Package ‘Rdtq’

November 22, 2016

Type Package

Title Density Tracking by Quadrature

Version 0.1

Date 2016-11-21

Author Harish S. Bhat, R. W. M. A. Madushani, Shagun Rawat
Maintainer Harish S. Bhat <hbhat@ucmerced.edu>

Description Implementation of density tracking by quadrature (DTQ) algorithms for stochastic differ-
ential equations (SDEs). DTQ algorithms numerically compute the density function of the solu-
tion of an SDE with user-specified drift and diffusion functions. The calculation does not re-
quire generation of sample paths, but instead proceeds in a deterministic fashion by repeat-
edly applying quadrature to the Chapman-Kolmogorov equation associated with a discrete-
time approximation of the SDE. The DTQ algorithm is provably convergent. For several practi-
cal problems of interest, we have found the DTQ algorithm to be fast, accurate, and easy to use.

Depends R (>=3.2.0)

License GPL (>=2)

Imports Rcpp (>=0.12.4), Matrix (>= 1.2)
Suggests ggplot2 (>=2.1), scales (>= 0.4.0)
LinkingTo Rcpp

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-11-22 09:06:51

R topics documented:

rdtq .. 2
studydtqeconv L L L e e e e 4
Index 8

2 rdtq
rdtq Density Tracking by Quadrature
Description
rdtq implements density tracking by quadrature (DTQ) algorithms to compute the probability den-
sity function of a stochastic differential equation with user-specified drift and diffusion functions.
Usage
rdtq(h, k = NULL, bigm, a = NULL, b = NULL, init, fT, drift = NULL,
diffusion = NULL, thresh = @, method = "sparse")
Arguments
h Time step size, a positive numeric scalar.
k Spatial grid spacing, a positive numeric scalar. (Must be specified if a and b are
not specified.)
bigm If k is specified, then bigm is a positive integer such that -bigm*k and bigm*k
are, respectively, the minimum and maximum grid points. If a and b are speci-
fied, then bigm is the total number of grid points. Note that the fractional part of
bigmis ignored, and that floor (bigm) must be at least 2.
a Left boundary, a numeric scalar. (Must be specified if k is not specified.)
b Right boundary, a numeric scalar. (Must be specified if k is not specified.)
init A numeric scalar indicating either a fixed initial condition of the form X (0)=init,
or a numeric vector giving the PDF at time ¢ = 0. In the latter case, the vector
must have the same size as the spatial grid.
fT The final time, a positive numeric scalar. The computation assumes an initial
time of ¢=0 and then computes the PDF at time ¢=fT.
drift When the user chooses the method="cpp" algorithm, this should be a pointer to
a drift function that is implemented in C++ using Rcpp. In our C++ code, we
define the type funcPtr using the following code:
typedef double (*funcPtr)(const double& x);
We expect the drift function to be a C++ function, implemented using Repp, of
type XPtr<funcPtr>. See the first example below.
When the user chooses the method="sparse"” algorithm, this should be an R
function that takes as input a numeric vector of values. The function should
return as output a numeric vector containing the drift function evaluated at each
element of the input vector. See the second example below.
diffusion When the user chooses the method="cpp" algorithm, this should be a pointer to

a diffusion function that is implemented in C++ using Rcpp. All of the details
are analogous to that of the drift function described above.

When the user chooses the method="sparse" algorithm, this should be an R
function that takes as input a numeric vector of values. The function should

rdtq 3

return as output a numeric vector containing the diffusion function evaluated at
each element of the input vector. See the second example below.

thresh This is an optional numeric scalar parameter that is only used for the method="cpp"”
algorithm. When the DTQ summand drops below codethresh, the algorithm
stops summing, even if it has not summed over all grid points. The default value
of this parameter is zero, indicating that the full DTQ sum is evaluated. Setting
this parameter to a small positive value such as 2.2 x 10~ can result in a sub-
stantial speed up for computations on large spatial grids, especially when A is
also small.

method A string that indicates which DTQ algorithm to use. There are two choices:

"cpp” This DTQ method is implemented in C++. No matrices are formed; the
method is highly conservative in its usage of memory. For sufficiently small
h and k, it is necessary to use this method. This method also allows for ap-
proximate evaluation of the DTQ algorithm by setting a positive threshold
parameter.

"sparse” This DTQ method is implemented in R using sparse matrices from
the Matrix package. The method uses more memory than the "cpp” method,
but may be faster for larger values of h and k. This is the default method.

Details

Consider the stochastic differential equation (SDE)
dX(t) = f(X(t))dt + g(X(t))dW (1)

where W (t) is standard Brownian motion, f is the drift function, and g is the diffusion function. Let
p(x, t) denote the time-dependent probability density function (PDF) of X (¢); then rdtq computes
p(x,T) for a fixed time 7.

Note that the PDF is computed on a spatial grid that can be specified in one of two ways:

1. Specify a real, positive value k and a positive integer M = bigm. In this case, the PDF will be
computed on the grid x; = jk where j = —M, —M +1,..., M — 1, M. In total, there will be
2M + 1 grid points.

2. Specify a real, positive integer M and a computational domain [a, b]. In this case, there will
be exactly M equispaced grid points. The grid spacing will be k = (b —a)/(M — 1).
Value
The output consists of a list with two elements:

xvec anumeric vector that contains the spatial grid

pdf anumeric vector that contains the PDF evaluated at the grid points

See Also

H. S. Bhat and R. W. M. A. Madushani, "Density Tracking by Quadrature for Stochastic Differential
Equations," arXiv:1610.09572 [stat.CO], http://bit.1ly/2fbNsp5

http://bit.ly/2fbNsp5

Examples

Example 1:
Define the drift function f(x) = -x and diffusion function g(x) =1
using C++ code:
require(Rcpp)
sourceCpp(code = '#include <Rcpp.h>
using namespace Rcpp;
double drift(double& x)
{
return(-x);
3
double diff(double& x)
{
return(1.0);
3
typedef double (*funcPtr)(double& x);
// [[Rcpp::export]]
XPtr<funcPtr> driftXPtr()
{
return(XPtr<funcPtr>(new funcPtr(&drift)));
3
// [[Rcpp::export]]
XPtr<funcPtr> diffXPtr()

{
return(XPtr<funcPtr>(new funcPtr(&diff)));
i)
Solve for the PDF (at final time fT=1) of the SDE with drift f,
diffusion g, and deterministic initial condition X(@) = 0.
First we solve using the grid specified by k and bigm.
Then we solve using the grid specified by a, b, and bigm.
We then check that we get the same PDF either way.
k = 0.01
M = 250

testl = rdtq(h=0.1,k,bigm=M,init=0,fT=1,
drift=driftXPtr(),diffusion=diffXPtr(),method="cpp")

test2 = rdtq(h=0.1,a=-2.5,b=2.5,bigm=501,init=0,fT=1,
drift=driftXPtr(),diffusion=diffXPtr(),method="cpp")

print(k*sum(abs(test1$pdf-test2$pdf)))

Example 2:

We again use the drift function f(x) = -x and diffusion function g(x) = 1.

This time, we use the method="sparse” version of DTQ.

This requires us to define the drift and diffusion functions in R:

mydrift = function(x) { -x }

mydiff = function(x) { rep(1,length(x)) }

test = rdtq(h=0.1,k=0.01,bigm=250,init=0,fT=1,
drift=mydrift,diffusion=mydiff,method="sparse")

plot(test$xvec, test$pdf,type="'1")

studydtqconv

studydtqconv Study DTQ Convergence

studydtqconv

Description

studydtqconv facilitates the generation of convergence plots, i.e., plots where one studies the error
(in various norms) as a function of the time step h; the error is computed as the difference between
the exact PDF and the approximate PDF computed via the DTQ method.

Usage

studydtqconv(method, drift, diffusion, exact, hseq, kseq, Mseq, init, fT,

thresh = 0)

Arguments

method

drift

diffusion

exact

hseq

kseq

Mseq

init

fT

thresh

Value

This must be a string, either "cpp" or "sparse", that indicates which algorithm to
use. See the parameter of the same name in the rdtq function.

if method="cpp"”, then this should be a pointer to a drift function implemented
in C++ using Rcpp. If method="sparse"”, then this should be the name of an R
function. For further details, see the description of the drift parameter for the
rdtq function.

if method="cpp”, then this should be a pointer to a diffusion function imple-
mented in C++ using Repp. If method="sparse"”, then this should be the name
of an R function. For further details, see the description of the diffusion pa-
rameter for the rdtq function.

an R function that accepts two arguments, xvec and T, and returns the exact
probability density function p(x,T") for each x in xvec.

a numeric vector of values of h, the time step, to use for the computation of the
DTQ solution. Note that hseq and kseq must have the same lengths.

a numeric vector of values of k, the grid spacing, to use for the computation of
the DTQ solution. Note that hseq and kseq must have the same lengths.

a numeric vector of integer values of M. For each corresponding value of k,
the spatial grid will cover the domain [—yas, yas] Where ypr = Mk. This cor-
responds to the parameter bigm in the rdtq function. Note that kseq and Mseq
must have the same lengths.

a scalar initial condition.

a positive numeric scalar giving the final time at which to compare the exact and
DTQ solutions.

This optional positive scalar is only used when method="cpp”. See the param-
eter of the same name in the rdtq function.

The function returns the errors between the DTQ and exact solutions indexed by the corresponding
value of hseq. The errors are returned in the L' norm, L* norm, and the Kolmogorov-Smirnov
norm. The errors are returned in the form of a data frame.

6 studydtqconv

See Also

H. S. Bhat and R. W. M. A. Madushani, "Density Tracking by Quadrature for Stochastic Differential
Equations," arXiv:1610.09572 [stat.CO], http://bit.1ly/2fbNsp5

Examples

In this example, we will study the convergence of the DTQ method
for the SDE with drift f(x) = x/2 + (1 + x*2)*(1/2) and
diffusion g(x) = (1 + x*2)*(1/2).

library(Rdtq)
library(Rcpp)

implement the drift and diffusion functions using C++
sourceCpp(code = '#include <Rcpp.h>
using namespace Rcpp;
double drift(double& x) { return(@.5*x + sqrt(x*x + 1.0)); }
double diff(double& x) { return(sqrt(x*x + 1.0)); }
typedef double (*funcPtr)(double& x);
// [[Rcpp::export]]
XPtr<funcPtr> driftXPtr() { return(XPtr<funcPtr>(new funcPtr(&drift))); }
// [[Rcpp::export]]
XPtr<funcPtr> diffXPtr() { return(XPtr<funcPtr>(new funcPtr(&diff))); }')

implement the drift and diffusion functions using R
mydrift = function(y)
{
return(@.5*%y + sqrt(y*2 + 1))
3
mydiff = function(y)
{
return(sqrt(y*2 + 1))
3

implement the exact solution at time t, i.e.,
the analytical formula for the pdf p(x,t)
exactsol = function(xvec,t)
{

transx = asinh(xvec) - t

prefac = (1 + xvec*2)*(-1/2)

z = prefac*dnorm(x=transx)

return(z)

}

define the sequence of parameters that will be used to study convergence
hseq = ¢c(0.5,0.2,0.1,0.05)

kseq = hseq”(0.55)

Mseq = ceiling(5%x(-log(hseq))/kseq)

we will use the method="sparse” code for the three largest values in hseq,
and then switch to the method="cpp"” code for the three smallest values
firstpart = c(1:2)

http://bit.ly/2fbNsp5

studydtqconv 7

—_n

errpart1l = studydtqconv(method="sparse"”,drift=mydrift,diffusion=mydiff,exact=exactsol,
hseq[firstpart],kseq[firstpart],Mseq[firstpart],
init=0,fT=1)

errpart2 = studydtqconv(method="cpp”,drift=driftXPtr(),diffusion=diffXPtr(),exact=exactsol,
hseq[-firstpart],kseq[-firstpart],Mseq[-firstpart],
init=0,fT=1, thresh=1e-16)

now we will put everything together into one data frame
mydat = rbind(errpartl,errpart2)

we plot the convergence diagram, on a log-log scale, using ggplot2
library(ggplot2)
library(scales)
myplot = ggplot(data=mydat, aes(x=x,y=y,group=norm,color=norm))
myplot = myplot + theme_bw() + theme(plot.background = element_rect(fill="white'))
myxticks = sort(10*(round(log(hseq)/log(10)*10)/10))
rawyticks = round(log(mydat$y)/log(10)*10)/10
rawyticks = round(seq(from=min(rawyticks),to=max(rawyticks),length.out=length(myxticks))*1)/1
myyticks = unique(10*rawyticks)
myplot = myplot + scale_x_logl@(breaks = hseq)
myplot = myplot + theme(axis.text.x = element_text(angle=90,hjust=1))
myplot = myplot + scale_y_logl@(breaks = myyticks,
labels = trans_format(”log10"”, math_format(10*.x)))
myplot = myplot + labs(x="h (temporal step size)", y="error")
myplot = myplot + geom_line() + geom_point()

save the plot to a pdf (portable document format) file
ggsave(filename="example.pdf"”, plot=myplot, width=5, height=4)

Index

rdtq, 2

studydtqconv, 4

	rdtq
	studydtqconv
	Index

