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Abstract
This vignette provides an overview of the R package
ReplicationSuccess. The package contains utilities for the de-
sign and analysis of replication studies. Traditional methods based on
statistical significance and confidence intervals, as well as the recently
developed reverse-Bayes approach from Held (2020b) are included.
The functionality of the package is illustrated using data sets from
four large-scale replication projects which come also with the package.

1 Introduction

Over the course of the last decade, the conduct of replication studies has increased substantially.
These developments were mainly caused by the so-called “replication crisis” in the social and life
sciences. However, there is no consensus which statistical approach should be used to assess whether
a replication study successfully replicated an original discovery. Moreover, depending on the chosen
approach for analysis, the statistical considerations in the design of the replication study differ.

The R package ReplicationSuccess provides functionality to analyse and plan replication stud-
ies in several ways. Specifically, functions for analysis, power and samples size calculations based
on statistical significance and confidence intervals, as well as on more recent methods, such as the
sceptical p-value (Held, 2020b), are included. This vignette illustrates the usage of the package on
the data sets from four large-scale replication projects which are also included in the package.

ReplicationSuccess was first created to provide software for computing the sceptical p-value
and related power and sample size calculations (Held, 2020b). Methods to compute the p-value for
intrinsic credibility (Held, 2019), the harmonic mean x?-test (Held, 2020a), forecasting of repli-
cation studies (Pawel and Held, 2020), and interim analyses of replication studies (Micheloud
and Held, 2021) were added subsequently. Recently, substantial changes to many of the exist-
ing functions were made due to a recalibration of the sceptical p-value approach (Held et al.,
2021). Use news(package = "ReplicationSuccess") to see a history of the changes. The devel-
opment version of ReplicationSuccess is available on GitHub (https://github.com/SamCHI3/
ReplicationSuccess/, the stable version is available on CRAN (https://cran.r-project.org/
web/packages/ReplicationSuccess/).

1.1 Statistical framework

ReplicationSuccess assumes a simple but general statistical framework: The (suitably trans-
formed) effect estimates 6, and 6, from original (subscript o) and replication study (subscript r) are
assumed to be normally distributed around the unknown effect size 6. Their variances are equal to
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their squared standard errors o, and o, which are assumed to be known. The same framework is
also common in meta-analysis and can for example be applied to mean differences, odds ratios (log
transformation), or correlation coefficients (Fisher z-transformation).

Many of the functions in the package take unitless quantities as input: the z-values z, = 0, /0o
and 2, = 0, /or, the relative effect size d = 0, / 0, (or shrinkage s = 1 — d), and the variance ratio
c = 02/02. The squared standard errors are usually inversely proportional to the sample size of
each study, 02 = x2/n, and 02 = k2 /n, for some unit variance x2. The variance ratio can then be
identified as the relative sample size ¢ = n,/n,. This may require some adaptation for certain types
of effect sizes. Computation of these quantities from real data will be illustrated below.

2 Data sets

ReplicationSuccess includes data from four replication projects, all with a “one-to-one” design
(4. e. one replication for one original study). They come from the following projects:

e Reproducibility Project: Psychology: In the Reproducibility Project: Psychology 100
replications of studies from the field of psychology were conducted (Open Science Collabora-
tion, 2015). The original studies were published in three major Psychology journals in the year
2008. Only the study pairs of the “meta-analytic subset” are included here, which consists
of 73 studies where the standard error of the Fisher z-transformed effect estimates can be
computed (Johnson et al., 2016).

¢ Experimental Economics Replication Project: This project attempted to replicate 18
experimental economics studies published between 2011 and 2015 in two high impact eco-
nomics journals (Camerer et al., 2016). For this project a prediction market was also conducted
in order to estimate the peer beliefs about whether a replication will result in a statistically
significant result. Prediction markets are a tool to aggregate beliefs of market participants
regarding the possibility of an investigated outcome and they have been used successfully in
numerous domains, e. g.sports and politics (Dreber et al., 2015). The estimated peer beliefs
are also included for each study pair.

e Social Sciences Replication Project: This project involved 21 replications of studies
on the social sciences published in the journals Nature and Science between 2010 and 2015
(Camerer et al., 2018). As in the experimental economics replication project, a prediction
market to estimate peer beliefs about the replicability of the original studies was conducted and
the resulting belief estimates are also provided in the package. In this project, the replications
were conducted in two stages. In stage 1, the replication studies had 90% power to detect
75% of the original effect estimate. Data collection was stopped if a two-sided p-value < 0.05
and an effect in the same direction as the original were found. If not, data collection was
continued in stage 2 to have 90% power to detect 50% of the original effect size for the first
and second data collection pooled.

¢ Experimental Philosophy Replicability Project: In this project, 40 replications of ex-
perimental philosophy studies were carried out. The original studies had to be published
between 2003 and 2015 in one of 35 journals in which experimental philosophy research is
usually published (a list defined by the coordinators of this project) and they had to be listed
on the experimental philosophy page of the Yale university (Cova et al., 2018). The data from
the subset of 31 study pairs where effect estimates on correlation scale as well as effective
sample size for both the original and replication were available are included in the package.

In all data sets, effect estimates are provided as correlation coefficients (r), as well as Fisher
z-transformed correlation coefficients (# = tanh™'(r)). In the descriptive analysis of data from
replication projects it has become common practice to transform effect sizes to the correlation
scale, because correlations are bounded to the interval between minus one and one and thus easy to



compare and interpret. Design and statistical analysis, on the other hand, is then usually carried
out on a scale where the distribution of the estimates is well approximated by a normal distribution.
For correlation coefficients this is the case after applying the Fisher z-transformation, which leads to
their variance asymptotically being only a function of the study sample size n, 4. e. Var() = 1/(n—3)
(Fisher, 1921).

The data can be loaded with the command data("RProjects"). For a description of the
variables see the documentation with ?RProjects. An extended version of the Social Sciences
Replication Project including the details of stages one and two can be loaded with data("SSRP").
It is a good idea to first compute the unitless quantities z,, z. and ¢, since most functions of
the package use them as input. We also use the function z2p to compute the one-sided p-values
for original and replication study. As all original estimates are positive, we specify the argument
alternative to "greater".

library(ReplicationSuccess)
data("RProjects")
str (RProjects)

## 'data.frame': 143 obs. of 13 variables:

## $ study : chr "A Roelofs" "AL Morris, ML Still" "B Liefooghe, P Barrouillet, A Vandierendonck,
## $ project : chr "Psychology" "Psychology" "Psychology" "Psychology"
# $ ro : num 0.595 0.611 0.425 0.229 0.461

# $ rr : num 0.14834 0.2296 -0.21524 -0.00611 0.13481 ...

## $ fiso :num 0.685 0.711 0.454 0.233 0.499 ...

## $ fisr : num 0.14944 0.23377 -0.21866 -0.00611 0.13564 ...

## § se_fiso : num 0.2887 0.2132 0.2085 0.0727 0.1826 ...

## $ se_fisr : num 0.1925 0.2132 0.1826 0.0612 0.1474 ...

## $ po : num 0.017688 0.000858 0.029546 0.001368 0.006277 ...

# $ pr : num 0.437 0.273 0.231 0.92 0.358 ...

## ¢ pm_belief: num NA NA NA NA NA NA NA NA NA NA ...

## $ nr : num 30 25 33 270 49 33 16 33 31 31 ...

## $ no :num 15 25 26 192 33 25 101 39 30 23 ...

## computing zo, 2r, C

RProjects$zo <- with(RProjects, fiso/se_fiso)
RProjects$zr <- with(RProjects, fisr/se_fisr)
RProjects$c <- with(RProjects, se_fiso~2/se_fisr~2)

## computing one-sided p-values for alternative = "greater”
RProjects$pol <- z2p(z = RProjects$zo, alternative = "greater")
RProjects$prl <- z2p(z = RProjects$zr, alternative = "greater")

Note that each variable ending with an o is associated with the original, while each variable
ending with an r is associated with the replication. Plotting the original versus the replication
effect estimate on the correlation scale paints the following picture.

## plots of effect estimates
par0ld <- par(mfrow = c(2, 2), las = 1, mai = rep(0.65, 4))
for (p in unique(RProjects$project)) {
data_project <- subset(RProjects, project == p)
significant <- ifelse(data_project$prl < 0.025, "#DF536BCC", "#00000080")
plot(rr ~ ro, data = data_project, ylim = c(-0.5, 1), col = significant,
xlim = ¢(-0.1, 1), main = p, xlab = expression(italic(r) [o]),
cex = 0.7, pch = 19, ylab = expression(italic(r) [r]))
legend("topleft", legend = "replication significant", cex = 0.8, pch = 20,
col = "#DF536BCC", bty = "n")
abline(h = 0, 1ty = 2)
abline(a = 0, b = 1, col = "grey")
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In most cases the replication estimate is smaller than the corresponding original estimate. Fur-
thermore, a substantial number of the replication estimates do not achieve statistical significance
at one-sided 2.5% level, while almost all original estimates did.

3 Design and analysis of replication studies

Although a replication study needs to be planned and conducted before the results can be analysed,
we will first discuss the particular analysis approaches. We do this because the chosen analysis
strategy has a substantial impact on the design of a replication study. In the design phase of a
replication study, we will then focus only on the determination of the sample size.

3.1 Statistical significance

Analysis The most commonly used approach is to declare a replication successful if both, original
and replication study, achieve statistical significance (in the same direction). The significance level
is conventionally chosen to be 0.05 for two-sided p-values, respectively, 0.025 for one-sided p-values.
Working with one-sided p-values is usually simpler since effect direction is automatically taken into
account, while with two-sided p-values one has also to check whether the original and replication
estimate go in the same direction. For the four data sets, we can simply check whether the one-
sided p-values (in the positive direction) of original and replication are both below the conventional
threshold 0.025.

for (p in unique(RProjects$project)) {
data_project <- subset(RProjects, project == p)
significant_0 <- data_project$pol < 0.025
significant_R <- data_project$prl < 0.025
success <- significant_0 & significant_R
cat(pasteO(p, ": \n"))
cat (pasteO(round(mean(significant_0)*100, 1), "% original studies significant (",



sum(significant_0), "/", length(significant_0), ")\n"))

cat (pasteO(round(mean(significant_R)*100, 1), ", replications significant (",
sum(significant_R), "/", length(significant_R), ")\n"))

cat (pasteO(round(mean(success)*100, 1),
"% both studies significant in the same direction (",
sum(success), "/", length(success), ")\n \n"))

## Psychology:

## 897, original studies significant (65/73)

## 32.9), replications significant (24/73)

## 28.8), both studies significant in the same direction (21/73)
#H#t

## Experimental Economics:

## 88.9) original studies significant (16/18)

## 61.1% replications significant (11/18)

## 55.6% both studies significant in the same direction (10/18)
H#

## Social Sciences:

## 100% original studies significant (21/21)

## 61.9% replications significant (13/21)

## 61.9% both studies significant in the same direction (13/21)
##

## Experimental Philosophy:

## 96.8), original studies significant (30/31)

## 74.2), replications significant (23/31)

## 74.2) both studies significant in the same direction (23/31)
##

Despite its appealing simplicity, assessing replication success with statistical significance is often
criticized. For example, non-significant replication results are expected if the original finding was a
false positive, however, they can also be caused due to low power of the replication study (Goodman,
1992). On the other hand, statistical significance can still be achieved for a replication effect estimate
which is much smaller than the one from the original study, provided its standard error is small
enough (e. g. because of a very large replication sample size).

Design Selecting the same sample size in the replication study as in the original study may lead
to a severely underpowered design and as a result, true effects may not be detected. To assure that
the replication study reliably detects true effects, the studies should be well-powered. In classical
sample size planning, usually a clinically relevant effect is specified and the sample size is then
determined so that it can be detected with a certain power. Luckily, in the replication setting the
clinically relevant effect does not need to be specified but can be replaced with the effect estimate
from the original study. However, using the standard sample size calculation approach is not well
suited, because the uncertainty of the original effect estimate is ignored.

One way of tackling this issue is to use a Bayesian approach, incorporating the original estimate
and its precision into a design prior that is used for power calculations. This corresponds to the
concept of “predictive power” and generally leads to larger sample sizes than the standard method.
In practice, however, often more ad hoc approaches are used. For instance, the original estimate is
just shrunken by an (arbitrary) constant, e. g.it was halved in the social sciences replication project,
and standard sample size calculations are then carried out.

Using the function sampleSizeSignificance, it is straightforward to plan the sample size of
the replication study with the just mentioned approaches. The argument designPrior allows to
carry out sample size planning based on classical power ignoring the uncertainty ("conditional™)
or based on predictive power ("predictive"). Moreover, ad hoc shrinkage can be specified with
the argument shrinkage. Note that the function sampleSizeSignificance, as well as most of the
functions from the package, takes z-values (and not p-values) as arguments. The transformation



from p- to z-values and vice versa can easily be done using the functions p2z and z2p.

The following code shows a few examples. Note that the function returns the required relative
sample size ¢ = n,./n,, i. e. the factor by which the sample size of the replication needs to be changed
compared to the original study.

sampleSizeSignificance(zo = 2.5, power = 0.8, level = 0.05, designPrior = "conditional")
## [1] 0.9892092
sampleSizeSignificance(zo = 2.5, power = 0.8, level = 0.05, designPrior = "predictive")
## [1] 1.388112
sampleSizeSignificance(zo = 2.5, power = 0.8, level = 0.05, designPrior = "conditional",

shrinkage = 0.25)

## [1] 1.758594

Figure 1 shows the power to achieve significance in the replication as a function of either the
(one-sided) p-value or the z-value of the original study. If the original estimate was just significant
at the 0.025 level, the probability for significance in the replication is just about 0.5 for conditional
and predictive power. This result was first mentioned by Goodman (1992) already two decades
ago, yet many practitioners of statistics still find it counterintuitive, because they confuse type I
error rates with replication probabilities. Thus, for the replication to achieve significance with high
probability, the sample size needs to be increased compared to the original if the the evidence for
the original discovery was only weak or moderate (Figure 2).
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Figure 1: Power to achieve significance at the one-sided 2.5% level in replication as a function of
(one-sided) p-value or z-value of the original study using the same sample size as in the original
study.

3.2 Compatibility of effect size

Analysis Another way for analysing a replication study is to examine the statistical compatibility
between original and replication effect estimate. A popular approach is to check whether the repli-
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Figure 2: Relative sample size to achieve significance at the one-sided 2.5% level with 80% power
as a function of (one-sided) p-value or z-value of original study.

cation estimate is contained within a prediction interval based on the original estimate (Patil et al.,
2016; Pawel and Held, 2020). This approach based on a (1 — «) prediction interval is equivalent
to conducting a meta-analytic ()-test with the two estimates, and rejecting compatibility when the
corresponding p-value pg < a (Hedges and Schauer, 2019). The p-value from the Q-test is usually
preferred, since it tells quantitatively how compatible the estimates are. In contrast, a prediction
interval can give a better idea about the range of plausible replication effect estimates besides the
observed one. Both approaches are available in ReplicationSuccess: The function Qtest returns
the p-value from the meta-analytic Q-test, whereas the function predictionInterval returns a pre-
diction interval for the replication effect based on the original counterpart (see the documentation
of the functions for further details).

For the four data sets, we can easily compute p-values from Q-test, as well as 95% prediction in-
tervals. For easier visual assessment we transform the intervals and estimates back to the correlation
scale.

par (mfrow = c(2, 2), las = 1, mai = rep(0.65, 4))
for (p in unique(RProjects$project)) {
data_project <- subset(RProjects, project == p)
pQ <- Qtest(thetao = data_project$fiso,
thetar = data_project$fisr,
seo = data_project$se_fiso,
ser = data_project$se_fisr)
PI <- predictionInterval(thetao = data_project$fiso,
seo = data_project$se_fiso,
data_project$se_fisr)

ser

PI <- tanh(PI)

incompatible <- pQ < 0.05

color <- ifelse(incompatible == FALSE, "#00000099", "#DF536BCC")
study <- seq(l, nrow(data_project))

plot(data_project$rr, study, col = color, pch = 20, cex = 0.5,



xlim = c(-0.5, 1), xlab = expression(italic(r)[r]), ylab = "Study",

main = pasteO(p, ": ", round(mean(incompatible)*100, 0), "% incompatible"))
arrows (PI$lower, study, PI$upper, study, length = 0.02, angle = 90, code = 3, col = color)
abline(v = 0, 1ty = 3)

}
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While both approaches enable statements about compatibility of original and replication effect
estimates, they carry a fundamental problem due to the structure of the underlying hypothesis
test: If pg < a (or equivalently the (1 — «) prediction interval does not contain the replication
estimate) one has established incompatibility /non-replication. If, however, one fails to establish
incompatibility, it remains unclear whether this is due to small power or true compatibility of both
estimates (Hedges and Schauer, 2019).

3.3 The sceptical p-value

Analysis The sceptical p-value, a new quantitative measure of replication success was first intro-
duced in Held (2020b). Conceptually, replication success is declared if the replication study is in
conflict with a sceptical prior that would render the original study non-significant. The sceptical
p-value arises from combining the intrinsic credibility method (Matthews, 2001) with the prior-
predictive check (Box, 1980). Specifically, using Bayes theorem in reverse, the prior distribution of
the effect size is determined such that based on the original study, the (1 — «) credible interval of
the posterior distribution of the effect just includes zero. This prior corresponds to the objection of
a sceptic who argues that the original finding is no longer significant if combined with a sufficiently
sceptical prior. Replication success at level « is then achieved if the tail probability of the replica-



tion estimate under its prior predictive distribution is smaller than «, rendering the objection of the
sceptic unrealistic. The smallest level a at which replication success can be declared corresponds
to the sceptical p-value. See Figure 3 for a practical illustration of the procedure, also see Held
(2020b) and Held et al. (2021) for technical details.
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Figure 3: Example of assessment of replication success. The original study from Morewedge et al.
(2010) lead to the effect estimate 6, = 0.49 on Fisher’s z-scale (95% CI from 0.12 to 0.85) and one-
sided p-value p, = 0.0043. The left part of the Figure illustrates the reverse-Bayes derivation of the
sufficiently sceptical prior based on the original study result and the posterior with lower credible
limit fixed at zero. The right part of the Figure shows the comparison of the sufficiently sceptical
prior with the replication study result (ér = 0.37, 95% CI from 0.16 to 0.58, p, = 0.0003) from the
SSRP (Camerer et al., 2018). The one-sided sceptical p-value is pg = 0.036 for this example.

The method has attractive properties: The sceptical p-value is never smaller than the ordinary
p-values from both studies which ensures that both studies have to be sufficiently convincing on
their own such that replication success is possible at a reasonable level. It also takes into account
the size of the effect estimates, i. e. it becomes larger if the replication estimate is smaller than the
original estimate, which guarantees that shrinkage of the replication effect estimate is penalized.

The sceptical p-value can be easily computed with the function pSceptical. It is recommended
to report the one-sided sceptical p-value because it guarantees that replication success is only possible
if the directions of original and replication effect estimates are the same. For the replication study
of Morewedge et al. (2010) in Figure 3, the one-sided sceptical p-value turns out to be pg = 0.036.

Interpretation

Interpretation of the sceptical p-value as a continuous measure of replication success is recommended.
However, if an answer to “did it replicate?” is needed, several types of levels to threshold the sceptical
p-value are available and can be computed with the function levelSceptical.

(thresh_gol <- levelSceptical(level = 0.025, alternative = "one.sided",
type = "golden"))

## [1] 0.06167928



(thresh_contr <- levelSceptical(level = 0.025, alternative = "one.sided",
type = "controlled"))

## [1] 0.06530883

(thresh_nom <- levelSceptical(level = 0.025, alternative = "one.sided",
type = "nominal"))

## [1] 0.025

(thresh_lib <- levelSceptical(level = 0.025, alternative = "one.sided",

type = "liberal"))

## [1] 0.08288814

The four types can be summarized as follows:

e golden: Ensures that for original studies, which are just significant at the specified significance
level «, replication success is only possible if the replication effect estimate is larger than the
original one (i. e.if there is no shrinkage). This is our recommended default level.

e controlled: When original and replication effect estimate have the same variance (¢ = 1),
this type ensures type-I error control at a? for alternative = "two.sided" and at 2 X
o? for alternative = "one.sided" (the conventional level for type I error control of two
independent experiments with two-sided testing at level 2 x « in the first and one-sided
testing at level o in the second). When the variance of the replication effect estimate is
smaller (¢ > 1), the type-I error decreases further.

e nominal: Ensures that the type-I error is always smaller than 2. Significance of both the
original and replication study at level « is then a necessary but not sufficient requirement for
replication success.

e [iberal: Ensures that significance of both studies at level « is a sufficient requirement for
replication success if original and replication effect estimate have the same variance (¢ = 1).

Held (2020b) only used the nominal level and it led to relatively low rates of replication success
in the case studies considered. Held et al. (2021) further studied properties of the different levels
and concluded that the nominal level may be too stringent for most realistic scenarios, instead
the golden level was recommended as default choice to assess replication success. It provides an
attractive balance between significance testing and effect size comparison: If a replication study is
not significant, it can still achieve replication success, provided the replication effect estimate does
not shrink. For the one-sided sceptical p-value and a = 0.025, the golden level turns out to be 0.062.
In the Morewedge et al. (2010) replication example, we have ps = 0.036 < 0.062, so the replication
is successful at the golden level. A side-remark: The controlled threshold of 0.065 is slightly larger
than the value of the golden level 0.062, which means that the golden level controls the type-I error
rate for ¢ > 1.

Recalibration

In practice it is easier to compute a recalibrated sceptical p-value pg and compare it to the signifi-
cance level (e. g.pg < 0.025) instead of comparing the uncalibrated pg to a level computed by the
levelSceptical function (e.g.ps < 0.062). This can be accomplished with the argument type in
pSceptical, for instance with type = "golden". For the Morewedge et al. (2010) example, the
sceptical p-value recalibrated at the golden level turns out to be pg = 0.011 < 0.025, from which we

can also see that the replication is successful at the golden level.
The one-sided recalibrated sceptical p-values at the golden level are computed for the four
projects as follows:

10



## computing one-sided sceptical p-value for replication projects
RProjects$ps <- with(RProjects,
pSceptical(zo = zo, zr = zr, ¢ = c,
alternative = "one.sided", type = "golden"))

boxplot(ps ~ project, data = RProjects, las = 1, cex.axis = 0.7, ylim = c(0, 1),

xlab = "Project", ylab = expression(italic(tilde(p))[S]), outline = FALSE,

col = "#0000000D")
abline(h = 0.025, 1ty = 2)
axis(side = 4, at = 0.025, las = 1, cex.axis = 0.5)
stripchart(ps ~ project, data = RProjects, vertical = TRUE, add = TRUE,

pch = 20, method = "jitter", jitter = 0.3, cex = 1, col = "#00000099")
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for (p in unique(RProjects$project)) {
data_project <- subset(RProjects, project == p)
cat(pasteO(p, ": \n"))
success_scept <- (data_project$ps < 0.025)
cat (paste0(round (mean(success_scept)*100, 2),
"% smaller than 0.025 (one-sided sceptical p-value) \n"))
success_tradit <- (data_project$pol < 0.025) & (data_project$prl < 0.025)
cat (pasteO(round(mean(success_tradit)*100, 2),
"% smaller than 0.025 (both one-sided traditional p-values) \n"))

if (sum(success_scept != success_tradit) > 0){
discrep <- data_project[(success_scept != success_tradit),
C(llroll llrrll ||c|| ||p01|| llprlll ||psll)]

## print effect estimates, 1sided p-values, and c of discrepant studies
cat("Discrepant studies: \n")
print(signif(discrep, 2), row.names = FALSE)
}
cat("\n \n")
b

## Psychology:

## 30.14% smaller than 0.025 (one-sided sceptical p-value)

## 28.77% smaller than 0.025 (both one-sided traditional p-values)
## Discrepant studies:

#it ro rr c pol prl ps
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## 0.20 0.25 2.6 0.02800 0.000047 0.024
## 0.56 0.40 0.6 0.00026 0.035000 0.017
## 0.35 0.15 2.7 0.00140 0.023000 0.031
#it
#i#

## Experimental Economics:

## 55.56% smaller than 0.025 (one-sided sceptical p-value)

## 55.56% smaller than 0.025 (both one-sided traditional p-values)
##

##

## Social Sciences:

## 52.38%, smaller than 0.025 (one-sided sceptical p-value)

## 61.9%, smaller than 0.025 (both one-sided traditional p-values)
## Discrepant studies:

#it ro rr c pol prl ps

## 0.28 0.15 3.5 0.0089 0.0110 0.040
## 0.38 0.15 9.2 0.0110 0.0043 0.061
#it
#it

## Experimental Philosophy:

## 70.97% smaller than 0.025 (one-sided sceptical p-value)

## 74.19%, smaller than 0.025 (both one-sided traditional p-values)
## Discrepant studies:

#it ro rr @ pol prl ps

## 0.75 0.44 9.4 0.015 0.0006 0.049

##

fHt

For most studies, the two approaches agree and replication success is declared both based on
significance and on the sceptical p-value. However, six replications show discrepant results. The
sceptical p-value may not indicate replication success when there is substantial shrinkage of the
replication effect estimate relative to the original one, even if both estimates are significant (this
is the case for one study in the psychology project, two studies in the social sciences project, one
study in the philosophy project). On the other hand, provided there is not much shrinkage, it may
still indicate replication success for non-significant original or replication studies (this is the case
for two studies in the psychology project).

Design Sample size calculations work in a similar manner as when they are based on statistical
significance: Using the function sampleSizeReplicationSuccess, we need to choose a design prior,
a replication success level, recalibration type, and the desired power to obtain the required relative
sample size ¢ = n,/n,. The following code shows two examples.

sampleSizeReplicationSuccess(zo = 2.5, power = 0.8, level = 0.025,
alternative = "one.sided",
designPrior = "conditional",

type = "golden")

## [1] 1.377053

sampleSizeReplicationSuccess(zo = 2.5, power = 0.8, level = 0.025,
alternative = "one.sided",
designPrior = "predictive",
type = "golden")

## [1] 2.784714

Figure 4 shows the power to achieve replication success at the golden level as a function of the
one-sided p-value (or z-value) of the original study, assuming equal sample sizes in original and
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replication studies. The probability for replication success if the original study showed only weak
evidence (p, = 0.025) is now smaller than 0.5, which is reached for an original p-value of around
0.015. Figure 5 shows the required sample size to achieve replication success at the golden level
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Figure 4: Power to achieve replication success (at the golden level with av = 0.025) as a function of
the one-sided p-value or z-value of the original study.

with 80% power. The relative sample sizes consequently increase with increasing original p-value,
with a dramatic increase for p-value larger than 0.012 when the predictive design prior is used.
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Figure 5: Relative sample size to achieve replication success (at the golden level with o = 0.025)
with 80% power as a function of the (one-sided) p-value or z-value of the original study.
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3.4 Relative effect size

Analysis The requirements on the p-value of statistical significance of the replication study
(pr < «) and of replication success (ps < ag) can both be transformed to requirements on the
relative effect size d = 6,/0, (Held et al., 2021). In short, significance of the replication study
(or replication success) is guaranteed if the relative effect size is larger than a certain bound (the
minimum relative effect size d,;,). The minimum relative effect size d,;, can be computed based
on the result from the original study, the relative sample size and the level (and additionally the
type of recalibration for replication success). The bound d,,;, on the relative effect size d can be
calculated using effectSizeSignificance and effectSizeReplicationSuccess for significance
and replication success, respectively.

For the Morewedge et al. (2010) replication, the minimum relative effect size to achieve replica-
tion success at the golden level turns out to be d;,, = 0.54. Since the observed relative effect size
is d = 0.76 > 0.54, the replication is successful.

Design The methodology described above can be inverted such that the relative sample size
is computed based on the specification of the minimum relative effect size. Using the functions
sampleSizeSignificance and sampleSizeReplicationSuccess, it is straightforward to plan the
sample size of the replication study with the approaches described above. The only thing that
changes is that we need to supply the minimum relative effect size d.;, to achieve replication
success (instead of the power).

4 Special topics

4.1 Interim analysis

Adaptive designs are a type of designs where one or more interim analyses are planned during the
course of a study. This topic has extensively been studied and used in clinical trials for example,
where continuing a study that should be stopped may lead to serious consequences. However, this
type of design has rarely been covered in the framework of replication studies. An adaptive design
was adopted in the social sciences replication project, but without a power (re)calculation at interim.
ReplicationSuccess allows to calculate the power of the replication study after an interim analysis
has been performed, taking into account the results from the first part of the study. The power
at interim is a useful tool to decide whether a replication study should be stopped prematurely
for futility (Micheloud and Held, 2021). The function powerSignificanceInterim is an extension
of powerSignificance and requires in addition the specification of zi, the z-value at the interim
analysis and £, the fraction of the replication study already completed. Moreover, the argument
designPrior can be set to "conditional", "informed predictive" and "predictive". Finally,
the argument analysisPrior allows to also take the original result into account in the analysis of
the replication study.

4.2 Between-study heterogeneity

It is often more realistic to assume that the unknown effect sizes from original and replication
studies are not exactly the same but that there is between-study heterogeneity. This can be the
case, for example, if the replication study is conducted with a different population of participants
(e. g.in a different country) or in another laboratory with different equipment. For this reason,
the functions for design of replication studies allow to incorporate additionally uncertainty due
to between-study heterogeneity. Some functions in the package (e. g. sampleSizeSignificance or
predictionInterval) allows to specify the argument h, the relative between-study heterogeneity
variance h = 72/02, i. e. the ratio of the heterogeneity variance to the variance of the original effect
estimate. By default, h is set to zero, however, if between-study heterogeneity is expected, e. g.a
different population of study participants is used, this should be considered in the design. See Pawel
and Held (2020) for more details.
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4.3 Data-driven shrinkage with empirical Bayes

The functions for design of replication studies allow to specify the argument shrinkage, in order to
shrink the original effect estimate towards zero by a certain (arbitrary) amount. A more principled
approach is to use a design prior which induces shrinkage and then estimate the prior variance
by empirical Bayes. This leads to “data-driven” shrinkage that is larger when there was only weak
evidence for the effect, and smaller when there was strong evidence for the effect (shown in Figure 6).
Furthermore, under this prior, the specified between-study heterogeneity will also induce shrinkage
towards zero, for details see Pawel and Held (2020). Empirical Bayes shrinkage can be enabled by
setting the design prior argument to "EB".
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Figure 6: Empirical Bayes shrinkage when there is no between-study heterogeneity.

5 Outlook

Development on ReplicationSuccess will continue. We invite anyone with ideas for new func-
tionality, bug-reports, or other contributions to the package to get in touch with us over GitHub
(https://github.com/SamCHI3/ReplicationSuccess/).
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