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Require-package Require: Installing and Loading R Packages for Reproducible Work-
flows

Description

A single key function, ’Require’ that wraps ’install.packages’, ’remotes::install_github’, ’versions::install.versions’,
and ’base::require’ that allows for reproducible workflows. As with other functions in a repro-
ducible workflow, this package emphasizes functions that return the same result whether it is the
first or subsequent times running the function. Maturing.

This is an "all in one" function that will run install.packages for CRAN packages, remotes::install_github
for https://github.com/ packages and will install specific versions of each package if versions
are specified either via an (in)equality (e.g., "Holidays (>=1.0.0)" or "Holidays (==1.0.0)"
for an exact version) or with a packageVersionFile. If require = TRUE, the default, the function
will then run require on all named packages that satisfy their version requirements. If packages
are already installed (packages supplied), and their optional version numbers are satisfied, then the
"install" component will be skipped.

https://github.com/
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Usage

Require(
packages,
packageVersionFile,
libPaths,
install_githubArgs = list(),
install.packagesArgs = list(),
standAlone = getOption("Require.standAlone", FALSE),
install = getOption("Require.install", TRUE),
require = getOption("Require.require", TRUE),
repos = getOption("repos"),
purge = getOption("Require.purge", FALSE),
verbose = getOption("Require.verbose", FALSE),
...

)

Arguments

packages Character vector of packages to install via install.packages, then load (i.e.,
with library). If it is one package, it can be unquoted (as in require). In the
case of a GitHub package, it will be assumed that the name of the repository is
the name of the package. If this is not the case, then pass a named character
vector here, where the names are the package names that could be different than
the GitHub repository name.

packageVersionFile

If provided, then this will override all install.package calls with versions::install.versions

libPaths The library path (or libraries) where all packages should be installed, and looked
for to load (i.e., call library). This can be used to create isolated, stand alone
package installations, if used with standAlone = TRUE. Currently, the path sup-
plied here will be prepended to .libPaths() (temporarily during this call)
to Require if standAlone = FALSE or will set (temporarily) .libPaths() to
c(libPaths,tail(libPaths(),1) to keep base packages.

install_githubArgs

List of optional named arguments, passed to install_github.
install.packagesArgs

List of optional named arguments, passed to install.packages.

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. If FALSE, then libPath will be prepended to .libPaths() during the
Require call, resulting in shared packages, i.e., it will include the user’s default
package folder(s). This can be create dramatically faster installs if the user has
a substantial number of the packages already in their personal library. Default
FALSE to minimize package installing.

install Logical or "force". If FALSE, this will not try to install anything. If "force",
then it will force installation of requested packages, mimicking a call to e.g.,
install.packages. If TRUE, the default, then this function will try to install
any missing packages or dependencies.
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require Logical. If TRUE, the default, then the function will attempt to call require on
all requested packages, possibly after they are installed.

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

purge Logical. Should all caches be purged Default is getOption("Require.purge",FALSE).
There is a lot of internal caching of results throughout the Require package.
These help with speed and reduce calls to internet sources. However, sometimes
these caches must be purged. The cached values are renewed when found to be
too old, with the age limit. This maximum age can be set in seconds with the
environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE, or if
unset, defaults to 3600 (one hour – see available.packages).
Internally, there are calls to available.packages

verbose Numeric. If 1 (less) or 2 (more), there will be a data.table with many details
attached to the output

... Passed to all of install_github, install.packages, and remotes::install_version,
i.e., the function will error if all of these functions can not use the ... argu-
ment. Good candidates are e.g., type or dependencies. This can be used with
install_githubArgs or install.packageArgs which give individual options
for those 2 internal function calls.

Details

standAlone will either put the Required packages and their dependencies all within the libPaths
(if TRUE) or if FALSE will only install packages and their dependencies that are otherwise not in-
stalled in .libPaths()[1], i.e., the current active R package directory. Any packages or depen-
dencies that are not yet installed will be installed in libPaths.

GitHub Package

Follows remotes::install_github standard as this is what is used internally. As with remotes::install_github,
it is not possible to specify a past version of a GitHub package, without supplying a SHA that had
that package version. Similarly, if a developer does a local install e.g., via devtools::install, of
an active project, this package will not be able know of the GitHub state, and thus pkgSnapshot
will not be able to recover this state as there is no SHA associated with a local installation. Use
Require or install_github to create a record of the GitHub state.

Package Snapshots

To build a snapshot of the desired packages and their versions, first run Require with all packages,
then pkgSnapshot. If a libPaths is used, it must be used in both functions.

Mutual Dependencies

This function works best if all required packages are called within one Require call, as all de-
pendencies can be identified together, and all package versions will be addressed (if there are no
conflicts), allowing a call to pkgSnapshot to take a snapshot or "record" of the current collection
of packages and versions.
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Local Cache of Packages

When installing new packages, ‘Require‘ will put all source and binary files in an R-version specific
subfolder of getOption("Require.RPackageCache") whose default is ‘NULL‘, meaning do not
cache packages locally, and will reuse them if needed. To turn on this feature, set options("Require.RPackageCache"
= "someExistingFolder").

Note

For advanced use and diagnosis, the user can set verbose = TRUE or 1 or 2 (or via options("Require.verbose")).
This will attache an attribute attr(obj,"Require") to the output of this function.

Author(s)

Maintainer: Eliot J B McIntire <eliot.mcintire@canada.ca> (ORCID)

Other contributors:

• Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Re-
sources Canada [copyright holder]

See Also

Useful links:

• https://Require.predictiveecology.org

• https://github.com/PredictiveEcology/Require

• Report bugs at https://github.com/PredictiveEcology/Require/issues

Examples

## Not run:
# simple usage, like conditional install.packages then library
library(Require)
Require("stats") # analogous to require(stats), but it checks for

# pkg dependencies, and installs them, if missing
tempPkgFolder <- file.path(tempdir(), "Packages")

# use standAlone, means it will put it in libPaths, even if it already exists
# in another local library (e.g., personal library)
Require("crayon", libPaths = tempPkgFolder, standAlone = TRUE)

# make a package version snapshot of installed packages
packageVersionFile <- "_.packageVersionTest.txt"
(pkgSnapshot(libPath = tempPkgFolder, packageVersionFile, standAlone = TRUE))

# Restart R -- to remove the old temp folder (it disappears with restarting R)
library(Require)
tempPkgFolder <- file.path(tempdir(), "Packages")
packageVersionFile <- "_.packageVersionTest.txt"
# Reinstall and reload the exact version from previous
Require(packageVersionFile = packageVersionFile, libPaths = tempPkgFolder, standAlone = TRUE)

https://orcid.org/0000-0002-6914-8316
https://Require.predictiveecology.org
https://github.com/PredictiveEcology/Require
https://github.com/PredictiveEcology/Require/issues
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# Create mismatching versions -- desired version is older than current installed
# This will try to install the older version, overwriting the newer version
desiredVersion <- data.frame(instPkgs="crayon", instVers = "1.3.2", stringsAsFactors = FALSE)
write.table(file = packageVersionFile, desiredVersion, row.names = FALSE)
newTempPkgFolder <- file.path(tempdir(), "Packages2")

# Note this will install the 1.3.2 version (older that current on CRAN), but
# because crayon is still loaded in memory, it will return TRUE, using the current version
# of crayon. To start using the older 1.3.2, need to unload or restart R
Require("crayon", packageVersionFile = packageVersionFile,

libPaths = newTempPkgFolder, standAlone = TRUE)

# restart R again to get access to older version
# run again, this time, correct "older" version installs in place of newer one
library(Require)
packageVersionFile <- "_.packageVersionTest.txt"
newTempPkgFolder <- file.path(tempdir(), "Packages3")
Require("crayon", packageVersionFile = packageVersionFile,

libPaths = newTempPkgFolder, standAlone = TRUE)

# Mutual dependencies, only installs once -- e.g., httr
tempPkgFolder <- file.path(tempdir(), "Packages")
Require(c("cranlogs", "covr"), libPaths = tempPkgFolder, standAlone = TRUE)

##########################################################################################
# Isolated projects -- Just use a project folder and pass to libPaths or set .libPaths() #
##########################################################################################
# GitHub packages -- restart R because crayon is needed
library(Require)
ProjectPackageFolder <- file.path(tempdir(), "ProjectA")
# THIS ONE IS LARGE -- > 100 dependencies -- use standAlone = FALSE to
# reuse already installed packages --> this won't allow as much control
# of package versioning
Require("PredictiveEcology/SpaDES@development",

libPaths = ProjectPackageFolder, standAlone = FALSE)

# To keep totally isolated: use standAlone = TRUE
# --> setting .libPaths() directly means standAlone is not necessary; it will only
# use .libPaths()
library(Require)
ProjectPackageFolder <- file.path("~", "ProjectA")
setLibPaths(ProjectPackageFolder)
Require("PredictiveEcology/SpaDES@development") # the latest version on GitHub
Require("PredictiveEcology/SpaDES@23002b2a92a92df4ccba7f51cdd82798800b2fa7")

# a specific commit (by using the SHA)

############################################################################
# Mixing and matching GitHub, CRAN, with and without version numbering
############################################################################
# Restart R -- when installing/loading packages, start fresh
pkgs <- c("Holidays (<=1.0.4)", "TimeWarp (<= 1.0.3)", "glmm (<=1.3.0)",
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"achubaty/amc@development", "PredictiveEcology/LandR@development (>=0.0.1)",
"PredictiveEcology/LandR@development (>=0.0.2)", "ianmseddy/LandR.CS (<=0.0.1)")

Require::Require(pkgs)

############################################################################
# Using libPaths -- This will only be used inside this function;
# To change .libPaths() for the whole session use a manually call to
# setLibPaths(newPath) first
############################################################################
Require::Require("SpaDES", libPaths = "~/TempLib2", standAlone = FALSE)

############################################################################
# Persistent separate packages
############################################################################
setLibPaths("~/TempLib2", standAlone = TRUE)
Require::Require("SpaDES") # not necessary to specify standAlone here because .libPaths are set

############################################################################
# Installing on many machines that are connected by a shared drive
############################################################################
options("Require.RPackageCache" = "~/binaryRPackages") # create binaries on the fly.

# Put thes in a shared location.
# May need to install Require in main user library before setting library paths for project
if (!require("Require")) install.packages("Require")
setLibPaths("./packages") # not shared location for library path; no longer using main user lib
Require::Require(packageVersionFile = "./packageVersions.txt",

standAlone = TRUE)

## End(Not run)

checkPath Check directory path

Description

Checks the specified path to a directory for formatting consistencies, such as trailing slashes, etc.

Usage

checkPath(path, create)

## S4 method for signature 'character,logical'
checkPath(path, create)

## S4 method for signature 'character,missing'
checkPath(path)
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## S4 method for signature '`NULL`,ANY'
checkPath(path)

## S4 method for signature 'missing,ANY'
checkPath()

Arguments

path A character string corresponding to a directory path.

create A logical indicating whether the path should be created if it does not exist. De-
fault is FALSE.

Value

Character string denoting the cleaned up filepath.

Note

This will not work for paths to files. To check for existence of files, use file.exists. To normalize
a path to a file, use normPath or normalizePath.

See Also

file.exists, dir.create.

Examples

## normalize file paths
paths <- list("./aaa/zzz",

"./aaa/zzz/",
".//aaa//zzz",
".//aaa//zzz/",
".\\\\aaa\\\\zzz",
".\\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

## check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE)
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DESCRIPTIONFileVersionV

GitHub package tools

Description

A series of helpers to access and deal with GitHub packages

Usage

DESCRIPTIONFileVersionV(file, purge = getOption("Require.purge", FALSE))

DESCRIPTIONFileOtherV(file, other = "RemoteSha")

getGitHubDESCRIPTION(pkg, purge = getOption("Require.purge", FALSE))

Arguments

file A file path to a DESCRIPTION file

purge Logical. Should all caches be purged Default is getOption("Require.purge",FALSE).
There is a lot of internal caching of results throughout the Require package.
These help with speed and reduce calls to internet sources. However, sometimes
these caches must be purged. The cached values are renewed when found to be
too old, with the age limit. This maximum age can be set in seconds with the
environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE, or if
unset, defaults to 3600 (one hour – see available.packages).
Internally, there are calls to available.packages

other Any other keyword in a DESCRIPTION file that precedes a ":". The rest of the
line will be retrieved.

pkg A character string with a GitHub package specification (c.f. remotes)

Details

getGitHubDESCRIPTION retrieves the DESCRIPTION file from GitHub.com

detachAll Detach and unload all packages

Description

This uses pkgDepTopoSort internally so that the package dependency tree is determined, and then
packages are unloaded in the reverse order. Some packages don’t unload successfully for a variety
of reasons. Several known packages that have this problem are identified internally and *not*
unloaded. Currently, these are glue, rlang, ps, ellipsis, and, processx.
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Usage

detachAll(pkgs, dontTry = NULL, doSort = TRUE)

Arguments

pkgs A character vector of packages to detach. Will be topologically sorted unless
doSort is FALSE.

dontTry A character vector of packages to not try. This can be used by a user if they find
a package fails in attempts to unload it, e.g., "ps"

doSort If TRUE (the default), then the pkgs will be topologically sorted. If FALSE, then
it won’t. Useful if the pkgs are already sorted.

Value

A numeric named vector, with names of the packages that were attempted. 2 means the package
was successfully unloaded, 1 it was tried, but failed, 3 it was in the search path and was detached
and unloaded.

extractPkgName Extract info from package character strings

Description

Cleans a character vector of non-package name related information (e.g., version)

Usage

extractPkgName(pkgs)

extractVersionNumber(pkgs)

extractInequality(pkgs)

extractPkgGitHub(pkgs)

Arguments

pkgs A character string vector of packages with or without GitHub path or versions

Value

Just the package names without extraneous info.

See Also

trimVersionNumber
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Examples

extractPkgName("Require (>=0.0.1)")
extractVersionNumber(c("Require (<=0.0.1)", "PredictiveEcology/Require@development (<=0.0.4)"))
extractInequality("Require (<=0.0.1)")
extractPkgGitHub("PredictiveEcology/Require")

getPkgVersions Internals used by Require

Description

While these are not intended to be called manually by users, they may be of some use for advanced
users.

Usage

getPkgVersions(pkgDT, install = TRUE)

getAvailable(pkgDT, purge = FALSE, repos = getOption("repos"))

installFrom(pkgDT, purge = FALSE, repos = getOption("repos"))

doInstalls(
pkgDT,
install_githubArgs,
install.packagesArgs,
install = TRUE,
repos = getOption("repos"),
...

)

doLoading(pkgDT, require = TRUE, ...)

archiveVersionsAvailable(package, repos)

Arguments

pkgDT A character string with full package names or a data.table with at least 2 columns
"Package" and "packageFullName".

install Logical or "force". If FALSE, this will not try to install anything. If "force",
then it will force installation of requested packages, mimicking a call to e.g.,
install.packages. If TRUE, the default, then this function will try to install
any missing packages or dependencies.

purge Logical. Should all caches be purged Default is getOption("Require.purge",FALSE).
There is a lot of internal caching of results throughout the Require package.
These help with speed and reduce calls to internet sources. However, sometimes
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these caches must be purged. The cached values are renewed when found to be
too old, with the age limit. This maximum age can be set in seconds with the
environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE, or if
unset, defaults to 3600 (one hour – see available.packages).
Internally, there are calls to available.packages

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

install_githubArgs

List of optional named arguments, passed to install_github.
install.packagesArgs

List of optional named arguments, passed to install.packages.

... Passed to all of install_github, install.packages, and remotes::install_version,
i.e., the function will error if all of these functions can not use the ... argu-
ment. Good candidates are e.g., type or dependencies. This can be used with
install_githubArgs or install.packageArgs which give individual options
for those 2 internal function calls.

require Logical. If TRUE, the default, then the function will attempt to call require on
all requested packages, possibly after they are installed.

package A single package name (without version or github specifications)

Details

doInstall is a wrapper around install.packages, remotes::install_github, and remotes::install_version.

doLoading is a wrapper around require.

archiveVersionsAvailable searches CRAN Archives for available versions. It has been bor-
rowed from a sub-set of the code in a non-exported function: remotes:::download_version_url

Value

In general, these functions return a data.table with various package information, installation status,
version, available version etc.

invertList Invert a 2-level list

Description

This is a simple version of purrr::transpose, only for lists with 2 levels.

Usage

invertList(l)

Arguments

l A list with 2 levels. If some levels are absent, they will be NULL
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Value

A list with 2 levels deep, inverted from l

Examples

# create a 2-deep, 2 levels in first, 3 levels in second
a <- list(a = list(d = 1, e = 2:3, f = 4:6), b = list(d = 5, e = 55))
invertList(a) # creates 2-deep, now 3 levels outer --> 2 levels inner

messageDF Use message to print a clean square data structure

Description

Sends to message, but in a structured way so that a data.frame-like can be cleanly sent to messaging.

Usage

messageDF(df, round)

Arguments

df A data.frame, data.table, matrix

round An optional numeric to pass to round

modifyList2 modifyList for multiple lists

Description

This calls modifyList iteratively using Reduce, so it can handle >2 lists. The subsequent list
elements that share a name will override previous list elements with that same name. It also will
handle the case where any list is a NULL

Usage

modifyList2(...)

Arguments

... One or more named lists.

Details

Simply a convenience around Reduce(modifyList,list(...)), with some checks.
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Examples

modifyList2(list(a = 1), list(a = 2, b = 2))
modifyList2(list(a = 1), NULL, list(a = 2, b = 2))
modifyList2(list(a = 1), NULL, list(a = 2, b = 2), list(a = 3, c = list(1:10)))

normPath Normalize filepath

Description

Checks the specified filepath for formatting consistencies: 1) use slash instead of backslash; 2) do
tilde etc. expansion; 3) remove trailing slash.

Usage

normPath(path)

## S4 method for signature 'character'
normPath(path)

## S4 method for signature 'list'
normPath(path)

## S4 method for signature '`NULL`'
normPath(path)

## S4 method for signature 'missing'
normPath()

Arguments

path A character vector of filepaths.

Value

Character vector of cleaned up filepaths.

Examples

## normalize file paths
paths <- list("./aaa/zzz",

"./aaa/zzz/",
".//aaa//zzz",
".//aaa//zzz/",
".\\\\aaa\\\\zzz",
".\\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))
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checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

## check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE)

parseGitHub GitHub specific helpers

Description

install_githubV is a vectorized remotes::install_github. This will attempt to identify all
dependencies of all supplied packages first, then load the packages in the correct order so that each
of their dependencies are met before each is installed.

Usage

parseGitHub(pkgDT)

install_githubV(gitPkgNames, install_githubArgs = list(), dots = dots)

Arguments

pkgDT A character string with full package names or a data.table with at least 2 columns
"Package" and "packageFullName".

gitPkgNames Character vector of package to install from GitHub
install_githubArgs

Any arguments passed to install_github

dots A list of ..., e.g., list(...). Only for internal use.

Details

parseGitHub turns the single character string representation into 3 or 4: Account, Repo, Branch,
SubFolder.

Value

parseGitHub returns a data.table with added columns.

install_githubV returns a named character vector indicating packages successfully installed, un-
less the word "Failed" is returned, indicating installation failure. The names will be the full GitHub
package name, as provided to gitPkgNames in the function call.
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Examples

## Not run:
install_githubV(c("PredictiveEcology/Require", "PredictiveEcology/quickPlot"))

## End(Not run)

pkgDep Determine package dependencies

Description

This will first look in local filesystem (in .libPaths()) and will use a local package to find its
dependencies. If the package does not exist locally, including whether it is the correct version,
then it will look in (currently) CRAN and its archives (if the current CRAN version is not the desired
version to check). It will also look on GitHub if the package description is of the form of a GitHub
package with format account/repo@branch or account/repo@commit. For this, it will attempt
to get package dependencies from the GitHub ‘DESCRIPTION’ file. This is intended to replace
tools::package_dependencies or pkgDep in the miniCRAN package, but with modifications to
allow multiple sources to be searched in the same function call.

pkgDep2 is a convenience wrapper of pkgDep that "goes one level in", i.e., the first order dependen-
cies, and runs the pkgDep on those.

This is a wrapper around tools::dependsOnPkgs, but with the added option of sorted, which
will sort them such that the packages at the top will have the least number of dependencies that
are in pkgs. This is essentially a topological sort, but it is done heuristically. This can be used to
e.g., detach or unloadNamespace packages in order so that they each of their dependencies are
detached or unloaded first.

pkgDepAlt is a newer, still experimental approach to pkgDep, which has different internal algo-
rithms. With current testing, it appears to be slightly more accurate for (some unknown, as of yet)
edge cases. One known case is when the a package is installed locally package, but is not the
version that is requested with pkgDep, the function will default to the local, installed, and incorrect
package dependencies. pkgDepAlt gets this case correct. This function may eventually replace
pkgDep.

Usage

pkgDep(
packages,
libPath = .libPaths(),
which = c("Depends", "Imports", "LinkingTo"),
recursive = FALSE,
depends,
imports,
suggests,
linkingTo,
repos = getOption("repos"),
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keepVersionNumber = TRUE,
includeBase = FALSE,
sort = TRUE,
purge = getOption("Require.purge", FALSE)

)

pkgDep2(
packages,
recursive = TRUE,
which = c("Depends", "Imports", "LinkingTo"),
depends,
imports,
suggests,
linkingTo,
repos = getOption("repos"),
sorted = TRUE,
purge = getOption("Require.purge", FALSE)

)

pkgDepTopoSort(
pkgs,
deps,
reverse = FALSE,
topoSort = TRUE,
useAllInSearch = FALSE,
returnFull = TRUE,
recursive = TRUE,
purge = getOption("Require.purge", FALSE)

)

pkgDepAlt(
packages,
libPath = .libPaths(),
which = c("Depends", "Imports", "LinkingTo", "Remotes"),
recursive = FALSE,
depends,
imports,
suggests,
linkingTo,
enhances,
remotes,
repos = getOption("repos"),
keepVersionNumber = TRUE,
includeBase = FALSE,
sort = TRUE,
purge = getOption("Require.purge", FALSE)

)
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Arguments

packages Character vector of packages to install via install.packages, then load (i.e.,
with library). If it is one package, it can be unquoted (as in require). In the
case of a GitHub package, it will be assumed that the name of the repository is
the name of the package. If this is not the case, then pass a named character
vector here, where the names are the package names that could be different than
the GitHub repository name.

libPath A path to search for installed packages. Defaults to .libPaths()

which a character vector listing the types of dependencies, a subset of c("Depends","Imports","LinkingTo","Suggests","Enhances").
Character string "all" is shorthand for that vector, character string "most" for
the same vector without "Enhances".

recursive Logical. Should dependencies of dependencies be searched, recursively. NOTE:
Dependencies of suggests will not be recursive. Default TRUE.

depends Logical. Include packages listed in "Depends". Default TRUE.

imports Logical. Include packages listed in "Imports". Default TRUE.

suggests Logical. Include packages listed in "Suggests". Default FALSE.

linkingTo Logical. Include packages listed in "LinkingTo". Default TRUE.

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

keepVersionNumber

Logical. If TRUE, then the package dependencies returned will include version
number. Default is FALSE

includeBase Logical. Should R base packages be included, specifically, those in tail(.libPath(),1)

sort Logical. If TRUE, the default, then the packages will be sorted alphabetically. If
FALSE, the packages will not have a discernible order as they will be a concate-
nation of the possibly recursive package dependencies.

purge Logical. Should all caches be purged Default is getOption("Require.purge",FALSE).
There is a lot of internal caching of results throughout the Require package.
These help with speed and reduce calls to internet sources. However, sometimes
these caches must be purged. The cached values are renewed when found to be
too old, with the age limit. This maximum age can be set in seconds with the
environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE, or if
unset, defaults to 3600 (one hour – see available.packages).
Internally, there are calls to available.packages

sorted Logical. If TRUE, the default, the packages will be sorted in the returned list from
most number of dependencies to least.

pkgs A vector of package names to evaluate their reverse depends (i.e., the packages
that use each of these packages)

deps An optional named list of (reverse) dependencies. If not supplied, then tools::dependsOnPkgs(...,recursive
= TRUE) will be used

reverse Logical. If TRUE, then this will use tools::pkgDependsOn to determine which
packages depend on the pkgs
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topoSort Logical. If TRUE, the default, then the returned list of packages will be in order
with the least number of dependencies listed in pkgs at the top of the list.

useAllInSearch Logical. If TRUE, then all non-core R packages in search() will be appended to
pkgs to allow those to also be identified

returnFull Logical. Primarily useful when reverse = TRUE. If TRUE, then then all installed
packages will be searched. If FALSE, the default, only packages that are currently
in the search() path and passed in pkgs will be included in the possible reverse
dependencies.

enhances Logical. Include packages listed in "Enhances". Default FALSE.

remotes Logical. Include packages listed in "Remotes". This is only relevant for GitHub
packages. Default TRUE.

Value

A possibly ordered, named (with packages as names) list where list elements are either full reverse
depends.

Note

tools::package_dependencies and pkgDep will differ under the following circumstances:

1. GitHub packages are not detected using tools::package_dependencies;

2. tools::package_dependencies does not detect the dependencies of base packages among
themselves, e.g., methods depends on stats and graphics.

Examples

## Not run:
pkgDep("Require")
pkgDep("Require", keepVersionNumber = FALSE) # just names
pkgDep("PredictiveEcology/reproducible") # GitHub
pkgDep("PredictiveEcology/reproducible", recursive = TRUE) # GitHub
pkgDep(c("PredictiveEcology/reproducible", "Require")) # GitHub package and local packages
pkgDep(c("PredictiveEcology/reproducible", "Require", "plyr")) # GitHub, local, and CRAN packages

## End(Not run)
## Not run:

pkgDep2("Require")
# much bigger one
pkgDep2("reproducible")

## End(Not run)
## Not run:
pkgDepTopoSort(c("Require", "data.table"), reverse = TRUE)

## End(Not run)
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pkgDepIfDepRemoved Package dependencies when one or more packages removed

Description

This is primarily for package developers. It allows the testing of what the recursive dependencies
would be if a package was removed from the immediate dependencies.

Usage

pkgDepIfDepRemoved(pkg = character(), depsRemoved = character())

Arguments

pkg A package name to be testing the dependencies

depsRemoved A vector of package names who are to be "removed" from the pkg immediate
dependencies

Value

A character vector of the packages that would removed from recursive dependencies of pkg if
depsRemoved were removed from first level dependencies

Examples

## Not run:
pkgDepIfDepRemoved("Require", "remotes")

## End(Not run)

pkgSnapshot Take a snapshot of all the packages and version numbers

Description

This can be used later by installVersions to install or re-install the correct versions.

Usage

pkgSnapshot(
packageVersionFile = "packageVersions.txt",
libPaths,
standAlone = FALSE,
purge = getOption("Require.purge", FALSE),
exact = TRUE

)
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Arguments

packageVersionFile

A filename to save the packages and their currently installed version numbers.
Defaults to ".packageVersions.txt". If this is specified to be NULL, the func-
tion will return the exact Require call needed to install all the packages at their
current versions. This can be useful to add to a script to allow for reproducibility
of a script.

libPaths The path to the local library where packages are installed. Defaults to the
.libPaths()[1].

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. If FALSE, then libPath will be prepended to .libPaths() during the
Require call, resulting in shared packages, i.e., it will include the user’s default
package folder(s). This can be create dramatically faster installs if the user has
a substantial number of the packages already in their personal library. Default
FALSE to minimize package installing.

purge Logical. Should all caches be purged Default is getOption("Require.purge",FALSE).
There is a lot of internal caching of results throughout the Require package.
These help with speed and reduce calls to internet sources. However, sometimes
these caches must be purged. The cached values are renewed when found to be
too old, with the age limit. This maximum age can be set in seconds with the
environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE, or if
unset, defaults to 3600 (one hour – see available.packages).
Internally, there are calls to available.packages

exact Logical. If TRUE, the default, then for GitHub packages, it will install the exact
SHA, rather than the head of the account/repo@branch. For CRAN packages, it
will install the exact version. If FALSE, then GitHub packages will identify their
branch if that had been specified upon installation, not a SHA. If the package
had been installed with reference to a SHA, then it will return the SHA as it
does not know what branch it came from. Similarly, CRAN packages will report
their version and specify with a >=, allowing a subsequent user to install with a
minimum version number, as opposed to an exact version number.

Details

A file is written with the package names and versions of all packages within libPaths. This can
later be passed to Require.

Examples

pkgSnapFile <- tempfile()
pkgSnapshot(pkgSnapFile, .libPaths()[1])
data.table::fread(pkgSnapFile)

## Not run:

# An example to move this file to a new computer
library(Require)
setLibPaths(.libPaths()[1]) # this will only do a snapshot of the main user library
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fileName <- "packageSnapshot.txt"
pkgSnapshot(fileName)
# Get file on another computer -- via email, slack, cloud, etc.
# library(googledrive)
# (out <- googledrive::drive_upload(fileName)) # copy the file id to clipboard

# On new machine
fileName <- "packageSnapshot.txt"
library(Require)
# get the file from email, slack, cloud etc.
# library(googledrive)
# drive_download(as_id(PASTE-THE-FILE-ID-HERE), path = fileName)
setLibPaths("~/RPackages") # start with an empty folder for new

# library to minimize package version conflicts
Require(packageVersionFile = fileName)

# Passing NULL --> results in output to console with exact Require call to
# achieve the packages installations
pkgSnapshot(NULL, libPaths = .libPaths()[1], exact = FALSE)

# Or shunt it to a file
sink("packages2.R")
pkgSnapshot(NULL, libPaths = .libPaths()[1])
sink()

# Will show "minimum package version"
pkgSnapshot(NULL, libPaths = .libPaths()[1], exact = FALSE)

## End(Not run)

RequireOptions Require options

Description

These provide top-level, powerful settings for a comprehensive reproducible workflow. To see
defaults, run RequireOptions(). See Details below.

Usage

RequireOptions()

Details

Below are options that can be set with options("Require.xxx" = newValue), where xxx is one
of the values below, and newValue is a new value to give the option. Sometimes these options can
be placed in the user’s .Rprofile file so they persist between sessions.

The following options are likely of interest to most users:
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RPackageCache Default: NULL. If a folder is provided, then binary and source packages will be
cached here. Subsequent downloads of same package will use local copy. Default is to have
packages not be cached locally so each install of the same version will be from the original
source, e.g., CRAN, GitHub.

buildBinaries Default: TRUE. Only relevant on *nix systems and if getOption("Require.RPackageCache")
is set to a path. If TRUE, then Require will pass INSTALL_OPTS = "--build", meaning the
package binary will be built and then saved in the getOption("Require.RPackageCache").
This means that subsequent installs of this package on this or identical system will be faster.

persistentPkgEnv Default: FALSE. (ADVANCED USE) Require stashes a lot of information in
a hidden environment, located at Require:::.pkgEnv. This gets reset at each restart of R and
each reload of Require. To make the stashes more persistent, set this option to TRUE. A file
will be placed at file.path("~","._Require_pkgEnv.rdata"), which will be restored at
package load

purge Default: FALSE. If set to (almost) all internal caches used by Require will be deleted and
rebuilt. This should not generally be necessary as it will automatically be deleted after (by de-
fault) 1 hour (set via R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE environment vari-
able in seconds)

setupVerbose Default: TRUE. Logical. Once setup is called, there are several important changes
that are made to the user’s experience. For beginners with Require, the messages that are
written are important to see. However, these can be turned off setting this to FALSE

unloadNamespaces Default: TRUE. (ADVANCED USE) Require will attempt to detach and un-
load packages that conflict with the requested package installing via Require. This can be
complicated, resulting in broken states that can only be recovered by restarting R. Default is
to attempt to do this. FALSE will not attempt to do this. User must deal with inability to install
packages due to package already being loaded.

verbose Default: 0. During a Require, there is a lot of information collected and used. With
verbose set to 1 or 2, more of this information will be reported as an attribute attached to the
return object of Require. This may help diagnosing problems.

setLibPaths Set .libPaths

Description

This will set the .libPaths() by either adding a new path to it if standAlone = FALSE, or will
concatenate c(libPath,tail(.libPaths(),1)) if standAlone = TRUE. Currently, the default is
to make this new .libPaths() "sticky", meaning it becomes associated with the current directory
even through a restart of R. It does this by adding and/updating the ‘.Rprofile’ file in the current
directory. If this current directory is a project, then the project will have the new .libPaths()
associated with it, even through an R restart.

Usage

setLibPaths(
libPaths,
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standAlone = TRUE,
updateRprofile = getOption("Require.updateRprofile", FALSE),
exact = FALSE

)

Arguments

libPaths A new path to append to, or replace all existing user components of .libPath()

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. If FALSE, then libPath will be prepended to .libPaths() during the
Require call, resulting in shared packages, i.e., it will include the user’s default
package folder(s). This can be create dramatically faster installs if the user has
a substantial number of the packages already in their personal library. Default
FALSE to minimize package installing.

updateRprofile Logical or Character string. If TRUE, then this function will put several lines of
code in the current directory’s .Rprofile file setting up the package libraries
for this and future sessions. If a character string, then this should be the path
to an .Rprofile file. To reset back to normal, run setLibPaths() without a
libPath. Default: getOption("Require.updateRprofile",FALSE), mean-
ing FALSE, but it can be set with an option or within a single call.

exact Logical. This function will automatically append the R version number to the
libPaths to maintain separate R package libraries for each R version on the
system. There are some cases where this behaviour is not desirable. Set exact to
TRUE to override this automatic appending and use the exact, unaltered libPaths.
Default is FALSE

Details

This details of this code were modified from https://github.com/milesmcbain. A different,
likely non-approved by CRAN approach that also works is here: https://stackoverflow.com/
a/36873741/3890027.

Value

The main point of this function is to set .libPaths(), which will be changed as a side effect of this
function. As when setting options, this will return the previous state of .libPaths() allowing the
user to reset easily.

Examples

origDir <- setwd(tempdir())
setLibPaths("newProjectLib") # set a new R package library locally
setLibPaths() # reset it to original
setwd(origDir)
## Not run:
# Using standAlone = FALSE means that newly installed packages will be installed
# in the new package library, but loading packages can come from any of the ones
# listed in .libPaths()
setLibPaths("~/newProjectLib", standAlone = FALSE) # will have 2 or more paths

https://github.com/milesmcbain
https://stackoverflow.com/a/36873741/3890027
https://stackoverflow.com/a/36873741/3890027
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# Can restart R, and changes will stay

# remove the custom .libPaths()
Require::setLibPaths() # reset to previous; remove from .Rprofile because libPath arg is empty

## End(Not run)

setup Setup a project library, cache, options

Description

This can be placed as the first line of any/all scripts and it will be create a reproducible, self-
contained project with R packages. Some of these have direct relationships with RequireOptions
and arguments in setLibPaths and Require.

Usage

setup(
RPackageFolders = getOption("RPackageFolders", "R"),
RPackageCache = getOption("RPackageCache", "~/.cache/R/RequirePkgCache"),
buildBinaries = getOption("buildBinaries", TRUE),
standAlone = getOption("standAlone", TRUE)

)

setupOff(removePackages = FALSE)

Arguments

RPackageFolders

One or more folders where R packages are installed to and loaded from. In the
case of more than one folder provided, installation will only happen in the first
one.

RPackageCache See ?RequireOptions.

buildBinaries See ?RequireOptions.

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. If FALSE, then libPath will be prepended to .libPaths() during the
Require call, resulting in shared packages, i.e., it will include the user’s default
package folder(s). This can be create dramatically faster installs if the user has
a substantial number of the packages already in their personal library. Default
FALSE to minimize package installing.

removePackages Logical. If TRUE, then all packages that were installed in the custom library
will be deleted when setupOff is run. The default is FALSE, and when TRUE is
selected, and it is an interactive session, the user will be prompted to confirm
deletions.
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Examples

# Place this as the first line of a project
## Not run:
Require::setup()

# To turn it off and return to normal
Require::setupOff()

## End(Not run)

tempdir2 Make a temporary (sub-)directory

Description

Create a temporary subdirectory in .RequireTempPath(), or a temporary file in that temporary
subdirectory.

Usage

tempdir2(sub = "", tempdir = getOption("Require.tempPath", .RequireTempPath()))

Arguments

sub Character string, length 1. Can be a result of file.path("smth","smth2") for
nested temporary sub directories.

tempdir Optional character string where the temporary dir should be placed. Defaults to
.RequireTempPath()

See Also

tempfile2

tempfile2 Make a temporary subfile in a temporary (sub-)directory

Description

Make a temporary subfile in a temporary (sub-)directory

Usage

tempfile2(
sub = "",
tempdir = getOption("Require.tempPath", .RequireTempPath()),
...

)
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Arguments

sub Character string, length 1. Can be a result of file.path("smth","smth2") for
nested temporary sub directories.

tempdir Optional character string where the temporary dir should be placed. Defaults to
.RequireTempPath()

... passed to tempfile, e.g., fileext

See Also

tempdir2

trimVersionNumber Trim version number off a compound package name

Description

The resulting string(s) will have only name (including github.com repository if it exists).

Usage

trimVersionNumber(pkgs)

Arguments

pkgs A character string vector of packages with or without GitHub path or versions

See Also

extractPkgName

Examples

trimVersionNumber("PredictiveEcology/Require (<=0.0.1)")
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