
of the source vector, v, is repeated. It is analogous to the times argument in
rep. The default value is NULL.

lower The lower bound. Combinations/permutations are generated lexicographically,
thus utilizing this argument will determine which specific combination/permutation
to start generating from (e.g. comboGeneral(5,3,lower = 6) is equivalent to
comboGeneral(5,3)[6:choose(5,3),]). This argument along with upper is
very useful for generating combinations/permutations in chunks allowing for
easy parallelization.

upper The upper bound. Similar to lower, however this parameter allows the user to
stop generation at a specific combination/permutation (e.g. comboGeneral(5,3,upper
= 5) is equivalent to comboGeneral(5,3)[1:5,])
If the output is constrained and lower isn’t supplied, upper serves as a cap for
how many results will be returned that meet the criteria (e.g. setting upper =
100 alone will return the first 100 results that meet the criteria, while setting
lower = 1 and upper = 100 will test the first 100 results against the criteria).
In addition to the benefits listed for lower, this parameter is useful when the
total number of combinations/permutations without constraint is large and you
expect/need a small number of combinations/permutations that meet a certain
criteria. Using upper can improve run time if used judiciously as we call the
member function reserve of std::vector. See examples below.

constraintFun Function to be applied to the elements of v that should be passed as a string
(e.g. constraintFun = "sum"). The possible constraint functions are: "sum",
"prod", "mean", "max", & "min". The default is NULL, meaning no function is
applied.

comparisonFun Comparison operator that will be used to compare limitConstraints with the
result of constraintFun applied to v. It should be passed as a string or a vector
of two strings (e.g. comparisonFun = "<=" or comparisonFun = c(">","<")).
The possible comparison operators are: "<", ">", "<=", ">=", "==". The default
is NULL.
When comparisonFun is a vector of two comparison strings, e.g comparisonFun
= c(comp1,comp2), and limitConstraints is a vector of two numerical val-
ues, e.g limitConstraints = c(x1,x2), the combinations/permutations will be
filtered in one of the following two ways:

https://en.cppreference.com/w/cpp/container/vector/reserve
https://en.cppreference.com/w/cpp/container/vector

8 comboGeneral

1. When comp1 is one of the ’greater-than’ operators (i.e. ">=" or ">"), comp2
is one of the ’less-than’ operators (i.e. "<=" or "<"), and x1 < x2, the combi-
nations/permutations that are returned will have a value (after constraintFun
has been applied) between x1 and x2.

2. When comp1 and comp2 are defined as in #1 and x1 > x2, the combina-
tions/permutations that are returned will have a value outside the range of
x1 and x2. See the examples below.

In other words, the first comparison operator is applied to the first limit and the
second operator is applied to the second limit.

limitConstraints

This is the value(s) that will be used for comparison. Can be passed as a single
value or a vector of two numerical values. The default is NULL. See the definition
of comparisonFun as well as the examples below for more information.

keepResults A logical flag indicating if the result of constraintFun applied to v should
be displayed; if TRUE, an additional column of results will be added to the re-
sulting matrix. The default is FALSE. If user is only applying constraintFun,
keepResults will default to TRUE.
E.g. The following are equivalent and will produce a 4th column of row sums:

• comboGeneral(5,3 constraintFun = "sum",keepResults = TRUE)

• comboGeneral(5,3 constraintFun = "sum")

FUN Function to be applied to each combination/permutation. The default is NULL.

Parallel Logical value indicating whether combinations/permutations should be gener-
ated in parallel using n−1 threads, where n is the maximum number of threads.
The default is FALSE. If nThreads is not NULL, it will be given preference (e.g.
if user has 8 threads with Parallel = TRUE and nThreads = 4, only 4 threads
will be spawned). If your system is single-threaded, the arguments Parallel
and nThreads are ignored.

nThreads Specific number of threads to be used. The default is NULL. See Parallel.

tolerance A numeric value greater than or equal to zero. This parameter is utilized when a
constraint is applied on a numeric vector. The default value is 0 when it can be
determined that whole values are being utilized, otherwise it is sqrt(.Machine$double.eps)
which is approximately 1.5e− 8. N.B. If the input vector is of type integer, this
parameter will be ignored and strict equality will be enforced.

FUN.VALUE A template for the return value from FUN. See ’Details’ of vapply for more
information.

Details

Finding all combinations/permutations with constraints is optimized by organizing them in such
a way that when constraintFun is applied, a partially monotonic sequence is produced. Com-
binations/permutations are added successively, until a particular combination exceeds the given
constraint value for a given constraint/comparison function combo. After this point, we can safely
skip several combinations knowing that they will exceed the given constraint value.

When there are any negative values in v and constraintFun = "prod", producing a monotonic set
is non-trivial for the general case. As a result, performance will suffer as all combinations/permutations
must be tested against the constraint criteria.

comboGeneral 9

Value

• In general, a matrix with m or m+ 1 columns, depending on the value of keepResults

• If FUN is utilized and FUN.VALUE = NULL, a list is returned

• When both FUN and FUN.VALUE are not NULL, the return is modeled after the return of vapply.
See the ’Value’ section of vapply.

Note

• Parallel and nThreads will be ignored in the following cases:

– When the output is constrained (except for most partitions cases)

– If the class of the vector passed is character, raw, and complex (N.B. Rcpp::CharacterMatrix
is not thread safe). Alternatively, you can generate an indexing matrix in parallel.

– If FUN is utilized.

• If either constraintFun, comparisonFun or limitConstraints is NULL –or– if the class of
the vector passed is logical, character, raw, factor, or complex, the constraint check will
not be carried out. This is equivalent to simply finding all combinations/permutations of v
choose m.

• The maximum number of combinations/permutations that can be generated at one time is 231−
1. Utilizing lower and upper makes it possible to generate additional combinations/permutations.

• Factor vectors are accepted. Class and level attributes are preserved except when FUN is used.

• Lexicographical ordering isn’t guaranteed for permutations if lower isn’t supplied and the
output is constrained.

• If lower is supplied and the output is constrained, the combinations/permutations that will be
tested will be in the lexicographical range lower to upper or up to the total possible number
of results if upper is not given. See the second paragraph for the definition of upper.

• FUN will be ignored if the constraint check is satisfied.

Author(s)

Joseph Wood

References

• Passing user-supplied C++ functions

• Monotonic Sequence

• Multiset

• Lexicographical Order

• Subset Sum Problem

• Partition (Number Theory)

https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Partition_(number_theory)

10 comboGeneral

Examples

system.time(comboGeneral(17, 8))
system.time(permuteGeneral(13, 6))

system.time(comboGeneral(13,10,repetition = TRUE))
system.time(permuteGeneral(factor(letters[1:9]),6,TRUE))

permutations of the multiset (with or w/o setting m) :
c(1,1,1,1,2,2,2,3,3,4)
system.time(permuteGeneral(4, freqs = c(4,3,2,1)))

Examples using "upper" and "lower":
Generate some random data
set.seed(1009)
mySamp = sort(rnorm(75, 997, 23))

permuteCount(75, 10, freqs = rep(1:3, 25))
>Big Integer ('bigz') :
>[1] 4606842576291495952

See specific range of permutations
permuteGeneral(75, 10, freqs = rep(1:3, 25),

lower = 1e12, upper = 1e12 + 10)

Researcher only needs 1000 7-tuples of mySamp
such that the sum is greater than 7200.
system.time(comboGeneral(mySamp, 7, FALSE, constraintFun = "sum",

comparisonFun = ">", limitConstraints = 7200, upper = 1000))

Similarly, you can use "lower" to obtain the last rows.
Generate the last 10 rows
system.time(comboGeneral(mySamp, 7, lower = choose(75, 7) - 9))

Or if you would like to generate a specific chunk,
use both "lower" and "upper". E.g. Generate one
million combinations starting with the 900,000,001
lexicographic combination.
t1 = comboGeneral(mySamp, 7,

lower = 9*10^8 + 1,
upper = 9*10^8 + 10^6)

class of the source vector is preserved
class(comboGeneral(5,3)[1,]) == class(1:5)
class(comboGeneral(c(1,2:5),3)[1,]) == class(c(1,2:5))
class(comboGeneral(factor(month.name),3)[1,]) == class(factor(month.name))

Using keepResults will add a column of results
t2 = permuteGeneral(-3,6,TRUE,constraintFun = "prod",

keepResults = TRUE)

t3 = comboGeneral(-3,6,TRUE,constraintFun = "sum",
comparisonFun = "==",

comboGeneral 11

limitConstraints = -8,
keepResults = TRUE)

Using multiple constraints:

Get combinations such that the product
is between 3000 and 4000 inclusive
comboGeneral(5, 7, TRUE, constraintFun = "prod",

comparisonFun = c(">=","<="),
limitConstraints = c(3000, 4000),
keepResults = TRUE)

Or, get the combinations such that the
product is less than or equal to 10 or
greater than or equal to 40000
comboGeneral(5, 7, TRUE, constraintFun = "prod",

comparisonFun = c("<=",">="),
limitConstraints = c(10, 40000),
keepResults = TRUE)

General subset sum problem
set.seed(516781810)
comboGeneral(runif(100, 0, 42), 5, constraintFun = "mean",

comparisonFun = "==", limitConstraints = 30,
tolerance = 0.0000002)

Integer Partitions
comboGeneral(0:5, 5, TRUE, constraintFun = "sum",

comparisonFun = "==", limitConstraints = 5)

Using FUN
comboGeneral(10000, 5, lower = 20, upper = 22,

FUN = function(x) {
which(cummax(x) %% 2 == 1)

})

Not run:
Parallel example generating more than 2^31 - 1 combinations.
library(parallel)
numCores = detectCores() - 1

10086780 evenly divides choose(35, 15) and is "small enough" to
generate quickly in chunks.
system.time(mclapply(seq(1, comboCount(35, 15), 10086780), function(x) {

a = comboGeneral(35, 15, lower = x, upper = x + 10086779)
do something
x

}, mc.cores = numCores))

Find 13-tuple combinations of 1:25 such

12 comboGrid

that the mean is less than 10
system.time(myComb <- comboGeneral(25, 13, FALSE,

constraintFun = "mean",
comparisonFun = "<",
limitConstraints = 10))

Alternatively, you must generate all combinations and subsequently
subset to obtain the combinations that meet the criteria
system.time(myComb2 <- combn(25, 13))
system.time(myCols <- which(colMeans(myComb2) < 10))
system.time(myComb2 <- myComb2[, myCols])

Any variation is much slower
system.time(myComb2 <- combn(25, 13)[,combn(25, 13, mean) < 10])

Test equality with myComb above
all.equal(myComb, t(myComb2))

much faster using Parallel = TRUE
system.time(permuteGeneral(15, 8, lower = 250000000, Parallel = TRUE))
system.time(permuteGeneral(15, 8, lower = 250000000))

system.time(comboGeneral(30, 10, Parallel = TRUE))
system.time(comboGeneral(30, 10))

Parallel also works when applying constraintFun solely
system.time(comboGeneral(30, 10, Parallel = TRUE, constraintFun = "sum"))
system.time(comboGeneral(30, 10, constraintFun = "sum"))

Depending on # of cores available, using Parallel with
constraintFun is faster than rowSums or rowMeans alone
combs = comboGeneral(30, 10)
system.time(rowSums(combs))

Fun example... see stackoverflow:
https://stackoverflow.com/q/22218640/4408538
system.time(permuteGeneral(seq(0L,100L,10L),8,TRUE,

constraintFun = "sum",
comparisonFun = "==",
limitConstraints = 100))

End(Not run)

comboGrid Efficient Version of expand.grid Where order Does Not Matter

Description

This function efficiently generates Cartesian-product-like output where order does not matter. It is
loosely equivalent to the following:

comboGroups 13

• t = expand.grid(list)

• t = t[do.call(order,t),]

• key = apply(t,1,function(x) paste0(sort(x),collapse = ""))

• t[!duplicated(key),]

Usage

comboGrid(..., repetition = TRUE)

Arguments

... vectors, factors or a list containing these. (See ?expand.grid).

repetition Logical value indicating whether results should be with or without repetition.
The default is TRUE.

Value

If items with different classes are passed, a data frame will be returned, otherwise a matrix will be
returned.

Author(s)

Joseph Wood

Examples

return a matrix
expGridNoOrder = comboGrid(1:5, 3:9, letters[1:5], letters[c(1,4,5,8)])
head(expGridNoOrder)
tail(expGridNoOrder)

expGridNoOrderNoRep = comboGrid(1:5, 3:9, letters[1:5],
letters[c(1,4,5,8)], repetition = FALSE)

head(expGridNoOrderNoRep)
tail(expGridNoOrderNoRep)

comboGroups Partition a Vector into Groups of Equal Size

Description

• Generate partitions of a vector into groups of equal size. See Create Combinations in R by
Groups on http://stackoverflow.com for a direct use case.

• Produce results in parallel using the Parallel or nThreads arguments.

• GMP support allows for exploration where the number of results is large.

• The output is in lexicographical order by groups.

https://stackoverflow.com/q/57732672/4408538
https://stackoverflow.com/q/57732672/4408538

14 comboGroups

Usage

comboGroups(v, numGroups, retType = "matrix",
lower = NULL, upper = NULL, Parallel = FALSE,
nThreads = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

numGroups An Integer. The number of groups that the vector will be partitioned into. Must
divide the length of v (if v is a vector) or v (if v is a scalar).

retType A string, "3Darray" or "matrix", that determines the shape of the output. The
default is "matrix".

lower The lower bound. Partitions of groups are generated lexicographically, thus uti-
lizing this argument will determine which specific result to start generating from
(e.g. comboGroups(8,2,lower = 30) is equivalent to comboGroups(8,2)[30:comboGroupsCount(8,2),]).
This argument along with upper is very useful for generating results in chunks
allowing for easy parallelization.

upper The upper bound. Similar to lower, however this parameter allows the user
to stop generation at a specific result (e.g. comboGroups(8,2,upper = 5) is
equivalent to comboGroups(8,2)[1:5,])

Parallel Logical value indicating whether results should be generated in parallel using
n−1 threads, where n is the maximum number of threads. The default is FALSE.
If nThreads is not NULL, it will be given preference (e.g. if user has 8 threads
with Parallel = TRUE and nThreads = 4, only 4 threads will be spawned). If
your system is single-threaded, the arguments Parallel and nThreads are ig-
nored.

nThreads Specific number of threads to be used. The default is NULL. See Parallel.

Details

Conceptually, this problem can be viewed as generating all permutations of the vector v and remov-
ing the within group permutations. To illustrate this, let us consider the case of generating partitions
of 1:8 into 2 groups of size 4.

• To begin, generate the permutations of 1:8 and group the first/last four elements of each row.

Grp1 Grp2
C1 C2 C3 C4 C5 C6 C7 C8

R1 | 1 2 3 4 | | 5 6 7 8 |
R2 | 1 2 3 4 | | 5 6 8 7 |
R3 | 1 2 3 4 | | 5 7 6 8 |
R4 | 1 2 3 4 | | 5 7 8 6 |
R5 | 1 2 3 4 | | 5 8 6 7 |
R6 | 1 2 3 4 | | 5 8 7 6 |

comboGroups 15

• Note that the permutations above are equivalent partitions of 2 groups of size 4 as only the last
four elements are permuted. If we look at at the 25th lexicographical permutation, we observe
our second distinct partition.

Grp1 Grp2
C1 C2 C3 C4 C5 C6 C7 C8

R24 | 1 2 3 4 | | 8 7 6 5 |
R25 | 1 2 3 5 | | 4 6 7 8 |
R26 | 1 2 3 5 | | 4 6 8 7 |
R27 | 1 2 3 5 | | 4 7 6 8 |
R28 | 1 2 3 5 | | 4 7 8 6 |

• Continuing on, we will reach the 3, 457th lexicographical permutation, which represents the
last result:

Grp1 Grp2
C1 C2 C3 C4 C5 C6 C7 C8

R3454 | 1 6 7 5 | |8 3 4 2 |
R3455 | 1 6 7 5 | |8 4 2 3 |
R3456 | 1 6 7 5 | |8 4 3 2 |
R3457 | 1 6 7 8 | | 2 3 4 5 |
R3458 | 1 6 7 8 | |2 3 5 4 |

• For this small example, the method above will not be that computationally expensive. In fact,
there are only 35 total partitions of 1:8 into 2 groups of size 4 out of a possible factorial(8)
= 40320 permutations. However, just doubling the size of the vector will make this approach
infeasible as there are over 10 trillion permutations of 1:16.

• The algorithm in comboGroups avoids these duplicate partitions of groups by utilizing an
efficient algorithm analogous to the std::next_permutation found in the standard algorithm
library in C++.

Value

By default, a matrix is returned with column names corresponding to the associated group. If
retType = "3Darray", a 3D array is returned.

Note

The maximum number of partitions of groups that can be generated at one time is 231−1. Utilizing
lower and upper makes it possible to generate additional combinations/permutations.

Author(s)

Joseph Wood

Examples

return a matrix
comboGroups(8, 2)

https://en.cppreference.com/w/cpp/algorithm/next_permutation

16 comboGroupsCount

or a 3 dimensional array
temp = comboGroups(8, 2, "3Darray")

view the first partition
temp[1, ,]

comboGroupsCount Number of Partitions of a Vector into Groups of Equal Size

Description

Calculate the number of partitions of a vector into groups of equal size. See the related integer
sequences A025035-A025042 at OEIS (E.g. A025036 for Number of partitions of 1, 2, ..., 4n into
sets of size 4.)

Usage

comboGroupsCount(v, numGroups)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

numGroups An Integer. The number of groups that the vector will be partitioned into. Must
divide the length of v (if v is a vector) or v (if v is a scalar).

Value

A numerical value representing the total number of partitions of groups of equal size.

Note

When the number of results exceeds 253 − 1, a number of class bigz is returned.

Author(s)

Joseph Wood

References

OEIS Integer Sequence A025036

Examples

comboGroupsCount(16, 4)

https://oeis.org
https://oeis.org/A025036
https://oeis.org/A025036

comboGroupsSample 17

comboGroupsSample Sample Partitions of a Vector into Groups of Equal Size

Description

• Generate a specific (lexicographically) or random sample of partitions of groups of equal size.

• Produce results in parallel using the Parallel or nThreads arguments.

• GMP support allows for exploration where the number of results is large.

Usage

comboGroupsSample(v, numGroups, retType = "matrix", n = NULL,
sampleVec = NULL, seed = NULL, Parallel = FALSE,
nThreads = NULL, namedSample = FALSE)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

numGroups An Integer. The number of groups that the vector will be partitioned into. Must
divide the length of v (if v is a vector) or v (if v is a scalar).

retType A string, "3Darray" or "matrix", that determines the shape of the output. The
default is "matrix".

n Number of results to return. The default is NULL.

sampleVec A vector of numbers representing the lexicographical partition of groups to re-
turn. Accepts vectors of class bigz as well as vectors of characters

seed Random seed initialization. The default is NULL. N.B. If the gmp library is
needed, this parameter must be set in order to have reproducible results (E.g
set.seed() has no effect in these cases).

Parallel Logical value indicating whether results should be generated in parallel. The
default is FALSE. If TRUE and nThreads = NULL, the number of threads used is
equal to the minimum of one minus the number of threads available on your
system and the number of results requested (e.g. if user has 16 threads and only
needs 5 results, 5 threads will be used (i.e. min(16 -1,5) = 5)). If nThreads is
not NULL, it will be given preference (e.g. if user has 8 threads with Parallel
= TRUE and nThreads = 4, only 4 threads will be spawned). If your system is
single-threaded, the arguments Parallel and nThreads are ignored.

nThreads Specific number of threads to be used. The default is NULL. See Parallel.

namedSample Logical flag. If TRUE, rownames corresponding to the lexicographical partitions
of groups of equal size, will be added to the returned matrix. The default is
FALSE.

18 comboGroupsSample

Details

These algorithms rely on efficiently generating the nth lexicographical partition of groups of equal
size.

Value

By default, a matrix is returned with column names corresponding to the associated group. If
retType = "3Darray", a 3D array is returned.

Author(s)

Joseph Wood

References

Lexicographical order

Examples

generate 10 random partitions of groups
comboGroupsSample(10, 2, n = 10, seed = 123)

using sampleVec to generate specific results
comboGroupsSample(15, 5, sampleVec = c(1, 100, 1e3, 1e6))

all.equal(comboGroupsSample(10, 5,
sampleVec = 1:comboGroupsCount(10, 5)),

comboGroups(10, 5))

Examples with enormous number of total results
num = comboGroupsCount(100, 20)
gmp::log2.bigz(num)
[1] 325.5498

first = gmp::urand.bigz(n = 1, size = 325, seed = 123)
mySamp = do.call(c, lapply(0:10, function(x) gmp::add.bigz(first, x)))

class(mySamp)
[1] "bigz"

using the sampling function
cbgSamp = comboGroupsSample(100, 20, sampleVec = mySamp)

using the standard function
cbgGeneral = comboGroups(100, 20,

lower = first,
upper = gmp::add.bigz(first, 10))

identical(cbgSamp, cbgGeneral)
[1] TRUE

Not run:

https://en.wikipedia.org/wiki/Lexicographical_order

comboIter 19

Using Parallel
system.time(comboGroupsSample(1000, 20, n = 80, seed = 10, Parallel = TRUE))

End(Not run)

comboIter Combination and Permutation Iterator

Description

• Returns an iterator for iterating over combinations or permutations of a vector with or without
constraints.

• Supports random access via the [[method.

• GMP support allows for exploration of combinations/permutations of vectors with many ele-
ments.

• The output is in lexicographical order for the next methods and reverse lexicographical order
for the prev methods.

Usage

comboIter(v, m = NULL, repetition = FALSE, freqs = NULL,
constraintFun = NULL, comparisonFun = NULL,
limitConstraints = NULL, keepResults = NULL,
FUN = NULL, Parallel = FALSE, nThreads = NULL,
tolerance = NULL, FUN.VALUE = NULL)

permuteIter(v, m = NULL, repetition = FALSE, freqs = NULL,
constraintFun = NULL, comparisonFun = NULL,
limitConstraints = NULL, keepResults = NULL,
FUN = NULL, Parallel = FALSE, nThreads = NULL,
tolerance = NULL, FUN.VALUE = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

m Number of elements to choose. If repetition = TRUE or freqs is utilized, m
can exceed the length of v. If m = NULL, the length will default to length(v) or
sum(freqs).

repetition Logical value indicating whether combinations/permutations should be with or
without repetition. The default is FALSE.

freqs A vector of frequencies used for producing all combinations/permutations of a
multiset of v. Each element of freqs represents how many times each element
of the source vector, v, is repeated. It is analogous to the times argument in
rep. The default value is NULL.

20 comboIter

constraintFun Function to be applied to the elements of v that should be passed as a string
(e.g. constraintFun = "sum"). The possible constraint functions are: "sum",
"prod", "mean", "max", & "min". The default is NULL, meaning no function is
applied.

comparisonFun Comparison operator that will be used to compare limitConstraints with the
result of constraintFun applied to v. It should be passed as a string or a vector
of two strings (e.g. comparisonFun = "<=" or comparisonFun = c(">","<")).
The possible comparison operators are: "<", ">", "<=", ">=", "==". The default
is NULL.
When comparisonFun is a vector of two comparison strings, e.g comparisonFun
= c(comp1,comp2), and limitConstraints is a vector of two numerical val-
ues, e.g limitConstraints = c(x1,x2), the combinations/permutations will be
filtered in one of the following two ways:

1. When comp1 is one of the ’greater-than’ operators (i.e. ">=" or ">"), comp2
is one of the ’less-than’ operators (i.e. "<=" or "<"), and x1 < x2, the combi-
nations/permutations that are returned will have a value (after constraintFun
has been applied) between x1 and x2.

2. When comp1 and comp2 are defined as in #1 and x1 > x2, the combina-
tions/permutations that are returned will have a value outside the range of
x1 and x2. See the examples below.

In other words, the first comparison operator is applied to the first limit and the
second operator is applied to the second limit.

limitConstraints

This is the value(s) that will be used for comparison. Can be passed as a single
value or a vector of two numerical values. The default is NULL. See the definition
of comparisonFun as well as the examples below for more information.

keepResults A logical flag indicating if the result of constraintFun applied to v should
be displayed; if TRUE, an additional column of results will be added to the re-
sulting matrix. The default is FALSE. If user is only applying constraintFun,
keepResults will default to TRUE.

FUN Function to be applied to each combination/permutation. The default is NULL.

Parallel Logical value indicating whether combinations/permutations should be gener-
ated in parallel using n−1 threads, where n is the maximum number of threads.
The default is FALSE. If nThreads is not NULL, it will be given preference (e.g.
if user has 8 threads with Parallel = TRUE and nThreads = 4, only 4 threads
will be spawned). If your system is single-threaded, the arguments Parallel
and nThreads are ignored.

nThreads Specific number of threads to be used. The default is NULL. See Parallel.

tolerance A numeric value greater than or equal to zero. This parameter is utilized when a
constraint is applied on a numeric vector. The default value is 0 when it can be
determined that whole values are being utilized, otherwise it is sqrt(.Machine$double.eps)
which is approximately 1.5e− 8. N.B. If the input vector is of type integer, this
parameter will be ignored and strict equality will be enforced.

FUN.VALUE A template for the return value from FUN. See ’Details’ of vapply for more
information.

comboIter 21

Details

Once you initialize a new iterator, the following methods are available via @ (e.g. a@nextIter()) or
$ (e.g. a$nextIter()). The preferred practice is to use @ as it is much more efficient (See examples
below). Also note that not all of the methods below are available in all cases. See Combo-class,
Constraints-class, and Partitions-class:

nextIter Retrieve the next lexicographical result

nextNIter Pass an integer n to retrieve the next n lexicographical results

nextRemaining Retrieve all remaining lexicographical results

currIter Returns the current iteration

prevIter Retrieve the previous lexicographical result (the next reverse lexicographical result)

prevNIter Pass an integer n to retrieve the previous n lexicographical results (the next n reverse
lexicographical results)

prevRemaining Retrieve all remaining reverse lexicographical results

startOver Resets the iterator

sourceVector View the source vector

summary Returns a list of summary information about the iterator

front Retrieve the first lexicographical result

back Retrieve the last lexicographical result

[[Random access method. Pass a single value or a vector of valid indices. If a single value is
passed, the internal index of the iterator will be updated, however if a vector is passed the
internal state will not change. GMP support allows for flexible indexing.

Value

• If nextIter or prevIter is called, a vector is returned

• Otherwise, a matrix with m or m+ 1 columns, depending on the value of keepResults

• If FUN is utilized, FUN.VALUE = NULL, and either nextIter or prevIter is called, the result
will be determined by FUN, otherwise a list is returned.

• When both FUN and FUN.VALUE are not NULL, the return is modeled after the return of vapply.
See the ’Value’ section of vapply.

Note

• Parallel and nThreads will be ignored in the following cases:

– When the output is constrained (except for most partitions cases)
– If the class of the vector passed is character, raw, and complex (N.B. Rcpp::CharacterMatrix

is not thread safe). Alternatively, you can generate an indexing matrix in parallel.
– If FUN is utilized.

• If either constraintFun, comparisonFun or limitConstraints is NULL –or– if the class of
the vector passed is logical, character, raw, factor, or complex, the constraint check will
not be carried out. This is equivalent to simply finding all combinations/permutations of v
choose m.

22 comboIter

• The maximum number of combinations/permutations that can be generated at one time is
231 − 1.

• Factor vectors are accepted. Class and level attributes are preserved except when FUN is used.

• Lexicographical ordering isn’t guaranteed for permutations if the output is constrained.

• FUN will be ignored if the constraint check is satisfied.

Author(s)

Joseph Wood

References

• Lexicographical Order

• Reverse Lexicographical Order

See Also

comboGeneral, permuteGeneral

Examples

Typical usage
a = permuteIter(unique(state.region))
a@nextIter()
a@nextNIter(3)
a@front()
a@nextRemaining()
a@prevIter()
a@prevNIter(15)
a@summary()
a@back()
a@prevRemaining()
a[[5]]
a@summary()
a[[c(1, 17, 3)]]
a@summary()

See examples for comboGeneral where lower and upper are used
set.seed(1009)
mySamp = sort(rnorm(75, 997, 23))

b = comboIter(mySamp, 7,
constraintFun = "sum",
comparisonFun = ">",
limitConstraints = 7200)

b@nextIter()
b@nextNIter(3)
b@summary()
b@currIter()

Not run:

https://en.wikipedia.org/wiki/Lexicographical_order
https://oeis.org/wiki/Orderings#Reverse_lexicographic_order

comboSample 23

We don't have random access or previous methods
b@back()
Error: no slot of name "back" for this object of class "Constraints"
b@prevIter()
Error: no slot of name "prevIter" for this object of class "Constraints"

End(Not run)

comboSample Sample Combinations and Permutations

Description

• Generate a specific (lexicographically) or random sample of combinations/permutations.

• Produce results in parallel using the Parallel or nThreads arguments.

• GMP support allows for exploration of combinations/permutations of vectors with many ele-
ments.

Usage

comboSample(v, m = NULL, repetition = FALSE, freqs = NULL, n = NULL,
sampleVec = NULL, seed = NULL, FUN = NULL, Parallel = FALSE,
nThreads = NULL, namedSample = FALSE, FUN.VALUE = NULL)

permuteSample(v, m = NULL, repetition = FALSE, freqs = NULL, n = NULL,
sampleVec = NULL, seed = NULL, FUN = NULL, Parallel = FALSE,
nThreads = NULL, namedSample = FALSE, FUN.VALUE = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. All atomic
types are supported (See is.atomic).

m Number of elements to choose. If repetition = TRUE or freqs is utilized, m
can exceed the length of v. If m = NULL, the length will default to length(v) or
sum(freqs).

repetition Logical value indicating whether combinations/permutations should be with or
without repetition. The default is FALSE.

freqs A vector of frequencies used for producing all combinations/permutations of a
multiset of v. Each element of freqs represents how many times each element
of the source vector, v, is repeated. It is analogous to the times argument in
rep. The default value is NULL.

n Number of combinations/permutations to return. The default is NULL.

sampleVec A vector of indices representing the lexicographical combination/permutations
to return. Accepts whole numbers as well as vectors of class bigz as well as
vectors of characters

24 comboSample

seed Random seed initialization. The default is NULL. N.B. If the gmp library is
needed, this parameter must be set in order to have reproducible results (E.g
set.seed() has no effect in these cases).

FUN Function to be applied to each combination/permutation. The default is NULL.

Parallel Logical value indicating whether combinations/permutations should be gener-
ated in parallel. The default is FALSE. If TRUE and nThreads = NULL, the number
of threads used is equal to the minimum of one minus the number of threads
available on your system and the number of results requested (e.g. if user has 16
threads and only needs 5 results, 5 threads will be used (i.e. min(16 -1,5) = 5)).
If nThreads is not NULL, it will be given preference (e.g. if user has 8 threads
with Parallel = TRUE and nThreads = 4, only 4 threads will be spawned). If
your system is single-threaded, the arguments Parallel and nThreads are ig-
nored.

nThreads Specific number of threads to be used. The default is NULL. See Parallel.

namedSample Logical flag. If TRUE, rownames corresponding to the lexicographical combina-
tion/permutation, will be added to the returned matrix. The default is FALSE.

FUN.VALUE A template for the return value from FUN. See ’Details’ of vapply for more
information.

Details

These algorithms rely on efficiently generating the nth lexicographical combination/permutation.
This is the process of unranking.

Value

• In general, a matrix with m or m+ 1 columns, depending on the value of keepResults

• If FUN is utilized and FUN.VALUE = NULL, a list is returned

• When both FUN and FUN.VALUE are not NULL, the return is modeled after the return of vapply.
See the ’Value’ section of vapply.

Note

• Parallel and nThreads will be ignored in the following cases:

– If the class of the vector passed is character (N.B. Rcpp::CharacterMatrix is not
thread safe). Alternatively, you can generate an indexing matrix in parallel.

– If FUN is utilized.

• n and sampleVec cannot both be NULL.

• Factor vectors are accepted. Class and level attributes are preserved except when FUN is used.

Author(s)

Joseph Wood

References

Lexicographical order

https://rosettacode.org/wiki/Permutations/Rank_of_a_permutation
https://en.wikipedia.org/wiki/Lexicographical_order

Constraints-class 25

Examples

generate 10 random combinations
comboSample(30, 8, TRUE, n = 5, seed = 10)

using sampleVec to generate specific permutations
permuteSample(15, 10, freqs = c(1,2,2,1,2,2,1,2,1,2,2,1,2,1,1),

sampleVec = c(1, 10^2, 10^5, 10^8, 10^11))

all.equal(comboSample(10, 5,
sampleVec = 1:comboCount(10, 5)),

comboGeneral(10, 5))

Examples with enormous number of total permutations
num = permuteCount(10000, 20)
gmp::log2.bigz(num)
[1] 265.7268

first = gmp::urand.bigz(n = 1, size = 265, seed = 123)
mySamp = do.call(c, lapply(0:10, function(x) gmp::add.bigz(first, x)))

class(mySamp)
[1] "bigz"

using permuteSample
pSamp = permuteSample(10000, 20, sampleVec = mySamp)

using permuteGeneral
pGeneral = permuteGeneral(10000, 20,

lower = first,
upper = gmp::add.bigz(first, 10))

identical(pSamp, pGeneral)
[1] TRUE

Using nThreads
permPar = permuteSample(10000, 50, n = 8, seed = 10, nThreads = 2)

Using FUN
permuteSample(10000, 50, n = 4, seed = 10, FUN = sd)

Not run:
Using Parallel
permuteSample(10000, 50, n = 80, seed = 10, Parallel = TRUE)

End(Not run)

Constraints-class S4-class for Exposing C++ Constraints Class

26 divisorsRcpp

Description

The Constraints class is an S4-class that exposes C++ classes that provide access to iterators and
other useful methods.

Slots

nextIter Retrieve the next lexicographical result

nextNIter Pass an integer n to retrieve the next n lexicographical results

nextRemaining Retrieve all remaining lexicographical results

currIter Returns the current iteration

startOver Resets the iterator

sourceVector View the source vector

summary Returns a list of summary information about the iterator

Author(s)

Joseph Wood

See Also

Combo-class, Partitions-class

Examples

showClass("Constraints")

divisorsRcpp Vectorized Factorization (Complete)

Description

Function for generating the complete factorization for a vector of numbers.

Usage

divisorsRcpp(v, namedList = FALSE, nThreads = NULL)

Arguments

v Vector of integers or numeric values. Non-integral values will be coerced to
whole numbers.

namedList Logical flag. If TRUE and the length(v) > 1, a named list is returned. The
default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

divisorsRcpp 27

Details

Efficient algorithm that builds on primeFactorize to generate the complete factorization of many
numbers.

Value

• Returns an unnamed vector if length(v) == 1 regardless of the value of namedList. If v <
231, the class of the returned vector will be integer, otherwise the class will be numeric.

• If length(v) > 1, a named/unnamed list of vectors will be returned. If max(bound1,bound2)
< 231, the class of each vector will be integer, otherwise the class will be numeric.

Note

The maximum value for each element in v is 253 − 1.

Author(s)

Joseph Wood

References

• Divisor

• 53-bit significand precision

See Also

divisors, primeFactorize

Examples

Get the complete factorization of a single number
divisorsRcpp(10^8)

Or get the complete factorization of many numbers
set.seed(29)
myVec <- sample(-1000000:1000000, 1000)
system.time(myFacs <- divisorsRcpp(myVec))

Return named list
myFacsWithNames <- divisorsRcpp(myVec, namedList = TRUE)

Using nThreads
system.time(divisorsRcpp(myVec, nThreads = 2))

https://en.wikipedia.org/wiki/Divisor
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

28 divisorsSieve

divisorsSieve Generate Complete Factorization for Numbers in a Range

Description

Sieve that generates the complete factorization of all numbers between bound1 and bound2 (if
supplied) or all numbers up to bound1.

Usage

divisorsSieve(bound1, bound2 = NULL, namedList = FALSE, nThreads = NULL)

Arguments

bound1 Positive integer or numeric value.

bound2 Positive integer or numeric value.

namedList Logical flag. If TRUE, a named list is returned. The default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

Details

This function is useful when many complete factorizations are needed. Instead of generating the
complete factorization on the fly, one can reference the indices/names of the generated list.

This algorithm benefits greatly from the fast integer division library ’libdivide’. The following is
from http://libdivide.com/:

• “libdivide allows you to replace expensive integer divides with comparatively cheap multipli-
cation and bitshifts. Compilers usually do this, but only when the divisor is known at compile
time. libdivide allows you to take advantage of it at runtime. The result is that integer division
can become faster - a lot faster.”

Value

Returns a named/unnamed list of integer vectors if max(bound1,bound2)< 231, or a list of numeric
vectors otherwise.

Note

The maximum value for either of the bounds is 253 − 1.

Author(s)

Joseph Wood

http://libdivide.com/

eulerPhiSieve 29

References

• Divisor

• ridiculousfish (author of libdivide)

• github.com/ridiculousfish/libdivide

• 53-bit significand precision

See Also

divisorsRcpp, divisors, primeFactorizeSieve

Examples

Generate some random data
set.seed(33550336)
mySamp <- sample(10^5, 5*10^4)

Generate complete factorizations up
to 10^5 (max element from mySamp)
system.time(allFacs <- divisorsSieve(10^5))

Use generated complete factorization for further
analysis by accessing the index of allFacs
for (s in mySamp) {

myFac <- allFacs[[s]]
Continue algorithm

}

Generating complete factorizations over
a range is efficient as well
system.time(divisorsSieve(10^12, 10^12 + 10^5))

Use nThreads for improved efficiency
system.time(divisorsSieve(10^12, 10^12 + 10^5, nThreads = 2))

Set 'namedList' to TRUE to return a named list
divisorsSieve(27, 30, namedList = TRUE)

Using nThreads
system.time(divisorsSieve(1e5, 2e5, nThreads = 2))

eulerPhiSieve Apply Euler’s Phi Function to Every Element in a Range

Description

Sieve that generates the number of coprime elements for every number between bound1 and bound2
(if supplied) or all numbers up to bound1. This is equivalent to applying Euler’s phi function (often
written as φ(x)) to every number in a given range.

https://en.wikipedia.org/wiki/Divisor
http://ridiculousfish.com/
https://github.com/ridiculousfish/libdivide
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

30 eulerPhiSieve

Usage

eulerPhiSieve(bound1, bound2 = NULL, namedVector = FALSE, nThreads = NULL)

Arguments

bound1 Positive integer or numeric value.

bound2 Positive integer or numeric value.

namedVector Logical flag. If TRUE, a named vector is returned. The default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

Details

For the simple case (i.e. when bound2 = NULL), this algorithm first generates all primes up to n via
the sieve of Eratosthenes. We use these primes to sieve over the sequence 1:n, dividing each value
by p, creating a temporary value that will be subtracted from the original value at each index (i.e.
equivalent to multiply each index by (1 − 1/p) but more efficient as we don’t have to deal with
floating point numbers). The case when is.null(bound2) = FALSE is more complicated but the
basic ideas still hold.

This function is very useful when you need to calculate Euler’s phi function for many numbers in a
range as performing this calculation on the fly can be computationally expensive.

This algorithm benefits greatly from the fast integer division library ’libdivide’. The following is
from http://libdivide.com/:

• “libdivide allows you to replace expensive integer divides with comparatively cheap multipli-
cation and bitshifts. Compilers usually do this, but only when the divisor is known at compile
time. libdivide allows you to take advantage of it at runtime. The result is that integer division
can become faster - a lot faster.”

Value

Returns a named/unnamed integer vector if max(bound1,bound2) < 231, or a numeric vector oth-
erwise.

Note

The maximum allowed value is 253 − 1.

Author(s)

Joseph Wood

References

• Euler’s totient function

• ridiculousfish (author of libdivide)

• github.com/ridiculousfish/libdivide

• 53-bit significand precision

http://libdivide.com/
https://en.wikipedia.org/wiki/Euler%27s_totient_function
http://ridiculousfish.com/
https://github.com/ridiculousfish/libdivide
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

isPrimeRcpp 31

See Also

eulersPhi

Examples

Generate some random data
set.seed(496)
mySamp <- sample(10^6, 5*10^5)

Generate number of coprime elements for many numbers
system.time(myPhis <- eulerPhiSieve(10^6))

Now use result in algorithm
for (s in mySamp) {

sPhi <- myPhis[s]
Continue algorithm

}

See https://projecteuler.net
system.time(which.max((1:10^6)/eulerPhiSieve(10^6)))

Generating number of coprime elements
for every number in a range is no problem
system.time(myPhiRange <- eulerPhiSieve(10^13, 10^13 + 10^6))

Returning a named vector
eulerPhiSieve(10, 20, namedVector = TRUE)
eulerPhiSieve(10, namedVector = TRUE)

Using nThreads
system.time(eulerPhiSieve(1e5, 2e5, nThreads = 2))

isPrimeRcpp Vectorized Primality Test

Description

Implementation of the Miller-Rabin primality test. Based on the "mp_prime_p" function from the
"factorize.c" source file found in the gmp library: https://gmplib.org.

Usage

isPrimeRcpp(v, namedVector = FALSE, nThreads = NULL)

Arguments

v Vector of integers or numeric values.

namedVector Logical flag. If TRUE, a named vector is returned. The default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://gmplib.org

32 isPrimeRcpp

Details

The Miller-Rabin primality test is a probabilistic algorithm that makes heavy use of modular expo-
nentiation. At the heart of modular exponentiation is the ability to accurately obtain the remainder
of the product of two numbers (mod p).

With the gmp library, producing accurate calculations for problems like this is trivial because of the
nature of the multiple precision data type. However, standard C++ does not afford this luxury and
simply relying on a strict translation would have limited this algorithm to numbers less than

√
2
63−1

(N.B. We are taking advantage of the signed 64-bit fixed width integer from the stdint library in C++.
If we were confined to base R, the limit would have been

√
2
53 − 1). RcppAlgos::isPrimeRcpp

gets around this limitation with a divide and conquer approach taking advantage of properties of
arithmetic.

The problem we are trying to solve can be summarized as follows:

(x1 ∗ x2) (mod p)

Now, we rewrite x2 as x2 = y1 + y2 + . . .+ yn, so that we obtain:

(x1 ∗ y1) (mod p) + (x1 ∗ y2) (mod p) + . . .+ (x1 ∗ yn) (mod p)

Where each product (x1 ∗ yj) for j <= n is smaller than the original x1 ∗ x2. With this approach,
we are now capable of handling much larger numbers. Many details have been omitted for clarity.

For a more in depth examination of this topic see Accurate Modular Arithmetic with Double Preci-
sion.

Value

Returns a named/unnamed logical vector. If an index is TRUE, the number at that index is prime,
otherwise the number is composite.

Note

The maximum value for each element in v is 253 − 1.

References

• THE MILLER-RABIN TEST

– Conrad, Keith. "THE MILLER-RABIN TEST." http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf.

• 53-bit significand precision

See Also

primeFactorize, isprime, isPrime

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://codereview.stackexchange.com/questions/186751/accurate-modular-arithmetic-with-double-precision
https://codereview.stackexchange.com/questions/186751/accurate-modular-arithmetic-with-double-precision
https://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

numDivisorSieve 33

Examples

check the primality of a single number
isPrimeRcpp(100)

check the primality of every number in a vector
isPrimeRcpp(1:100)

set.seed(42)
mySamp <- sample(10^13, 10)

return named vector for easy identification
isPrimeRcpp(mySamp, namedVector = TRUE)

Using nThreads
system.time(isPrimeRcpp(mySamp, nThreads = 2))

numDivisorSieve Apply Divisor Function to Every Element in a Range

Description

Sieve that generates the number of divisors for every number between bound1 and bound2 (if sup-
plied) or all numbers up to bound1. This is equivalent to applying the divisor function (often written
as σ(x)) to every number in a given range.

Usage

numDivisorSieve(bound1, bound2 = NULL, namedVector = FALSE, nThreads = NULL)

Arguments

bound1 Positive integer or numeric value.

bound2 Positive integer or numeric value.

namedVector Logical flag. If TRUE, a named vector is returned. The default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

Details

Simple and efficient sieve that calculates the number of divisors for every number in a given range.
This function is very useful when you need to calculate the number of divisors for many numbers.

This algorithm benefits greatly from the fast integer division library ’libdivide’. The following is
from http://libdivide.com/:

• “libdivide allows you to replace expensive integer divides with comparatively cheap multipli-
cation and bitshifts. Compilers usually do this, but only when the divisor is known at compile
time. libdivide allows you to take advantage of it at runtime. The result is that integer division
can become faster - a lot faster.”

http://libdivide.com/

34 numDivisorSieve

Value

Returns a named/unnamed integer vector

Note

The maximum allowed value is 253 − 1.

Author(s)

Joseph Wood

References

• Divisor function

• ridiculousfish (author of libdivide)

• github.com/ridiculousfish/libdivide

• 53-bit significand precision

Examples

Generate some random data
set.seed(8128)
mySamp <- sample(10^6, 5*10^5)

Generate number of divisors for
every number less than a million
system.time(mySigmas <- numDivisorSieve(10^6))

Now use result in algorithm
for (s in mySamp) {

sSig <- mySigmas[s]
Continue algorithm

}

Generating number of divisors for every
number in a range is no problem
system.time(sigmaRange <- numDivisorSieve(10^13, 10^13 + 10^6))

Returning a named vector
numDivisorSieve(10, 20, namedVector = TRUE)
numDivisorSieve(10, namedVector = TRUE)

Using nThreads
system.time(numDivisorSieve(1e5, 2e5, nThreads = 2))

https://en.wikipedia.org/wiki/Divisor_function
http://ridiculousfish.com/
https://github.com/ridiculousfish/libdivide
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Partitions-class 35

Partitions-class S4-class for Exposing C++ Partitions Class

Description

The Partitions class is an S4-class that exposes C++ classes that provide access to iterators and
other useful methods.

Slots

nextIter Retrieve the next lexicographical result

nextNIter Pass an integer n to retrieve the next n lexicographical results

nextRemaining Retrieve all remaining lexicographical results

currIter Returns the current iteration

startOver Resets the iterator

sourceVector View the source vector

summary Returns a list of summary information about the iterator

front Retrieve the first lexicographical result

back Retrieve the last lexicographical result

randomAccess Random access method. Pass a single value or a vector of valid indices. If a single
value is passed, the internal index of the iterator will be updated, however if a vector is passed
the internal state will not change. GMP support allows for flexible indexing.

Author(s)

Joseph Wood

See Also

Combo-class, Constraints-class

Examples

showClass("Partitions")

36 partitionsCount

partitionsCount Number of Partitions

Description

Calculate the number of partitions of a vector chosen m at a time with or without replacement.
Additionally, these functions can calculate the number of partitions of multisets.

Usage

partitionsCount(v, m = NULL, repetition = FALSE, freqs = NULL, target = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. Only integer
and numeric vectors are accepted.

m Width of the partition. If m = NULL, the length will be determined by the parti-
tioning case (e.g. When we are generating distinct partitions of n, the width will
be equal to the smallest m such that sum(1:m) >= n).

repetition Logical value indicating whether partitions should be with or without repetition.
The default is FALSE.

freqs A vector of frequencies used for producing all partitions of a multiset of v. Each
element of freqs represents how many times each element of the source vector,
v, is repeated. It is analogous to the times argument in rep. The default value
is NULL.

target Number to be partitioned.

Value

A numerical value representing the total number of partitions.

Note

When the number of results exceeds 253 − 1, a number of class bigz is returned.

See Also

partitionsGeneral

Examples

Same interface as partitionsGeneral
partitionsCount(25, 5)
partitionsCount(15, 7, TRUE)
partitionsCount(25, 5, freqs = rep(2, 25))

partitionsGeneral 37

Return object of class 'bigz'
partitionsCount(2500, 15, TRUE)

partitionsGeneral Generate Partitions

Description

• Efficient algorithms for partitioning numbers under various constraints:

– Standard (with repetition)
– Distinct
– Restricted
– Where each part has a specific multiplicity (i.e. when using freqs for multisets).
– Arbitrary target and source vector (e.g. partitionsGeneral(sample(1000,20),10,TRUE,target
= 5000))

• Produce results in parallel using the nThreads arguments.

• Alternatively, the arguments lower and upper make it possible to generate partitions in chunks
allowing for parallelization via the parallel package.

• GMP support allows for exploration of cases where the number of partitions is large.

• The output is in lexicographical order.

Usage

partitionsGeneral(v, m = NULL, repetition = FALSE,
freqs = NULL, target = NULL, lower = NULL,
upper = NULL, nThreads = NULL,
tolerance = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. Only integer
and numeric vectors are accepted.

m Width of the partition. If m = NULL, the length will be determined by the parti-
tioning case (e.g. When we are generating distinct partitions of n, the width will
be equal to the smallest m such that sum(1:m) >= n).

repetition Logical value indicating whether partitions should be with or without repetition.
The default is FALSE.

freqs A vector of frequencies used for producing all partitions of a multiset of v. Each
element of freqs represents how many times each element of the source vector,
v, is repeated. It is analogous to the times argument in rep. The default value
is NULL.

38 partitionsGeneral

lower The lower bound. Partitions are generated lexicographically, thus utilizing this
argument will determine which specific partition to start generating from (e.g.
partitionsGeneral(15,3,lower = 6) is equivalent to partitionsGeneral(15,3)[6:partitionsCount(15,3),]).
This argument along with upper is very useful for generating partitions in chunks
allowing for easy parallelization.

upper The upper bound. Similar to lower, however this parameter allows the user to
stop generation at a specific partition (e.g. partitionsGeneral(15,3,upper =
5) is equivalent to partitionsGeneral(15,3)[1:5,])

target Number to be partitioned.

nThreads Specific number of threads to be used. The default is NULL.

tolerance A numeric value greater than or equal to zero. This parameter is utilized when a
constraint is applied on a numeric vector. The default value is 0 when it can be
determined that whole values are being utilized, otherwise it is sqrt(.Machine$double.eps)
which is approximately 1.5e− 8. N.B. If the input vector is of type integer, this
parameter will be ignored and strict equality will be enforced.

Value

A matrix is returned with each row containing a vector of length m.

Note

• nThreads will be ignored in the following cases (i.e. Generating the nth partition in these
cases are currently unavailable):

– With standard multisets. If zero is the only element with a non-trivial multiplicity, multi-
threading is possible (e.g. partitionsGeneral(0:100,freqs = c(100,rep(1,100)),nThreads
= 4)).

– If the source vector is not isomorphic to 1:length(v) (e.g. v = c(1,4,6,7,8)).

• The maximum number of partitions that can be generated at one time is 231 − 1. Utilizing
lower and upper makes it possible to generate additional partitions.

Author(s)

Joseph Wood

References

• Lexicographical Order

• Subset Sum Problem

• Partition (Number Theory)

Examples

partitionsGeneral(1)
partitionsGeneral(-1:0, 1)
partitionsGeneral(-1:0, 1, target = -1)
partitionsGeneral(20, 5)

https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Partition_(number_theory)

partitionsIter 39

partitionsGeneral(20, 5, repetition = TRUE)
partitionsGeneral(20, 5, freqs = rep(1:4, 5))
partitionsGeneral(20, 5, TRUE, target = 80)
partitionsGeneral(0:10, repetition = TRUE)
partitionsGeneral(seq(2L, 500L, 23L), 5, target = 1804)

set.seed(111)
partitionsGeneral(sample(1000, 20), 5, TRUE, target = 2500)

system.time(one_thread <- partitionsGeneral(80, 10, TRUE))
system.time(two_threads <- partitionsGeneral(80, 10, TRUE, nThreads = 2))
identical(one_thread, two_threads)

partitionsIter Partition Iterator

Description

• Returns an iterator for iterating over partitions of a numbers.

• Supports random access via the [[method.

• GMP support allows for exploration of cases where the number of partitions is large.

• Use the next methods to obtain results in lexicographical order.

Usage

partitionsIter(v, m = NULL, repetition = FALSE,
freqs = NULL, target = NULL,
nThreads = NULL, tolerance = NULL)

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. Only integer
and numeric vectors are accepted.

m Width of the partition. If m = NULL, the length will be determined by the parti-
tioning case (e.g. When we are generating distinct partitions of n, the width will
be equal to the smallest m such that sum(1:m) >= n).

repetition Logical value indicating whether partitions should be with or without repetition.
The default is FALSE.

freqs A vector of frequencies used for producing all partitions of a multiset of v. Each
element of freqs represents how many times each element of the source vector,
v, is repeated. It is analogous to the times argument in rep. The default value
is NULL.

target Number to be partitioned.

nThreads Specific number of threads to be used. The default is NULL.

40 partitionsIter

tolerance A numeric value greater than or equal to zero. This parameter is utilized when a
constraint is applied on a numeric vector. The default value is 0 when it can be
determined that whole values are being utilized, otherwise it is sqrt(.Machine$double.eps)
which is approximately 1.5e− 8. N.B. If the input vector is of type integer, this
parameter will be ignored and strict equality will be enforced.

Details

Once you initialize a new iterator, the following methods are available:

nextIter Retrieve the next lexicographical result
nextNIter Pass an integer n to retrieve the next n lexicographical results
nextRemaining Retrieve all remaining lexicographical results
currIter Returns the current iteration
startOver Resets the iterator
sourceVector View the source vector
summary Returns a list of summary information about the iterator
front Retrieve the first lexicographical result
back Retrieve the last lexicographical result
[[Random access method. Pass a single value or a vector of valid indices. If a single value is

passed, the internal index of the iterator will be updated, however if a vector is passed the
internal state will not change. GMP support allows for flexible indexing.

Value

• If nextIter or prevIter is called, a vector is returned
• Otherwise, a matrix with m columns

Note

• If nThreads is utilized, it will only take effect if the number of elements requested is greater
than some threshold (determined internally). E.g:

serial <- partitionsIter(1000, 10)
multi <- partitionsIter(1000, 10, nThreads = 4)
fetch1e6 <- multi@nextNIter(1e6) ## much faster than serial@nextNIter(1e6)
fetch1e3 <- multi@nextNIter(1e3) ## only one thread used... same as serial@nextNIter(1e3)

library(microbenchmark)
microbenchmark(multi@nextNIter(1e6), serial@nextNIter(1e6))
microbenchmark(multi@nextNIter(1e3), serial@nextNIter(1e3))

• nThreads will be ignored in the following cases (i.e. Generating the nth partition in these
cases are currently unavailable):

– With standard multisets. If zero is the only element with a non-trivial multiplicity, multi-
threading is possible.

– If the source vector is not isomorphic to 1:length(v)

• The maximum number of partitions that can be generated at one time is 231 − 1.

partitionsSample 41

Author(s)

Joseph Wood

References

• Lexicographical Order
• Subset Sum Problem
• Partition (Number Theory)

See Also

partitionsGeneral

Examples

a = partitionsIter(0:10, repetition = TRUE)
a@nextIter()
a@nextNIter(3)
a@front()
a@nextRemaining()
a@summary()
a@back()
a[[5]]
a@summary()
a[[c(1, 17, 3)]]
a@summary()

Multisets... no random access
b = partitionsIter(40, 5, freqs = rep(1:4, 10), target = 80)
b@nextIter()
b@nextNIter(10)
b@summary()
b@nextIter()
b@currIter()

partitionsSample Sample Partitions

Description

• Generate a specific (lexicographically) or random sample of partitions of a number.
• Produce results in parallel using the Parallel or nThreads arguments.
• GMP support allows for exploration of cases where the number of partitions is large.

Usage

partitionsSample(v, m = NULL, repetition = FALSE, freqs = NULL,
target = NULL, n = NULL, sampleVec = NULL,
seed = NULL, nThreads = NULL, namedSample = FALSE)

https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Partition_(number_theory)

42 partitionsSample

Arguments

v Source vector. If v is a positive integer, it will be converted to the sequence 1:v.
If v is a negative integer, it will be converted to the sequence v:-1. Only integer
and numeric vectors are accepted.

m Width of the partition. If m = NULL, the length will be determined by the parti-
tioning case (e.g. When we are generating distinct partitions of n, the width will
be equal to the smallest m such that sum(1:m) >= n).

repetition Logical value indicating whether partitions should be with or without repetition.
The default is FALSE.

freqs A vector of frequencies used for producing all partitions of a multiset of v. Each
element of freqs represents how many times each element of the source vector,
v, is repeated. It is analogous to the times argument in rep. The default value
is NULL.

target Number to be partitioned.

n Number of partitions to return. The default is NULL.

sampleVec A vector of numbers representing the lexicographical partitions to return. Ac-
cepts vectors of class bigz as well as vectors of characters

seed Random seed initialization. The default is NULL. N.B. If the gmp library is
needed, this parameter must be set in order to have reproducible results (E.g
set.seed() has no effect in these cases).

nThreads Specific number of threads to be used. The default is NULL.

namedSample Logical flag. If TRUE, rownames corresponding to the lexicographical partition,
will be added to the returned matrix. The default is FALSE.

Details

These algorithms rely on efficiently generating the nth lexicographical partition. This is the process
of unranking.

Value

A matrix is returned with each row containing a vector of length m.

Note

• partitionsSample is not available for the following cases:

– With standard multisets. If zero is the only element with a non-trivial multiplicity, sam-
pling is allowed (e.g. partitionsSample(0:100,freqs = c(100,rep(1,100)),n = 2))

– If the source vector is not isomorphic to 1:length(v) (e.g. v = c(1,4,6,7,8)).

• n and sampleVec cannot both be NULL.

Author(s)

Joseph Wood

https://rosettacode.org/wiki/Permutations/Rank_of_a_permutation

primeCount 43

References

• Lexicographical order

• Partition (Number Theory)

Examples

partitionsSample(100, 10, n = 5)
partitionsSample(100, 10, seed = 42, n = 5, target = 200)

retrieve specific results (lexicographically)
partitionsCount(100, 10, TRUE, target = 500)
[1] 175591757896
partitionsSample(100, 10, TRUE, target = 500,

sampleVec = c(1, 1000, 175591757896))

primeCount Prime Counting Function π(x)

Description

Prime counting function for counting the prime numbers less than an integer, n, using Legendre’s
formula. It is based on the the algorithm developed by Kim Walisch found here: kimwalisch/primecount.

Usage

primeCount(n, nThreads = NULL)

Arguments

n Positive number

nThreads Specific number of threads to be used. The default is NULL.

Details

Legendre’s Formula for counting the number of primes less than n makes use of the inclusion-
exclusion principle to avoid explicitly counting every prime up to n. It is given by:

π(x) = π(
√
x) + Φ(x,

√
x)− 1

Where Φ(x, a) is the number of positive integers less than or equal to x that are relatively prime
to the first a primes (i.e. not divisible by any of the first a primes). It is given by the recurrence
relation (pa is the ath prime (e.g. p4 = 7)):

Φ(x, a) = Φ(x, a− 1) + Φ(x/pa, a− 1)

This algorithm implements five modifications developed by Kim Walisch for calculating Φ(x, a)
efficiently.

https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Partition_(number_theory)
https://en.wikipedia.org/wiki/Prime-counting_function
https://github.com/kimwalisch/primecount
http://mathworld.wolfram.com/LegendresFormula.html
https://en.wikipedia.org/wiki/Inclusion-exclusion_principle
https://en.wikipedia.org/wiki/Inclusion-exclusion_principle

44 primeCount

1. Cache results of Φ(x, a)

2. Calculate Φ(x, a) using Φ(x, a) = (x/pp) ∗ φ(pp) + Φ(xmodpp, a) if a <= 6

• pp = 2 ∗ 3 ∗ ...∗ prime[a]
• φ(pp) = (2− 1) ∗ (3− 1) ∗ ...∗ (prime[a] −1) (i.e. Euler’s totient function)

3. Calculate Φ(x, a) using π(x) lookup table

4. Calculate all Φ(x, a) = 1 upfront

5. Stop recursion at 6 if
√
x >= 13 or π(

√
x) instead of 1

Value

Whole number representing the number of prime numbers less than or equal to n.

Note

The maximum value of n is 253 − 1

Author(s)

Joseph Wood

References

• Computing π(x): the combinatorial method

– Tomás Oliveira e Silva, Computing pi(x): the combinatorial method, Revista do DETUA,
vol. 4, no. 6, March 2006, p. 761. http://sweet.ua.pt/tos/bib/5.4.pdf

• 53-bit significand precision

See Also

primeSieve

Examples

Get the number of primes less than a billion
primeCount(10^9)

Using nThreads
system.time(primeCount(10^10, nThreads = 2))

http://sweet.ua.pt/tos/bib/5.4.pdf
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

primeFactorize 45

primeFactorize Vectorized Prime Factorization

Description

Implementation of Pollard’s rho algorithm for generating the prime factorization. The algorithm is
based on the "factorize.c" source file from the gmp library found here https://gmplib.org.

Usage

primeFactorize(v, namedList = FALSE, nThreads = NULL)

Arguments

v Vector of integers or numeric values. Non-integral values will be cured to whole
numbers.

namedList Logical flag. If TRUE and the length(v) > 1, a named list is returned. The
default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

Details

As noted in the Description section above, this algorithm is based on the "factorize.c" source code
from the gmp library. Much of the code in RcppAlgos::primeFactorize is a straightforward trans-
lation from multiple precision C data types to standard C++ data types. A crucial part of the
algorithm’s efficiency is based on quickly determining primality, which is easily computed with
gmp. However, with standard C++, this is quite challenging. Much of the research for RcppAl-
gos::primeFactorize was focused on developing an algorithm that could accurately and efficiently
compute primality.

For more details, see the documentation for isPrimeRcpp.

Value

• Returns an unnamed vector if length(v) == 1 regardless of the value of namedList. If v <
231, the class of the returned vector will be integer, otherwise the class will be numeric.

• If length(v) > 1, a named/unnamed list of vectors will be returned. If max(bound1,bound2)
< 231, the class of each vector will be integer, otherwise the class will be numeric.

Note

The maximum value for each element in v is 253 − 1.

Author(s)

Joseph Wood

https://gmplib.org
https://en.wikipedia.org/wiki/Primality_test

46 primeFactorizeSieve

References

• Pollard’s rho algorithm

• Miller-Rabin primality test

• Accurate Modular Arithmetic with Double Precision

• 53-bit significand precision

See Also

primeFactorizeSieve, factorize, primeFactors

Examples

Get the prime factorization of a single number
primeFactorize(10^8)

Or get the prime factorization of many numbers
set.seed(29)
myVec <- sample(-1000000:1000000, 1000)
system.time(pFacs <- primeFactorize(myVec))

Return named list
pFacsWithNames <- primeFactorize(myVec, namedList = TRUE)

Using nThreads
system.time(primeFactorize(myVec, nThreads = 2))

primeFactorizeSieve Generate Prime Factorization for Numbers in a Range

Description

Generates the prime factorization of all numbers between bound1 and bound2 (if supplied) or all
numbers up to bound1.

Usage

primeFactorizeSieve(bound1, bound2 = NULL, namedList = FALSE, nThreads = NULL)

Arguments

bound1 Positive integer or numeric value.

bound2 Positive integer or numeric value.

namedList Logical flag. If TRUE, a named list is returned. The default is FALSE.

nThreads Specific number of threads to be used. The default is NULL.

https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://codereview.stackexchange.com/questions/186751/accurate-modular-arithmetic-with-double-precision
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

primeFactorizeSieve 47

Details

This function is useful when many prime factorizations are needed. Instead of generating the prime
factorization on the fly, one can reference the indices/names of the generated list.

This algorithm benefits greatly from the fast integer division library ’libdivide’. The following is
from http://libdivide.com/:

• “libdivide allows you to replace expensive integer divides with comparatively cheap multipli-
cation and bitshifts. Compilers usually do this, but only when the divisor is known at compile
time. libdivide allows you to take advantage of it at runtime. The result is that integer division
can become faster - a lot faster.”

Value

Returns a named/unnamed list of integer vectors if max(bound1,bound2)< 231, or a list of numeric
vectors otherwise.

Note

The maximum value for either of the bounds is 253 − 1.

Author(s)

Joseph Wood

References

• Prime Factor

• ridiculousfish (author of libdivide)

• github.com/ridiculousfish/libdivide

• 53-bit significand precision

See Also

primeFactorize, divisorsSieve, factorize, primeFactors

Examples

Generate some random data
set.seed(28)
mySamp <- sample(10^5, 5*10^4)

Generate prime factorizations up
to 10^5 (max element from mySamp)
system.time(allPFacs <- primeFactorizeSieve(10^5))

Use generated prime factorization for further
analysis by accessing the index of allPFacs
for (s in mySamp) {

pFac <- allPFacs[[s]]

http://libdivide.com/
https://en.wikipedia.org/wiki/Prime_factor
http://ridiculousfish.com/
https://github.com/ridiculousfish/libdivide
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

48 primeSieve

Continue algorithm
}

Generating prime factorizations over
a range is efficient as well
system.time(primeFactorizeSieve(10^12, 10^12 + 10^5))

Set 'namedList' to TRUE to return a named list
primeFactorizeSieve(27, 30, namedList = TRUE)

Using nThreads
system.time(primeFactorizeSieve(1e4, 5e4, nThreads = 2))

primeSieve Generate Prime Numbers

Description

Implementation of the segmented sieve of Eratosthenes with wheel factorization. Generates all
prime numbers between bound1 and bound2 (if supplied) or all primes up to bound1. See this
stackoverflow post for an analysis on prime number generation efficiency in R: Generate a list of
primes up to a certain number

The fundamental concepts of this algorithm are based off of the implementation by Kim Walisch
found here: kimwalisch/primesieve.

Usage

primeSieve(bound1, bound2 = NULL, nThreads = NULL)

Arguments

bound1 Positive integer or numeric value.

bound2 Positive integer or numeric value.

nThreads Specific number of threads to be used. The default is NULL.

Details

At the heart of this algorithm is the traditional sieve of Eratosthenes (i.e. given a prime p, mark all
multiples of p as composite), however instead of sieving the entire interval, we only consider small
sub-intervals. The benefits of this method are two fold:

1. Reduction of the space complexity from O(n), for the traditional sieve, to O(
√
n)

2. Reduction of cache misses

The latter is of particular importance as cache memory is much more efficient and closer in prox-
imity to the CPU than main memory. Reducing the size of the sieving interval allows for more
effective utilization of the cache, which greatly impacts the overall efficiency.

https://stackoverflow.com/a/48313378/4408538
https://stackoverflow.com/a/48313378/4408538
https://github.com/kimwalisch/primesieve
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/DSPACE
https://en.wikipedia.org/wiki/CPU_cache#Cache_miss
https://en.wikipedia.org/wiki/Computer_data_storage#Primary_storage

primeSieve 49

Another optimization over the traditional sieve is the utilization of wheel factorization. With the
traditional sieve of Eratosthenes, you typically check every odd index of your logical vector and if
the value is true, you have found a prime. With wheel factorization using the first four primes (i.e.
2, 3, 5, and 7) to construct your wheel (i.e. 210 wheel), you only have to check indices of your
logical vector that are coprime to 210 (i.e. the product of the first four primes). As an example,
with n = 10000 and a 210 wheel, you only have to check 2285 indices vs. 5000 with the classical
implementation.

Value

Returns an integer vector if max(bound1,bound2) < 231, or a numeric vector otherwise.

Note

• It does not matter which bound is larger as the resulting primes will be between min(bound1,bound2)
and max(bound1,bound2) if bound2 is provided.

• The maximum value for either of the bounds is 253 − 1.

Author(s)

Joseph Wood

References

• primesieve (Fast C/C++ prime number generator)

• Sieve of Eratosthenes

• Wheel factorization

• 53-bit significand precision

See Also

Primes

Examples

Primes up to a thousand
primeSieve(100)

Primes between 42 and 17
primeSieve(42, 17)

Equivalent to
primeSieve(17, 42)

Primes up to one hundred million in no time
system.time(primeSieve(10^8))

options(scipen = 50)
Generate large primes over interval
system.time(myPs <- primeSieve(10^13+10^6, 10^13))

https://github.com/kimwalisch/primesieve
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Wheel_factorization
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

50 stdThreadMax

Object created is small
object.size(myPs)

Using nThreads
system.time(primeSieve(1e7, nThreads = 2))

stdThreadMax Max Number of Concurrent Threads

Description

Wrapper of std::thread::hardware_concurrency(). As stated by cppreference, the returned value
should be considered only a hint.

Usage

stdThreadMax()

Value

An integer representing the number of concurrent threads supported by the user implementation. If
the value cannot be determined, 1L is returned.

See Also

detectCores

Examples

stdThreadMax()

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://en.cppreference.com/w/

Index

∗ classes
Combo-class, 4
Constraints-class, 25
Partitions-class, 35

∗ combinations
Combo-class, 4
comboCount, 5
comboGeneral, 6
comboIter, 19
comboSample, 23
Constraints-class, 25

∗ combinatorics
Combo-class, 4
comboCount, 5
comboGeneral, 6
comboIter, 19
comboSample, 23
Constraints-class, 25
Partitions-class, 35

∗ package
RcppAlgos-package, 3

∗ partitions
Partitions-class, 35

∗ permutations
Combo-class, 4
comboCount, 5
comboGeneral, 6
comboIter, 19
comboSample, 23
Constraints-class, 25

∗ random
comboSample, 23

∗ sample
comboSample, 23

$,Combo-method (Combo-class), 4
$,ComboApply-method (Combo-class), 4
$,ComboRes-method (Combo-class), 4
$,Constraints-method

(Constraints-class), 25

$,Partitions-method (Partitions-class),
35

Combo-class, 4
ComboApply-class (Combo-class), 4
comboCount, 5
comboGeneral, 5, 6, 22
comboGrid, 12
comboGroups, 13
comboGroupsCount, 16
comboGroupsSample, 17
comboIter, 19
ComboRes-class (Combo-class), 4
comboSample, 23
Constraints-class, 25

detectCores, 50
divisors, 27, 29
divisorsRcpp, 26, 29
divisorsSieve, 28, 47

eulerPhiSieve, 29
eulersPhi, 31

factorize, 46, 47

is.atomic, 5, 7, 14, 16, 17, 19, 23
isPrime, 32
isprime, 32
isPrimeRcpp, 31, 45

numDivisorSieve, 33

Partitions-class, 35
partitionsCount, 36
partitionsGeneral, 36, 37, 41
partitionsIter, 39
partitionsSample, 41
permuteCount (comboCount), 5
permuteGeneral, 5, 22
permuteGeneral (comboGeneral), 6

51

52 INDEX

permuteIter (comboIter), 19
permuteSample (comboSample), 23
primeCount, 43
primeFactorize, 27, 32, 45, 47
primeFactorizeSieve, 29, 46, 46
primeFactors, 46, 47
Primes, 49
primeSieve, 44, 48

RcppAlgos (RcppAlgos-package), 3
RcppAlgos-package, 3
rep, 5, 7, 19, 23, 36, 37, 39, 42

stdThreadMax, 50

vapply, 8, 9, 20, 21, 24

	RcppAlgos-package
	Combo-class
	comboCount
	comboGeneral
	comboGrid
	comboGroups
	comboGroupsCount
	comboGroupsSample
	comboIter
	comboSample
	Constraints-class
	divisorsRcpp
	divisorsSieve
	eulerPhiSieve
	isPrimeRcpp
	numDivisorSieve
	Partitions-class
	partitionsCount
	partitionsGeneral
	partitionsIter
	partitionsSample
	primeCount
	primeFactorize
	primeFactorizeSieve
	primeSieve
	stdThreadMax
	Index

